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Prolonged hospital length of stay in pediatric trauma: a model
for targeted interventions
David Gibbs1, Louis Ehwerhemuepha 1,2, Tatiana Moreno1, Yigit Guner1, Peter Yu1, John Schomberg1, Elizabeth Wallace1 and
William Feaster1

BACKGROUND: In this study, trauma-specific risk factors of prolonged length of stay (LOS) in pediatric trauma were examined.
Statistical and machine learning models were used to proffer ways to improve the quality of care of patients at risk of prolonged
length of stay and reduce cost.
METHODS: Data from 27 hospitals were retrieved on 81,929 hospitalizations of pediatric patients with a primary diagnosis of
trauma, and for which the LOS was >24 h. Nested mixed effects model was used for simplified statistical inference, while a
stochastic gradient boosting model, considering high-order statistical interactions, was built for prediction.
RESULTS: Over 18.7% of the encounters had LOS >1 week. Burns and corrosion and suspected and confirmed child abuse are the
strongest drivers of prolonged LOS. Several other trauma-specific and general pediatric clinical variables were also predictors of
prolonged LOS. The stochastic gradient model obtained an area under the receiver operator characteristic curve of 0.912 (0.907,
0.917).
CONCLUSIONS: The high performance of the machine learning model coupled with statistical inference from the mixed effects
model provide an opportunity for targeted interventions to improve quality of care of trauma patients likely to require long length
of stay.
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IMPACT:

● Targeted interventions on high-risk patients would improve the quality of care of pediatric trauma patients and reduce the
length of stay.

● This comprehensive study includes data from multiple hospitals analyzed with advanced statistical and machine learning
models.

● The statistical and machine learning models provide opportunities for targeted interventions and reduction in prolonged
length of stay reducing the burden of hospitalization on families.

INTRODUCTION
Prolonged hospital length of stay (LOS) is an important quality of
care metric that may indicate severe illness,1 suboptimal care
coordination,2 administration of certain medications,3–5 or com-
plex and evolving treatment plans. The most important concern
during hospitalization of a patient is proper and high quality of
care leading towards recovery from illness. However, prolonged
hospitalizations disrupt the social routines of the patient and their
families as well as the economic status of both families and
hospitals. On the one hand, parents may lose productivity at work
while hospital bills increase. On the other hand, hospitals and
healthcare systems face ever-increasing pressures to provide
optimal care with payments and resource allocations that are
challenged to meet demand. These concerns cut across all
medical specialties,6–10 including trauma and emergency general
surgery wherein there is need to study and reduce unnecessarily
long hospital LOS.11 Trauma centers and health systems under
operational stress face the pervasive challenge of determining

patient discharge prioritization while maintaining high quality of
care and optimal resource utilization.12 The ability to predict
prolonged LOS of pediatric trauma patients can be valuable to
healthcare providers in managing resources more efficiently.13

This, however, brings into question whether the LOS of trauma
patients can be reduced. To this end, previous studies and
experience in practice have indicated that there are opportunities
to improve the quality of care of patients that will result in
reduced LOS.14–16 This may include the implementation of models
such as the Lewin’s Change Model,14 improvement of commu-
nication between physicians and physical therapists,16 and
anticipation of inefficiencies in the management of complex
patients.
Interventions for improved quality of care that will result in

