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Distinct whole-blood transcriptome profile of children with
metabolic healthy overweight/obesity compared to metabolic
unhealthy overweight/obesity
Abel Plaza-Florido1, Signe Altmäe2,3,4, Francisco J. Esteban5, Cristina Cadenas-Sanchez1,6, Concepción M. Aguilera4,7,8,
Elisabet Einarsdottir9, Shintaro Katayama10,11, Kaarel Krjutškov3,11,12, Juha Kere10,11, Frank Zaldivar13, Shlomit Radom-Aizik13 and
Francisco B. Ortega1,11

BACKGROUND: Youth populations with overweight/obesity (OW/OB) exhibit heterogeneity in cardiometabolic health phenotypes.
The underlying mechanisms for those differences are still unclear. This study aimed to analyze the whole-blood transcriptome
profile (RNA-seq) of children with metabolic healthy overweight/obesity (MHO) and metabolic unhealthy overweight/obesity (MUO)
phenotypes.
METHODS: Twenty-seven children with OW/OB (10.1 ± 1.3 years, 59% boys) from the ActiveBrains project were included. MHO was
defined as having none of the following criteria for metabolic syndrome: elevated fasting glucose, high serum triglycerides, low
high-density lipoprotein-cholesterol, and high systolic or diastolic blood pressure, while MUO was defined as presenting one or
more of these criteria. Inflammatory markers were additionally determined. Total blood RNA was analyzed by 5’-end RNA-
sequencing.
RESULTS: Whole-blood transcriptome analysis revealed a distinct pattern of gene expression in children with MHO compared to
MUO children. Thirty-two genes differentially expressed were linked to metabolism, mitochondrial, and immune functions.
CONCLUSIONS: The identified gene expression patterns related to metabolism, mitochondrial, and immune functions contribute
to a better understanding of why a subset of the population remains metabolically healthy despite having overweight/obesity.
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IMPACT:

● A distinct pattern of whole-blood transcriptome profile (RNA-seq) was identified in children with metabolic healthy overweight/
obesity (MHO) compared to metabolic unhealthy overweight/obesity (MUO) phenotype.

● The most relevant genes in understanding the molecular basis underlying the MHO/MUO phenotypes in children could be:
RREB1, FAM83E, SLC44A1, NRG1, TMC5, CYP3A5, TRIM11, and ADAMTSL2.

● The identified whole-blood transcriptome profile related to metabolism, mitochondrial, and immune functions contribute to a
better understanding of why a subset of the population remains metabolically healthy despite having overweight/obesity.

INTRODUCTION
Childhood obesity is strongly associated with increased cardio-
metabolic risk factors (e.g., dyslipidemia and hypertension) and
type 2 diabetes.1,2 However, there is a subset of children and
adolescents with overweight/obesity (OW/OB) (6–22%, depending
on the classification criteria,3,4 who present a normal/healthy
metabolic profile that might reflect a better cardiovascular disease

prognosis.3,5 Metabolically “healthy” obesity (MHO) is defined as a
subset of individuals with obesity (OB) according to the standard
definition of body mass index (BMI) who lack metabolic syndrome
symptoms. In contrast, MUO (i.e., metabolically unhealthy over-
weight/obesity) children and adolescents have 1–4 metabolic
syndrome classification criteria5,6: fasting glucose (≥100.9 mg/dl in
boys and girls), high serum triglycerides (≥127.4 mg/dl in boys and
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≥141.6 mg/dl in girls), low high-density lipoprotein (HDL)-choles-
terol (≤43.7 mg/dl boys and ≤48.3 mg/dl in girls), and systolic or
diastolic blood pressure (systolic ≥121mmHg in boys and girls,
diastolic ≥76mmHg in boys and ≥80mmHg in girls). In pediatric
populations, MHO has mostly included children with both OW and
OB (for simplicity, the abbreviation MHO will be hereinafter used
instead of MHO-O or others) to maximize sample size and
power.7,8

The underlying mechanisms for the normal/healthy metabolic
profile of individuals with OW/OB are poorly understood.9

