T cell cytokines in the diagnostic of early-onset sepsis

Abstract

Background

Early-onset sepsis (EOS) remains a substantial cause of morbidity and mortality among neonates. Yet, currently available biological parameters have not proven to be accurate enough to predict EOS reliably. This study aimed to determine serum concentrations of 13 cytokines in umbilical cord blood and evaluate their diagnostic value for EOS.

Methods

A prospective single-center study that included analysis of umbilical cord blood of term and preterm neonates who were born from March 2017 to November 2017. Using ELISA analysis, 13 cytokines were simultaneously quantified and correlated with the development of EOS.

Results

Four hundred and seventy-four neonates were included, of which seven met the criteria for culture-positive EOS. Interleukin (IL)-6 (p < 0.001), IL-9 (p = 0.003), and IL-21 (p < 0.001) were significantly increased in neonates with EOS compared to controls. Sensitivity and specificity for IL-6, IL-9, and IL-21 at the defined cut-off points were 85.7 and 77.3%, 71.4 and 62.5%, and 71.4 and 52.0%, respectively.

Conclusions

In neonates with EOS, IL-9 and IL-21 are significantly elevated and may be employed in the diagnostic of EOS. However, diagnostic accuracy remains lower than with IL-6. Values of 13 T cell cytokines may be used as reference values for future studies in neonates.

Impact

  • Interleukin-9 (IL-9) and interleukin-21 (IL-21) are significantly elevated in neonates with early-onset sepsis.

  • IL-9 and IL-21 have been shown to play a specific role in neonatal sepsis.

  • Neonatal reference values were generated for several cytokines.

  • IL-9 and IL-21 might be attractive biomarkers for neonatal sepsis in future. This study is likely to promote further research in this area.

  • Values of several T cell cytokines may be used as reference values for future studies in neonates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Box and whisker plots of IL-6 (a), IL-9 (b), and IL-21 (c).

References

  1. 1.

    Vergnano, S., Sharland, M., Kazembe, P., Mwansambo, C. & Heath, P. T. Neonatal sepsis: an international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 90, F220–F224 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Wynn, J. L. Defining neonatal sepsis. Curr. Opin. Pediatr. 28, 135–140 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Mishra, U. K., Jacobs, S. E., Doyle, L. W. & Garland, S. M. Newer approaches to the diagnosis of early onset neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 91, F208–F212 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kuzniewicz, M. W. et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 171, 365–371 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    de Jong, H. K., van der Poll, T. & Wiersinga, W. J. The systemic pro-inflammatory response in sepsis. J. Innate Immun. 2, 422–430 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    Machado, J. R. et al. Neonatal sepsis and inflammatory mediators. Mediators Inflamm. 2014, 269681 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Chauhan, N., Tiwari, S. & Jain, U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview. Micro. Pathog. 107, 234–242 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Cobo, T. et al. Umbilical cord blood IL-6 as predictor of early-onset neonatal sepsis in women with preterm prelabour rupture of membranes. PLoS ONE 8, e69341 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Rego, M. A., Martinez, F. E., Elias, J. & Mussi-Pinhata, M. M. Diagnostic value of interleukin-6 and C-reactive protein on early onset bacterial infection in preterm neonates with respiratory distress. J. Perinat. Med. 38, 527–533. (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Cernada, M. et al. Cord blood interleukin-6 as a predictor of early-onset neonatal sepsis. Acta Paediatr. 101, e203–e207 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Krueger, M. et al. Cord blood levels of interleukin-6 and interleukin-8 for the immediate diagnosis of early-onset infection in premature infants. Biol. Neonate 80, 118–123 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Franz, A. R., Sieber, S., Pohlandt, F., Kron, M. & Steinbach, G. Whole blood interleukin 8 and plasma interleukin 8 levels in newborn infants with suspected bacterial infection. Acta Paediatr. 93, 648–653 (2004).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Berner, R. et al. Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr. Res. 44, 469–477 (1998).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Labenne, M. et al. A clinic-biological score for diagnosing early-onset neonatal infection in critically ill preterm infants. Pediatr. Crit. Care Med. 12, 203–209 (2011).

    PubMed  Article  Google Scholar 

  16. 16.

    Abdollahi, A., Shoar, S., Nayyeri, F. & Shariat, M. Diagnostic value of simultaneous measurement of procalcitonin, interleukin-6 and hs-CRP in prediction of early-onset neonatal sepsis. Mediterr. J. Hematol. Infect. Dis. 4, e2012028 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Steinberger, E., Hofer, N. & Resch, B. Cord blood procalcitonin and Interleukin-6 are highly sensitive and specific in the prediction of early-onset sepsis in preterm infants. Scand. J. Clin. Lab. Investig. 74, 432–436 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Ebenebe, C. U. et al. Diagnostic accuracy of interleukin-6 for early-onset sepsis in preterm neonates. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2019.1606194 (2019).

  19. 19.

    Liu, J. et al. Association of IL-21 polymorphisms (rs907715, rs2221903) with susceptibility to multiple autoimmune diseases: a meta-analysis. Autoimmunity 48, 108–116 (2015).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Chakraborty, S., Kubatzky, K. F. & Mitra, D. K. An update on interleukin-9: from its cellular source and signal transduction to its role in immunopathogenesis. Int. J. Mol. Sci. 20, 2113 (2019).