reduced LOS may be carried out indiscriminately on all trauma
patients only in the presence of unlimited clinical intervention
resources and time. This utopian state of hospital operation is
not achievable, thereby necessitating the need for targeted
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interventions. This need for targeted interventions can be partly
met by the development of statistical or machine learning models
to determine patients most at risk of prolonged LOS. Real-time
demand capacity management17 may be used to predict capacity,
demand, and develop a plan of action for patients’ next steps;
however, the plan is decided through clinician meetings to select
which patients and how many patients should be discharged that
same day.18 Previous studies have indicated that the use of tools
such as the National Surgical Quality Improvement Program (NSQIP)
Risk Calculator or clinicians to predict the LOS of trauma patients
result in dissatisfactory performance/accuracy. But early and
accurate mobilization across all care setting of pediatric trauma
may result in improved quality of care19 (including reduction in
infections and medical complications) and reduce financial cost of
care for both patients and hospitals.19 Therefore, an implementable
model predicting pediatric trauma patients’ hospital LOS can be an
effective tool for providers to mobilize early intervention efforts.
These early interventions will lead to more efficient utilization of
facilities and staff members within hospitals. A model with the
capability of predicting a patient’s prospective hospital LOS can
consequently lead to the optimization of treatment plans for
patients, reduced cost, improved resource allocation, and dimin-
ished hospital-acquired infections.20 In addition, the accurate
prediction of hospital LOS can result in families’ emotional
satisfaction.21

In this study, two needs in pediatric trauma literature on
hospital LOS were addressed. First, a nested mixed effects model
was built to determine associations between prolonged LOS and
clinical presentation up to the first 24 h of admission of the
patient. The type of trauma, previous healthcare utilization
variables, and number of comorbid diagnoses among other
variables were studied. Second, a machine learning model that
has greater flexibility in capturing nonlinear relationships as well
as complex interactions between variables was built for prediction
of prolonged LOS. In this study, prolonged LOS was defined as
>1 week,22–24 a priori.

METHODS
Setting and data sources
This study was approved by the Institutional Review Board of
CHOC Children’s (#180857). The data source for the study is the
Cerner Health Facts Database. The database consists of data
captured by Cerner Corporation from over 100 US healthcare
systems and over 650 facilities (as at 2018). The data were
aggregated and organized into consumable datasets to facilitate
research and reporting. In addition, the data were deidentified
and secured with encryption to maintain patient confidentiality
and ensure compliance with HIPAA privacy regulations. It is in the
form of a structured SQL database with tables on patient
demographics, encounters, medications, laboratory tests, clinical
events, and diagnoses among others. At the time of this study, the
Health Facts DB consisted of 6.9 million patients and 503.8 million
encounters across all care settings. The database is available to
researchers at healthcare systems that contribute data to it.
Encounters of all pediatric trauma hospital admissions for which

the primary diagnosis or reason for visit was trauma were initially
retrieved. This definition was captured using the International
Classification of Diseases, Tenth Revision (ICD-10-CM) codes of
S00-T79. Only patients <18 years old and with hospital LOS >24 h
were included in the study. Hospital inclusion criteria consisted of
hospitals that have 500 encounters with primary diagnosis for
trauma. This threshold of 500 was set, a priori, to guard against
noise in the database and to ensure that each hospital-level
parameter can be estimated with enough power in a statistical or
machine learning model. Another threshold was set for inclusion
of categorical variables with rare outcomes. Each categorical
variable had to meet the condition that the rarest level of the

variable has at least 100 response to guard against statistical
separation.25 Small sample analyses, such as exact statistical
tests,26 are required for very rare outcomes which is outside the
scope and objective of this study. Lastly, a test for
multicollinearity27,28 was carried out to ensure that highly
correlated variables were removed prior to model development.
Statistical (or class) separability and multicollinearity may result in
inflated type I or II errors, unstable models, and inestimable
parameters.

Variables of interest
The outcome variable, prolonged LOS, was defined as any
encounter for which the hospital LOS >1 week.22–24 We defined
injuries and trauma to all body regions as captured by the
International Classification of Diseases, Tenth Revision (ICD-10-
CM). Independent variables of interest consisted of trauma
diagnoses, patient demographics, patient history of healthcare
utilizations, count of comorbid conditions, number of medications
within the first 24 h of admission, indicator for whether the
hospital is a free-standing pediatric hospital, and type of surgeries
carried out during the encounter. A free-standing pediatric
hospital was defined as one where the average age of all patients
was <18 years. A list of variables and summary statistics is shown
in Table 1.