Naukkarinen et al. reported lower expression of inflammatory
genes and higher expression of mitochondrial genes in sub-
cutaneous adipose tissue of young adults with MHO compared to
MUO.10 Das et al. also evaluated the transcriptome profile in the
subcutaneous adipose tissue of middle-aged adults with MHO
compared to MUO11 and found differences in genes involved in
cardiovascular disease-related processes and immune/inflamma-
tory responses. However, a study by Gómez-Ambrosi et al.12

analyzed candidate genes involved in inflammation and tissue
remodeling and detected no differences between adults with
MHO and MUO in the liver and visceral adipose tissue. The
inconsistent results in the different studies may be explained by
different ways to classify individuals with MHO and MUO5,13,14

and/or different tissues used to analyze transcriptome profiles
(e.g., visceral adipose tissue, liver, subcutaneous adipose tissue,
and peripheral blood mononuclear cells).10–12,15

Nevertheless, to the best of our knowledge, no previous studies
have characterized the transcriptome profiles of children with
MHO and MUO. Due to ethical considerations, tissue biopsies are
not permitted in pediatric populations, so that the main tissue to
be studied in this population is whole blood, which can reflect the
systemic inflammation in the body. Obesity is characterized by a
low-grade systemic inflammation, which is involved in the
pathophysiology of type 2 diabetes mellitus and arteriosclero-
sis.16,17 Studies have pointed to the tissue macrophages as a
source, which may contribute to increases in inflammation in
adipose tissue, resulting in the dysregulation of the endocrine
function inducing low-grade systemic inflammation in persons
with obesity.18 In this regard, one of the main factors that could
contribute to an MHO phenotype is the presence of a low pro-
inflammatory profile.19 However, why some individuals would
have a lower pro-inflammatory profile than others in the presence
of an excessive weight/adiposity is still poorly understood and the
study of differences in gene expression levels between MHO vs.
MUO can shed light on this.
The present study aimed to characterize the whole-blood

transcriptome profile of children with MHO and MUO to promote
a better understanding of why a subset of the population remains
metabolically healthy despite having OW/OB.

METHODS
Participants
In total, 27 children with OW and OB, ages 10.1 ± 1.3 years, 59%
boys, from the ActiveBrains project (www.profith.ugr.es/
activebrains, Clinical Trial: NCT02295072) were included in this
analysis. Detailed design, methods, and inclusion/exclusion criteria
have been described elsewhere.20 The study was approved by the
Committee for Research Involving Human Subjects at the
University of Granada (Reference: 848, February 2014). All parents
were informed about the study objective and written informed
consent following the Declaration of Helsinki.

Body composition measurements and maturational status
Body weight and height were measured with an electronic scale
and a stadiometer (Seca Instruments, Germany, Ltd). BMI was
calculated as kg/m2 and participants were then classified as
children with OW or OB according to the sex- and age-specific

World Obesity Federation cut-off points.21 Waist circumference
(WC) was evaluated as using the International Society for the
Advancement of Kinanthropometry procedures.22 Body weight,
height, and WC were collected twice consecutively by the same
trained evaluator, and the average for each metric was used. Body
fat percentage, fat-free mass, and visceral adipose tissue were
measured by dual energy X-ray absorptiometry (DXA; Discovery
densitometer from Hologic). The positioning of the participants
and the analyses of the results were undertaken following
recommendations from the International Society of Clinical
Densitometry.23 All DXA analyses were performed by the same
evaluator using the GE encore software (version 4.0.2).
The maturational status of the participants was reflected by

peak height velocity (PHV) using age and height in validated
algorithms24: in boys: −8.1+ (0.0070346 × (age × sitting height);
and in girls: −7.7+ (0.0042232 × (age × height). Maturity offset
was calculated by subtracting the PHV age from the
chronological age.