  21. 21.

    Dugas, B. et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur. J. Immunol. 23, 1687–1692 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Petit-Frere, C., Dugas, B., Braquet, P. & Mencia-Huerta, J. M. Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology 79, 146–151 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kuchen, S. et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J. Immunol. 179, 5886–5896 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Kaplan, M. H., Hufford, M. M. & Olson, M. R. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 15, 295–307 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Ma, C. S., Tangye, S. G. & Deenick, E. K. Human Th9 cells: inflammatory cytokines modulate IL-9 production through the induction of IL-21. Immunol. Cell Biol. 88, 621–623 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Sugitharini, V., Prema, A. & Berla Thangam, E. Inflammatory mediators of systemic inflammation in neonatal sepsis. Inflamm. Res. 62, 1025–1034 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Ng, P. C. Diagnostic markers of infection in neonates. Arch. Dis. Child. Fetal Neonatal Ed. 89, F229–F235 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Santana, C. et al. Cord blood levels of cytokines as predictors of early neonatal sepsis. Acta Paediatr. 90, 1176–1181 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Schultz, C., Strunk, T., Temming, P., Matzke, N. & Hartel, C. Reduced IL-10 production and -receptor expression in neonatal T lymphocytes. Acta Paediatr. 96, 1122–1125 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Khaertynov, K. S. et al. Comparative assessment of cytokine pattern in early and late onset of neonatal sepsis. J. Immunol. Res. 2017, 8601063 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Martin, D. A. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17–26 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Ahmed Ali, M. et al. Interleukin-17 as a predictor of sepsis in polytrauma patients: a prospective cohort study. Eur. J. Trauma Emerg. Surg. 44, 621–626 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Weber, G. F. et al. Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis. Infect. Immun. 75, 1690–1697 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Ziesche, E. et al. Dexamethasone suppresses interleukin-22 associated with bacterial infection in vitro and in vivo. Clin. Exp. Immunol. 157, 370–376 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Bingold, T. M. et al. Interleukin-22 detected in patients with abdominal sepsis. Shock 34, 337–340 (2010).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Douvas, G. S., Looker, D. L., Vatter, A. E. & Crowle, A. J. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect. Immun. 50, 1–8 (1985).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Nathan, C. F., Murray, H. W., Wiebe, M. E. & Rubin, B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689 (1983).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Billiau, A. & Matthys, P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 20, 97–113 (2009).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Bender, L. et al. Early and late markers for the detection of early-onset neonatal sepsis. Dan. Med. Bull. 55, 219–223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ng, P. C. et al. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch. Dis. Child. Fetal Neonatal Ed. 88, F209–F213 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Schelonka, R. L. et al. Volume of blood required to detect common neonatal pathogens. J. Pediatr. 129, 275–278 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Chang, B. A. Early inflammation in the absence of overt infection in preterm neonates exposed to intensive care. Cytokine 56, 621–626 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Wong, C. F. Assay of pleural fluid interleukin-6, tumour necrosis factor-alpha and interferon-gamma in the diagnosis and outcome correlation of tuberculous effusion. Respir. Med. 97, 1289–1295 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Ramirez, P. et al. Systemic inflammatory response and increased risk for ventilator-associated pneumonia: a preliminary study. Crit. Care Med. 37, 1691–1695 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Szkodzinski, J. et al. Serum concentrations of interleukin-4 and interferon-gamma in relation to severe left ventricular dysfunction in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart Vessels 26, 399–407 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Ashizawa, T. et al. Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor. Gastric Cancer 8, 124–131 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Abdel Galil, S. M., Ezzeldin, N. & El-Boshy, M. E. The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. Cytokine 76, 280–287 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Tortorella, C. et al. Interleukin-6, interleukin-1beta, and tumor necrosis factor alpha in menstrual effluents as biomarkers of chronic endometritis. Fertil. Steril. 101, 242–247 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Rajendiran, S. et al. Diagnostic significance of IL-6 and IL-8 in tubal ectopic pregnancy. J. Obstet. Gynaecol. 36, 909–911 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

G.M.F. assisted in conceptualizing the study, carried out statistical analyses, interpreted data, and drafted the initial manuscript. T.B. performed laboratory analysis of the cord blood, interpreted data, and assisted in the drafting of the manuscript. M.B. interpreted the data and assisted in the drafting of the manuscript. S.H. assisted in conceptualizing the study and interpreted the data. D.S. assisted in conceptualizing the study and interpreted the data. C.U.E. conceptualized and designed the study, collected data, carried out statistical analyses, interpreted data, and drafted the initial manuscript. All authors reviewed and revised the manuscript, approved the final manuscript as submitted, and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Chinedu Ulrich Ebenebe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Patient consent

Patient consent was not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Froeschle, G.M., Bedke, T., Boettcher, M. et al. T cell cytokines in the diagnostic of early-onset sepsis. Pediatr Res (2020). https://doi.org/10.1038/s41390-020-01248-x

Download citation

Search