Statistical and machine learning considerations
Statistical inference was provided using a nested mixed effects
model29,30 with the hospitals as random intercepts and patients
nested within hospitals. We developed a full mixed effect
consisting of all the variables in Table 2. Full models are statistical
models that include all variable of interest without variable
selection procedures such as stepwise regression. Extreme
gradient boosting was chosen as the variant of stochastic gradient
boosting due to its highly competitive model performance in
literature, in competitions, and in practice.31–33 Model selection
was achieved through cross-validated hyperparameter tuning
over the values of hyperparameters shown in Table 2.
The predictive performance of the extreme gradient boosting

model was evaluated based on measures including the area under
the receiver operator characteristic curve (AUROC) and the area
under the precision-recall curve (AUPRC). The values of sensitivity,
positive predictive value (PPV), negative predictive value (NPV),
relative risk score, and F1 score were calculated at a specificity of
90%. These performance values are based on the measures of the
confusion matrix for binary prediction: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
Sensitivity= TP / (TP+ FN)
Specificity= TN / (TN+ FP)
PPV= TP / (TP+ FP)
NPV= TN / (TN+ FN)
Analyses for this study were carried out using high-performance

parallel distributed cloud computing resources on Amazon Web
Services and the R statistical computing programming
language.31,34–36

RESULTS
Baseline characteristics
A total of 27 hospitals met the inclusion criteria for hospitals of
which 7 (25.9%) were free-standing pediatric hospitals, 71,528
were patients and 81,929 were encounters that met the inclusion
criteria. The seven free-standing pediatric hospitals contributed
54.7% of the patients in the study. The average age of the patients
was 8 years (standard deviation of 5 years). There were 42.2%
female patients, 58.0% Caucasians, 20.2% Blacks or African
American, 2.6% Hispanic, and 19.2% patients of other or unknown
race/ethnicity. In addition, 30.8%, 43.7%, and 25.5% had
commercial, governmental, and other healthcare insurance types,

Prolonged hospital length of stay in pediatric trauma: a model for. . .
D Gibbs et al.

465

Pediatric Research (2021) 90:464 – 471



respectively. The rate of prolonged LOS was 18.7%. The variables
that met the inclusion criteria for the study are shown in Table 2.
Results from the nested mixed effects model (referred to as the
statistical model from here on) indicate significant predictors from
each category of variables considered.

Statistical model—trauma/injuries
Trauma-specific risk factors of prolonged LOS were obtained from
the statistical model (see Table 3). The patients most likely to have
prolonged LOS include patients with burns and corrosion (152%
increase in odds), patients confirmed to be suffering from child
abuse (106% increase), and patients suspected to be suffering
from child abuse/neglect/maltreatment (78% increase). There
were increases in odds for patients with injuries to the ankle
and foot (49%); injuries to the thorax (47%); and injuries to the
abdomen, lower back, lumber spine, pelvis, and external genitals
(44%). Patients with certain early complications of trauma (such as
air embolism, traumatic shock, anuria, and compartment syn-
drome) have a 24% increase in odds of prolonged LOS. Lastly,
injuries resulting from foreign objects entering the natural orifice
of the body is associated with 19% increase in odds.
Certain other injuries/trauma were associated with shorter LOS.

These include injuries/trauma to the neck, shoulder and upper
arm, elbow and forearm, hip and thigh, knee and lower leg. The
decrease in odds associated with these conditions ranged from 17
to 48%. There were no significant differences associated with
injuries/trauma to the wrist and hand, head, multiple body regions
(ICD-10-CM: T07), and unspecified body region (ICD-10-CM: T14).

Table 1. Summary statistics.

Variables Levels LOS 1 week
or less

LOS > 1 week

n (%) or
mean (s.d.)

n (%) or
mean (s.d.)