Definition of MHO and MUO in youth
Cardiometabolic risk factors used in our study to define the MHO
and MUO (i.e., fasting glucose, serum triglycerides, and HDL-
cholesterol) were measured from fasting blood samples. Blood
pressure (systolic and diastolic) was measured from the left arm
with an automatic sphygmomanometer (Omron M6, the Nether-
lands) on two different days, and the minimum value was
registered for the analyses.
Our participants were classified using the harmonization

definition for MHO and MUO in youth using the Jolliffe and
Janssen metabolic syndrome study,25 based on a comprehensive
review of different criteria available (for more details, see Ortega
et al.5,6). In this study, age- and sex-specific cut-off points for each
marker of metabolic syndrome were developed for adolescent
populations from 12 to 18 years.25 Cut-off points for boys and girls
aged 12 years25 were used in our study, since it was the closest to
the age range of our sample, i.e., 9–11 years. The strength of these
cut-off points are equivalent to those proposed for adults by the
International Diabetes Federation and Adults Treatment Panel and
the adaptation by age- and sex-specific based on growth curves in
youth.5 The metabolic syndrome is defined as having fasting
glucose (≥100.9 mg/dl in boys and girls), high serum triglycerides
(≥127.4 mg/dl in boys and ≥141.6 mg/dl in girls), low HDL-
cholesterol (≤43.7 mg/dl boys and ≤48.3 mg/dl in girls), and
systolic or diastolic blood pressure (systolic ≥ 121 mmHg in boys
and girls, diastolic ≥76mmHg in boys and ≥80mmHg in girls).
Children lacking all the metabolic syndrome criteria (excluding
high WC) were classified as MHO. Children with one or more of the
previous criteria were classified as MUO. Both OW and OB were
included in the analysis (n= 27; 6 OW and 21 OB) to maximize
sample size and in line with previous studies in pediatric
populations.7,8 Homeostasis model assessment for insulin resis-
tance as an index of insulin resistance were provided.

Blood sampling and analysis
Participants arrived at the laboratory between 8 and 9 a.m. after
an overnight fasting of at least 12 h. Venous blood collected in
tubes with EDTA was spun immediately at 1000 × g for 10 min.
Plasma was isolated and stored at −80 °C until analyses. In
addition, 500 μl blood were collected into tubes containing 1.3 ml
RNAlater solution (Ambion Inc.; Austin, TX, USA) for transcriptome
analysis and was stored at −80 °C until further processing.

Inflammatory markers. Interleukin-6 (IL-6), IL-1β, and tumor
necrosis factor-α (TNF-α) cytokines were measured in plasma
using multiple analyte profiling technology (MILLIPLEX® MAP
Human High Sensitivity T Cell Magnetic Bead Panel, EMD Millipore
Corporation, MO, USA) with a kit plex (HCYIL6-MAG Anti-Human
IL-6 Beads set, HCYIL1B-MAG Anti-Human IL-1β Bead, and
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HCYTNFA-MAG Anti-Human TNFα Bead set).26 The intra- and inter-
assay coefficients of variation (CVs) for IL-6 were ≤5% and ≤20%,
respectively, and sensitivity was 0.11 pg/ml. For both IL-1β and
TNF-α, the intra- and inter-assay CVs were ≤5% and ≤15%,
respectively, with a sensitivity of 0.14 pg/ml for IL-1β, and of 0.16
pg/ml for TNF-α.26 Vascular endothelial growth factor A (VEGF-A)
and epidermal growth factor (EGF) were quantified by multiple
analyte profiling technology (MILLIPLEX® MAP Human Angiogen-
esis/Growth Factor Magnetic Bead Panel 1, EMD Millipore
Corporation, MO, USA) using a kit plex (HVEGF-MAG Anti-Human
VEGF-A Bead and HAGEGF-MAG Anti-Human EGF Bead).27 The
intra- and inter-assay CVs for VEGF-A were ≤3.5% and ≤10%,
respectively, and sensitivity was 8.1 pg/ml. For EGF, the intra- and
inter-assay CVs were ≤3.2% and ≤6.8%, respectively, with a
sensitivity of 1 pg/ml.27

RNA extraction and sequencing. Total RNA was isolated from the
blood samples that contained RNAlater using the RiboPureTM-
Blood Kit (Thermo Fisher Scientific; Waltham, MA, USA). Subse-
quently, GlobinLock molecular mechanism was applied to block
the high globin mRNA content of erythrocytes, which is abundant
in the blood and could hamper the whole-blood RNA analyses.28

Full transcriptome analysis was performed following the modified
version of single-cell tagged reverse transcription (STRT) protocol
as described in detail before,29 where 10 ng of high-quality input
RNA was converted into cDNA and amplified to form an Illumina-
compatible library. The STRTprep pipeline, available at https://
github.com/shka/STRTprep/tree/v3dev, was used for processing
raw sequencing reads, aligning to the hg19 genome, and
quantitating the expression levels. RNA-seq data are available at
www.ncbi.nlm.nih.gov/geo under accession number GSE146869.

Statistical analyses
The differences in sample characteristics between children with
MHO and MUO were tested using the non-parametric
Mann–Whitney U and chi-squared test for continuous and
categorical variables, respectively. Winsorizing the data was
performed to limit the influence of extreme values. Briefly, the
winsorization method replaces extreme high/low values for the
closest (highest/lowest) valid values.30 The analyses were
performed using SPSS version 21.0 (IBM Corporation, NY, USA),
and the statistical significance was defined at the level of p < 0.05.
Differential expression analysis between children with MHO and
MUO was performed with Limma R/Bioconductor software
package.31 Prior to performing the analyses, quantile normal-
ization was performed on gene expression data of RNA-
sequencing (RNA-seq). These analyses were adjusted by sex and
maturational status. Statistically differentially regulated genes
were defined by a false discovery rate (FDR) < 5% (Benjamini and
Hochberg correction on multiple testing). These genes were
characterized by functional enrichment analysis using g:Profiler.32

Biological process and pathways with an FDR < 0.05 were
considered significantly enriched.
Additionally, we performed a weighted gene coexpression

network analysis (WGCNA) following the guidelines for these
analyses33–35 in order to explore possible gene networks. Two
different networks of genes coexpressed based on terms of
correlations were created, i.e., one network in children with MHO
and another network of genes coexpressed in the group of
children with MUO. The subsequent step was to define and
characterize the non-preserved modules or subnetworks (i.e.,
clusters of genes named by colors) and their function in the
network constructed in children with MHO respect to the network
computed in children with MUO. The “modulePreservation”
WGCNA function was used to compute a range of preservation
across the two networks. Module preservation statistics were
calculated to evaluate whether a given color module defined in
one data set (reference network, in our study the reference

network was computed in children with MHO) can also be found
in another data set (test network, in our study the test network
was computed in children with MUO). Module preservation
among children with MHO and MUO was reported as a composite
Zsummary measurement of connectivity and density. Zsummary
scores >10 indicate high network preservation (i.e., a module color
or group of genes is similarly clustered in children with MHO and
MUO), scores between 2 and 10 are indicative of moderate
network preservation, and Zsummary measures <2 provide no
evidence of preservation (i.e., a color module or group of genes is
clustered in children with MHO but not clustered in MUO). Hub
genes (i.e., highly connected intramodular genes, referring to
bigger role within the network) were identified in color modules
with low preservation based on the module membership value
(MM). The MM has been calculated as the correlation between the
module eigengene (i.e., first principal component) of a module
and the expression profile of a gene. Genes whose MM was >0.8
were considered as hub genes in each module.36

The Venn diagram37 was used to perform the overlapping
between genes differentially expressed (i.e., Limma analyses) and
the hub genes in color modules with low preservation (i.e.,
WGCNA analyses) in children with MHO compared to MUO. A
molecular interaction network was created using GeneMania app
in CYTOSCAPE platform,38 and the most relevant genes in the
molecular network were defined based on the highest value of
centrality degree, which is defined as the number of interactions
in which a node (i.e., gene) is involved.
In silico validation analysis was performed using two publicly

available (PHENOPEDIA database) lists of OB and metabolism
genes. We performed the overlapping between the most
important genes found in our study (i.e., genes overlapped
between Limma and WGCNA analyses) and the two lists. These
relevant genes in OB and metabolism were identified following a
semi-automatic workflow for the identification of the most
relevant genes in a pathology.39 For the interested reader wishing
to retrace our analyses, all files are available from the Open
Science Framework (https://osf.io/xt8v4/).