Age — 8.48 (5.80) 7.53 (6.31)

Sex Female 27,781 (41.69) 6812 (44.55)

Male 38,859 (58.31) 8477 (55.45)

Race/Ethnicity Caucasian 38,935 (58.43) 8617 (56.36)

Black/African
American

13,127 (19.70) 3436 (22.47)

Hispanic 1575 (2.36) 536 (3.51)

Native
American

1339 (2.01) 375 (2.45)

Asian/Pacific
Islander

753 (1.13) 207 (1.35)

Other/
Unknown

10,911 (16.37) 2118 (13.85)

Payer Commercial 21,166 (31.76) 4104 (26.84)

Governmental
(Medicare,
Medicaid)

25,223 (37.85) 7184 (46.99)

Other
Governmental
(Champus, etc)

2759 (4.14) 659 (4.31)

Self-pay 1970 (2.96) 292 (1.91)

Other 15,522 (23.29) 3050 (19.95)

Trauma/injuries and related conditions

Head (S00−09) No 51,178 (76.80) 12,870 (84.18)

Yes 15,462 (23.20) 2419 (15.82)

Neck (S10−19) No 61,669 (92.54) 14,396 (94.16)

Yes 4971 (7.46) 893 (5.84)

Thorax (S20−29) No 62,677 (94.05) 14,082 (92.11)

Yes 3963 (5.95) 1207 (7.89)

Abdomen/back/
genitals (S30−39)

No 60,423 (90.67) 13,730 (89.80)

Yes 6217 (9.33) 1559 (10.20)

Shoulder and upper
arm (S40−49)

No 59,864 (89.83) 14,501 (94.85)

Yes 6776 (10.17) 788 (5.15)

Elbow and forearm
(S50−59)

No 62,002 (93.04) 14,662 (95.90)

Yes 4638 (6.96) 627 (4.10)

Wrist and hand
(S60−69)

No 62,701 (94.09) 14,538 (95.09)

Yes 3939 (5.91) 751 (4.91)

Hip and thigh
(S70−79)

No 58,940 (88.45) 14,332 (93.74)

Yes 7700 (11.55) 957 (6.26)

Knee and lower leg
(S80−89)

No 60,254 (90.42) 14,364 (93.95)

Yes 6386 (9.58) 925 (6.05)

Ankle and foot
(S90−99)

No 62,477 (93.75) 14,508 (94.89)

Yes 4163 (6.25) 781 (5.11)

Multiple body
regions (T07)

No 65,069 (97.64) 15,021 (98.25)

Yes 1571 (2.36) 268 (1.75)

Unspecified body
region (T14)

No 63,142 (94.75) 14,693 (96.10)

Yes 3498 (5.25) 596 (3.90)

Foreign body
entering natural
orifice (T15−19)

No 63,819 (95.77) 14,394 (94.15)

Yes 2821 (4.23) 895 (5.85)

Burns and corrosion
(T20−32)

No 63,244 (94.90) 14,190 (92.81)

Yes 3396 (5.10) 1099 (7.19)

No 62,903 (94.39) 14,253 (93.22)

Table 1. continued

Variables Levels LOS 1 week
or less

LOS > 1 week

n (%) or
mean (s.d.)

n (%) or
mean (s.d.)

Child abuse, neglect
and other
maltreatment,
confirmed

Yes 3737 (5.61) 1036 (6.78)

Child abuse, neglect
and other
maltreatment,
suspected

No 63,340 (95.05) 14,286 (93.44)

Yes 3300 (4.95) 1003 (6.56)

Early complications
of trauma (T79)

No 65,809 (98.75) 14,827 (96.98)

Yes 831 (1.25) 462 (3.02)

Healthcare resource utilization and severity of illness

Hypothermia (T68) No 66,020 (99.07) 15,021 (98.25)

Yes 620 (0.93) 268 (1.75)

Previous ED visits
(last 6 mo)

No 50,155 (75.26) 11,421 (74.70)