RESULTS
Anthropometric characteristics and cardiometabolic and inflam-
matory markers of participants are presented in Table 1. Ten boys
and three girls were classified as MHO and six boys and eight girls
were classified as MUO. MUO had abnormal values of triglycerides
and HDL-cholesterol (p < 0.05), and higher values of pro-
inflammatory cytokines (e.g., TNF-α and IL-6) compared to MHO
(p < 0.05).
Differential gene expression analyses, using Limma R/Biocon-

ductor software package, showed 40 genes differentially
expressed (19 upregulated and 21 downregulated, FDR < 0.05) in
children with MHO compared to MUO (Fig. 1). These 40 genes
were mainly related to metabolism, mitochondrial, and immune
functions (Supplemental Table S1 [online]). Genes differentially
expressed were enriched in pathways related to cardiovascular
growth via hypertrophy (FDR < 0.05; Table 2). Additionally, WGCNA
analysis identified 23 gene coexpression modules with low
preservation (Zsummary < 2) (i.e., genes clustered in children with
MHO but not clustered in MUO), 3 with moderate preservation (2
> Zsummary < 10), and 2 with high preservation (Zsummary > 10)
(i.e., genes similarly clustered in children with MHO and MUO) in
children with MHO compared to MUO (Fig. 2). The gene
coexpression modules size ranged from 65 to 1217 genes
(Supplemental Table S2 [online]). The hub genes (i.e., highly
connected intramodular genes) identified in the 23 modules with
low preservation ranged from 35 to 826 genes (Supplemental
Table S2 [online]).
From 40 genes differentially expressed in the Limma analyses,

32 genes were found among the hub genes (i.e., highly connected
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intramodular genes) identified within WGCNA modules with low
preservation clustered in the Tan and midnightblue color. These
genes were ZNF559, MPRIP, MYO3A, ADAMTSL2, LOC388780,
FAM83E, TOMM20L, DSC1, TMC5, ZNF560, CMIP, UPF1, SLC44A1,
KPTN, NXN, SPATA5L1, TMEM253, NRG1, SEMA7A, CCDC180, FBXW4,
FAM53A, CYP3A5, ARL17A, IRF2BP2, HIPK1, MOV10L1, COL26A1,
GPRC5D, CCL17, RREB1, and ST14. From the molecular network
composed of these 32 genes (Fig. 3), we selected the top 5 based
on the highest values in centrality degree (i.e., the number of
interactions in which a gene is involved). These genes, RREB1,
FAM83E, SLC44A1, NRG1, and TMC5, are involved in type 2
diabetes, macrophage phospholipid metabolism, inflammation,
and cardiovascular growth through exercise (Table 3 and
Supplemental Table S3 [online]).
In silico corroboration analysis using PHENOPEDIA database

provided a list of 2263 genes with the term “obesity” and 5324
genes with the term “metabolic diseases”. Next, GeneMania app in
CYTOSCAPE platform was applied for the identification of the
most significant genes in both lists, creating 2 molecular
interaction networks composed of 2263 and 5324 genes,
respectively. When testing our common list of 32 genes (Fig. 3),
3 genes were found in the in silico lists of top genes involved in
obesity and metabolism, based on the highest centrality degree
(i.e., the number of interactions in which a gene is involved)
threshold by their means (Supplemental Tables S4 and S5
[online]): RREB1, NRG1, and CYP3A5. Genes RREB1 and NRG1 were
identified in the top five genes based on the highest values in
centrality degree (Table 3 and Fig. 3).

DISCUSSION
We identified 32 genes differentially expressed in children with
MHO compared to MUO, which were related to metabolism,
mitochondrial, and immune functions. These findings provide the
first step toward the understanding the underlying mechanisms
that differentiate MHO from MUO in young ages. Concerning the
most upregulated and downregulated genes in our study (i.e.,
MHO vs. MUO), we found the highest expression of TRIM11 gene
and the lowest expression of the ADAMTSL2 gene in children with
MHO compared to MUO. TRIM11 is involved in the degradation of
AIM2 inflammasome.40 The AIM2 inflammasome cytosolic signal-
ing complex lead to the maturation of pro-inflammatory
cytokines.40 Indeed, children with MHO showed TRIM11 gene
upregulation and lower levels of pro-inflammatory cytokines
compared to MUO. In fact, the MHO phenotype has been

Table 1. Participants’ characteristics.

Variables Total sample
n= 27 (16 boys/
11 girls)

MHO n= 13
(10 boys/
3 girls)

MUO n= 14
(6 boys/
8 girls)

p value

Age and maturational status

Age (years) 10.1 ± 1.3 10.2 ± 1.4 10.0 ± 1.2 0.76

PHV offset (years) −2.2 ± 0.9 −2.3 ± 1.0 −2.0 ± 0.8 0.76

BMI group by Cole et al.

Overweight 6 (22.2%) 4 (30.8%) 2 (14.3%) 0.30

Obesity 21 (77.8%) 9 (69.2%) 12 (85.7%)

Body composition and
anthropometry

Weight (kg) 57.3 ± 10.3 56.9 ± 13.8 57.7 ± 6.0 0.79

Height (cm) 145.7 ± 9.1 146.4 ± 11.5 145.0 ± 6.4 0.62

Waist circumference (cm) 91.7 ± 7.3 90.0 ± 9.3 93.3 ± 4.4 0.40

BMI (kg/m2) 26.8 ± 2.7 26.1 ± 3.2 27.4 ± 1.9 0.38

BF (%) 42.7 ± 4.7 41.1 ± 5.5 44.3 ± 3.3 0.09

DXA total VAT (g) 414.3 ± 85.9 395.1 ± 107.5 432.1 ± 58.2 0.23

DXA FFM (Kg) 32.1 ± 5.7 32.7 ± 7.7 31.5 ± 3.0 0.72

Cardiometabolic markers

Fasting glucose (mg/dl) 87.0 ± 5.2 88.1 ± 4.5 85.9 ± 5.8 0.40

Insulin (uU/ml) 13.4 ± 8.3 10.8 ± 4.2 15.8 ± 10.4 0.17

HOMA-IR 2.9 ± 1.8 2.3 ± 0.9 3.3 ± 2.3 0.21

Triglycerides (mg/dl) 109.0 ± 86.6 71.6 ± 19.7 122.9 ± 65.4 0.02

HDL-cholesterol (mg/dl) 49.6 ± 9.9 56.5 ± 9.2 42.0 ± 5.4 <0.001

Blood pressure

Systolic (mmHg) 101.9 ± 7.7 100.8 ± 7.6 102.9 ± 8.0 0.52

Diastolic (mmHg) 58.0 ± 9.3 56.9 ± 8.3 58.9 ± 10.4 0.79

Inflammatory markersa

IL-1β (pg/ml) 1.8 ± 0.7 1.5 ± 0.7 2.0 ± 0.7 0.11

IL-6 (pg/ml) 2.3 ± 2.0 1.5 ± 0.7 2.6 ± 1.2 0.02

TNF-α (pg/ml) 3.9 ± 1.1 3.3 ± 0.8 4.4 ± 1.2 0.02

EGF (pg/ml) 1.8 ± 1.7 1.9 ± 2.1 1.6 ± 1.2 0.89

VEGF-A (pg/ml) 27.39 ± 13.0 25.2 ± 12.1 29.3 ± 13.9 0.63

Data presented as mean ± SD and as number and frequency. Bold numbers
indicates p < 0.05.
MHO metabolically healthy overweight/obesity, MUO metabolically
unhealthy overweight/obesity, BMI body mass index, BF body fat, VAT
visceral adipose tissue, FFM fat-free mass, PHV peak height velocity, HOMA-
IR homeostasis model assessment for insulin resistance, HDL high-density
lipoprotein, IL interleukin, TNF-α tumor necrosis factor alpha, EGF epidermal
growth factor, VEGF-A vascular endothelial growth factor A.
aIL-1β, IL-6, insulin, and HOMA-IR (n= 25); TNF-α and VEGF (n= 26); EGF
(n= 24).
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Fig. 1 Fold change (FC) of genes differentially expressed in children with metabolic healthy overweight/obesity (MHO) compared to
metabolic unhealthy overweight/obesity (MUO) according to Limma analyses. In total, 19 genes were upregulated (orange) and 21 were
downregulated (blue), false discovery rate (FDR) < 0.05.
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characterized by a favorable inflammatory profile compared to
MUO.9