Yes 16,485 (24.74) 3868 (25.30)

Maximum previous
length of stay
(last 6 mo)

— 1.65 (7.16) 5.57 (14.30)

Admitted
through the ED

No 8596 (12.90) 2405 (15.73)

Yes 58,044 (87.10) 12,884 (84.27)

History of
readmission
(past 6 mo)

No 58,940 (88.45) 11,578 (75.73)

Yes 7700 (11.55) 3711 (24.27)

Number of
medications

— 2.94 (4.53) 16.52 (15.61)

Comorbid conditions — 1.87 (2.05) 4.58 (3.01)

Visit was at free-
standing hospital

No 30,317 (45.49) 6827 (44.65)

Yes 36,323 (54.51) 8462 (55.35)
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Table 2. Hyperparameters for extreme gradient boosting.

Hyperparameter Values Significance

Boosting operations/iterations 16, 32, 64, 128 Number of boosting operations is equivalent to the number of trees built

Learning rate 0.2, 0.3, 0.5, 0.8 Relating to how fast the model learns. Smaller values help to prevent overfitting

Maximum tree depth 2, 4, 6, 8 The depth of each tree which controls the complexity of the model and interactions explored

Minimum child weight 0, 1, 2, 4 Relating to how partitions are made on a child node. Larger values create more
conservative models

Gamma 0, 1, 2, 4 Relating to how leaf node partitions with respect to changes in loss. Larger values result in more
conservative models

Table 3. Nested mixed effects logistic regression model.

Variable Levels Odds ratio p value

Sex Female Reference

Male 0.957 (0.905, 1.011) 0.118

Payer Commercial Reference

Governmental (Medicare, Medicaid) 1.298 (1.210, 1.394) <0.001

Other governmental (Champus, etc) 1.144 (0.991, 1.321) 0.067

Self-pay 1.073 (0.890, 1.295) 0.460

Others 1.203 (1.100, 1.314) <0.001

Age — 0.955 (0.950, 0.960) <0.001

Race/Ethnicity Caucasian Reference

Black/African American 1.114 (1.034, 1.200) 0.004

Hispanic 0.995 (0.836, 1.184) 0.951

Asian/Pacific Islander 0.969 (0.759, 1.237) 0.800

Native American 0.954 (0.745, 1.223) 0.710

Other/unknown 0.959 (0.874, 1.052) 0.371

Trauma/injuries

Burns and corrosion (T20−32) Yes 2.523 (2.249, 2.830) <0.001

Child abuse, neglect and other maltreatment, confirmed (T74) Yes 2.058 (1.724, 2.455) <0.001

Child abuse, neglect and other maltreatment, suspected (T76) Yes 1.783 (1.494, 2.129) <0.001