Body mass index and adiposity correlate positively with
circulating levels of transforming growth factor beta (TGF-β1)
protein.41 This protein is involved in the regulation of inflamma-
tion, immune function, and glucose homeostasis, among other
biological processes.41–43 Interestingly, mutations in the
ADAMTSL2 gene may lead to dysregulation of TGF-β signaling.44

Furthermore, previous evidence has shown that the blockade of
TGF-β signaling protects mice from obesity, diabetes, and hepatic
steatosis.41 Likewise, Snelling et al. reported upregulation of
ADAMTSL2 gene in human damaged cartilage compared with
undamaged cartilage.45 In our study, inflammatory markers TNF-α
and IL-6 were significantly higher in MUO compared to MHO
children. We hypothesize that a higher ADAMTSL2 together with
lower TRIM11 gene expression levels in children with MUO could
promote higher inflammatory profile in those children compared
to children with MHO.
Telle-Hansen et al. reported higher peripheral blood mono-

nuclear cell expression of some candidate genes involved in lipid
metabolism (i.e., UCP2, HSL, and PPARG) in young and middle-aged
adults with MHO compared to MUO.15 Similarly, we found higher
whole-blood expression of some genes involved in fatty acids

synthesis and cholesterol metabolism (e.g., CYP3A5 and IRF2BP2) in
children with MHO compared to MUO. The increase in peripheral
blood mononuclear CYP3A4 and CYP3A5 gene expression has
been associated with a greater low-density lipoprotein-cholesterol
reduction in adults with hypercholesterolemia after treatment
with atorvastatin.46 On the contrary, to our knowledge, the
relation of the higher expression of CYP3A5 gene with HDL-
cholesterol metabolism has not been reported. Furthermore, the
IRF2BP2 protein is a novel regulator of lipid metabolism and
inflammation in macrophages.47 This protein is necessary for the
expression of the anti-inflammatory transcription factor KLF2 in
macrophages, and deficiency in IRF2BP2 protein leads to an
increase in lipid accumulation.47 Likewise, IRF2BP2 protein
deficiency has been associated with an increase in atherosclerosis
and coronary artery disease in mice and humans, respectively.47

Interesting, IRF2BP2 gene was upregulated in children with MHO
compared to MUO and could contribute partially to a better
cardiometabolic and inflammatory profile. Interestingly, Sánchez
et al. identified some genes (e.g., ZNF418, NPPA, POLR1C, ADRB3,
P2RX2) that might discriminate children aged 4.7–8 years with OW
presenting high or low triglycerides levels.48 These genes were not
detected in our study; some differences between studies could
partially explain the lack of gene overlapping. In this regard,
different high-throughput technologies (microarrays vs. RNA-seq)
were used, different weight status (children with OW vs. children
with OW/OB), and different age range of the participants (4.7–8
years vs. 9–11 years) among others.
On the other hand, Zhang et al. showed association between

metabolic abnormalities (i.e., MUO and metabolic unhealthy non-
obesity) and left ventricular hypertrophy in young adults, while
not in the MHO group.49 In our study, key genes involved in
cardiovascular growth via hypertrophy that are regulated by
physical exercise, i.e., HIPK1 and NRG1 genes,50,51 were found
upregulated and downregulated in children with MHO
compared to MUO. Our results suggest a “balance” on the
expression of genes and pathways involved in cardiac growth via
hypertrophy between children with MHO and MUO. As we did not
perform echocardiography measurements, it is not possible to
elucidate the clinical implications of these results in cardiovascular
health via cardiac hypertrophy in children with weight
disturbances.

Table 2. Functional enrichment analyses of genes differentially
expressed in children with metabolic healthy overweight/obesity
phenotype compared to children with metabolic unhealthy
overweight/obesity phenotype using g:Profiler.30

Genes involved

Molecular function

Chemorepellent activity NRG1↓, SEMA7A↓

Pathways

miR-222 in exercise-induced cardiac growth
Cardiac hypertrophic response
Cardiac progenitor differentiation
MicroRNAs in cardiomyocyte hypertrophy

HIPK1↑, NRG1↓

Significance threshold (false discovery rate (FDR) < 0.05).