Ankle and foot (S90−99) Yes 1.489 (1.290, 1.717) <0.001

Thorax (S20−29) Yes 1.474 (1.293, 1.680) <0.001

Abdomen/back/genitals (S30−39) Yes 1.439 (1.293, 1.601) <0.001

Early complications of trauma (T79) Yes 1.243 (1.016, 1.520) 0.034

Foreign body entering natural orifice (T15−19) Yes 1.194 (1.052, 1.356) 0.006

Wrist and hand (S60−69) Yes 1.077 (0.941, 1.232) 0.282

Multiple body regions (T07) Yes 1.069 (0.871, 1.312) 0.523

Head (S00−09) Yes 1.003 (0.925, 1.088) 0.936

Unspecified body region (T14) Yes 0.922 (0.801, 1.062) 0.260

Elbow and forearm (S50−59) Yes 0.831 (0.722, 0.957) 0.010

Knee and lower leg (S80−89) Yes 0.815 (0.716, 0.928) 0.002

Neck (S10−19) Yes 0.810 (0.710, 0.924) 0.002

Shoulder and upper arm (S40−49) Yes 0.636 (0.564, 0.718) <0.001

Hip and thigh (S70−79) Yes 0.520 (0.465, 0.581) <0.001

Other variables

Hypothermia (T68) Yes 2.048 (1.636, 2.565) <0.001

Admitted through the ED Yes 1.874 (1.728, 2.032) <0.001

History of readmission (past 6 mo) Yes 1.467 (1.355, 1.589) <0.001

Comorbid conditions — 1.319 (1.301, 1.337) <0.001

Number of medications — 1.247 (1.239, 1.255) <0.001

Maximum previous length of stay (last 6 mo) — 1.016 (1.014, 1.019) <0.001

Previous ED visits (last 6 mo) Yes 0.888 (0.830, 0.949) <0.001

Visit was at free-standing hospital Yes 0.661 (0.331, 1.320) 0.240
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We however suspected that there may be significant statistical
interactions between head injuries and the number of comorbid
diagnoses. In other words, we expect a difference in risk for
prolonged LOS between a patient with a mild injury to the head
and a patient with traumatic brain injury. In the absence of a
measure of injury severity, we used the number of comorbid
diagnoses as a proxy of severity of illness/injury. In Fig. 1, we
provided the interaction plot between head injuries and the
number of comorbid conditions. The interaction plot indicates
that there is significant association between head trauma, but the
effect is modified by comorbid conditions. Simple head injuries
not resulting in complications (such as neurological complications)
do not result in prolonged LOS but as the number of comorbid
condition increases, head injuries become risk factors for
prolonged LOS.

Statistical model—demographics, payer, resource utilization, and
severity of illness
The results of the statistical model indicated that older patients
tend to have shorter LOS (14% decrease in odds per 1-year
difference). There was no sex difference in prolonged LOS, and
lower income patients (on governmental healthcare insurance)
have a higher tendency for prolonged LOS. There was a significant
difference between Caucasian and Black/African American
patients who have 11% increase in odds of having a prolonged
LOS compared to their counterpart (Caucasians) but no other
significant difference was found beyond it.
In terms of severity of illness and resource utilization,

hypothermia (which may be the side effect of underlying
injuries/trauma) was associated with 105% increase in odds of
prolonged LOS. There is a 32 and 25% increase in odds for every
non-trauma comorbid condition and every additional medication
that is administered during the first 24 h of visit. Patients admitted
through the ED and patients who had a readmission within the
prior 6 months have 87 and 45% increase in odds of prolonged
LOS. The maximum LOS of previous visits was also predictive of
the likelihood of prolonged LOS. Every difference in 1 day of LOS is
associated with 1.6% increase in odds.

Machine-learning prediction model
Cross-validated hyperparameter tuning resulted in the selection of
128 boosting operations, maximum tree depth of 8, learning rate
of 0.2, gamma of 2, and minimum child (tree node) weight of 1 as
hyperparameters that optimizes model performance. The range of
values searched, and significance is shown in Table 2. Overall,
these selected hyperparameters for the extreme gradient boost-
ing model indicate that hospital LOS may be driven by a set of
important complex mix of interacting factors. The performance of
the resulting model as measured by the AUROC was 0.912 (0.907,
0.917). In Fig. 2, we show the relative variable importance and
frequencies of use by the gradient boosting model. The top five
most important variables according to the machine learning
model are number of medications administered during the first
24 h, age of the patient, number of comorbid conditions/
diagnoses, the previous maximum hospital LOS in the prior
6 months, and injuries due to burns and corrosions.
The sensitivities of the model and predicted probability

thresholds for flagging patients as high-risk for prolonged LOS
are shown in Table 4 for pre-specified specificities. The choice of
model specificity or predicted probability threshold should be
informed by avoidance of false alert fatigue, the size of clinical
intervention teams, and an acceptable level of sensitivity.
Recommendations from this study is to set specificity at 90%.
This implies setting the predicted probability threshold at 0.252
and result in capturing 74% of patients with prolonged LOS during
the first day of admission. Patients flagged at high-risk would be
ten times as likely to have prolonged LOS as those not flagged by
the model. The number needed to evaluate (NNE) of 1.6 indicates

that of every 16 patients flagged at high-risk by the model, 10 will
indeed have prolonged LOS. Finally, the area under the precision-
recall curve for this model is 0.780, indicating that it is a very
strong model and the AUROC is not inflated/misleading.