1 2

3
4

5

98

76

10

14

12
11

13

15

16 17
18

19

20 21 23

22

24 2625

28

27

10

10

0

P
re

se
rv

at
io

n 
Z

su
m

m
ar

y

20

30

20 50 100 200

Module size

500 1000 2000

Preservation Zsummary
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Our constructed molecular network composed of 32 genes
could highlight the most relevant genes in understanding the
molecular basis underlying the MHO phenotype in children. RREB1
and NRG1 genes could be of special interest, as we found them
among top five genes of our network of 32 genes and that were
also confirmed as top genes in the in silico analyses on two
different publicly available data sets. RREB1 gene (i.e., the gene

with the highest value of centrality degree of our network of 32
genes) is considered a novel candidate gene for type 2 diabetes in
humans.52 Furthermore, genome-wide association studies identi-
fied loci in RREB1 gene associated with fasting glucose and fat
distribution.53,54 Further, the RREB1 gene might modulate different
clinical phenotypes (e.g., hypertension, fat distribution, fasting
glucose, non-diabetic end-stage kidney disease).52 RREB1 gene
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Fig. 3 Molecular network representation composed by 32 genes overlapped using 2 bioinformatics approaches (i.e., differentially gene
expression-Limma and hub genes from WGCNA analyses). The node size marks the level of centrality degree, i.e., the number of interactions
in which a gene is involved.

Table 3. Top 5 genes (based on centrality degree, i.e., the number of interactions in which a gene is involved) from molecular network composed by
32 genes overlapped between differentially expression-Limma and hub genes from WGCNA analyses (MHO compared to MUO) and their possible
connection to metabolism, immune function, or obesity.

Gene Official full name Centrality degree Possible link to metabolism, immune function, and obesity

RREB1 Ras responsive element binding
protein 1

15 RREB1 gene has been considered a novel candidate gene for type 2 diabetes

FAM83E Family with sequence similarity 83
member A

11 May be involved in MAPK signaling and has been associated with diabetes-
related traits in humans

SLC44A1 Solute carrier family 44 member 1 11 Involved in macrophage phospholipid metabolism and inflammation

NRG1 Neuregulin 1 8 Chronic NRG1 treatment improved glucose tolerance in diabetic mice. Also
involved in cardiac growth through exercise

TMC5 Transmembrane channel like 5 8 A variant of this gene from abdominal subcutaneous white adipose tissue was
associated with obesity in adults
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could serve as a promising candidate for prognosis of cardiometa-
bolic health in pediatric population.
Several limitations in our study need to be highlighted. First, we

analyzed whole-blood transcriptome profile. Different subsets of
leukocytes have different roles in immune function and metabo-
lism. However, the whole-blood RNA-sequencing has been
considered promising for the identification and tracking of
biomarkers and useful as a diagnostic tool for rare diseases.55

Second, our sample size was relatively small and most of children
in the MHO group were boys (10 of 13), which could have
influenced WGCNA analyses. Nevertheless, we adjusted the Limma
analyses by sex (in addition to maturation, i.e., PHV), and the
selected genes overlapped with those from the WGCNA analyses,
aiming to minimize the potential confounding effect of sex.
Likewise, we cannot assume a causal relationship due to our cross-
sectional study design. Lastly, the cut-off points used in our study
were specific for boys and girls aged 12 years, as it was the closest
to the age range of 9–11 years. Despite these limitations, to the
best of our knowledge, this is the first study that reports
differences on whole-blood transcriptome profile in children with
MHO and MUO. Further, blood samples for transcriptome analysis
were obtained in a unified manner (fasting blood in first hour in
the morning), we applied GlobinLock as a novel robust globin
mRNA reduction tool to preserve RNA quality,28 and two different
bioinformatics approaches together with in silico data mining
were applied to corroborate the results.

CONCLUSION
The distinct gene expression pattern includes genes related to
metabolism, mitochondrial, and immune functions. The most
relevant genes in understanding the molecular basis underlying
the MHO phenotype in children could be: RREB1, FAM83E,
SLC44A1, NRG1, TMC5, CYP3A5, TRIM11, and ADAMTSL2. The results
contribute to the development of hypothesis directed to a better
understanding of why a subset of the population remains
metabolically healthy despite having OW/OB. Future studies
should confirm our findings in larger cohorts of children and in
other populations.
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