DISCUSSION
Efficient patient flow and hospital resource utilization are integral
to meeting the rising demand for pediatric trauma care. The
development and deployment of a machine learning prediction
model to be used by a clinical intervention team provides
concrete information on how to maximize intervention efforts by
focusing on patients most at risk of prolonged LOS. The machine
learning model provided in this study provides a high-
performance model for classifying patients into risk strata. The
model can be integrated into the electronic medical records of the
trauma center to provide a list of patients with their level of risk, or
as an alert system. The choice and method of implementation will
be driven largely by the individual and peculiar needs of providers
at corresponding hospitals/trauma centers.
Several approaches may be used for risk stratification using the

machine learning model. First, a two-strata system may be
adopted as recommended in the “Results” section of this study.
In this system patients that the model determined to have a
predicted probability >0.252 (see Table 4) will be classified as
high-risk otherwise low risk. Second, a three-strata system may
also be developed to classify patients at “high”, “moderate”, and
“low” risk of prolonged LOS. Our suggestion for this three-strata
system is to set the predicted probability threshold at 0.7471
(corresponding to model specificity of 90%) for classifying patients
as “high risk”. Patients with predicted probabilities between
0.7471 and 0.252 may then be classified as “moderate risk”, and
patients with probabilities <0.252 as “low risk”. The overall model
performance for both approaches will be the same except that we
have different risk strata. Lastly, experimentation may be required
to find the optimal number of risk strata and corresponding
probability thresholds peculiar to the needs and resources of each
hospital.
Predicting patients who are at high risk of prolonged LOS is of

limited value if nothing can be done to either shorten
corresponding LOS or to mitigate the effects of such a prolonged
stay. Patients with anticipated increased LOS would benefit from
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earlier comprehensive nutritional, PT/OT, DVT, and pressure ulcer
risk assessments. For appropriate aged children, psychological and
academic support resources could be targeted toward those at
greatest anticipated need. These patients may require early
referral for post-discharge rehabilitation services. For parents,
awareness of need for prolonged LOS may allow time to mitigate
disruption to family and work routines. Finally, the ability to better
predict LOS will allow hospitals to more efficiently and appro-
priately deploy limited resources.
The mixed effects model (see Table 3) provides opportunity

for personalized interventions beyond the general issues of
efficient care coordination. The model identified patients
suffering from burns and corrosion, confirmed or suspected
child abuse/neglect, and injuries to the ankle and foot, thorax,
abdomen, lower back, lumber spine, pelvis, and external genitals
as most at risk of prolonged LOS. While this study does not
provide specific reasons why these trauma/injuries are asso-
ciated with prolonged LOS, clinical intervention teams can use it
as a tool for personalized interventions. These interventions may
be developed through careful chart reviews for issues relating to
potential quality of care issues, unnecessary complications, and
smooth transition of care. In addition, the impact of potential
social worker intervention due to confirmed or suspected child

abuse can be factored into the care of the patient to reduce
impact of child abuse/neglect investigations. The goal of
including child abuse (or non-accidental trauma) is to ensure
the model accounts for all pertinent risk factors or variables that
may impact the hospital LOS of a patient. Furthermore, a more
detailed understanding of the medical versus social factors
impacting LOS may allow a more appropriate and timely
allocation of medical and social work resources that effectively
maximizes patient safety. Interventions may be extended to
findings on severity of illness, number of comorbid conditions,
prior healthcare resource utilization, and social determinants.
The association between previous readmission and prolonged
LOS of the current/index visit is novel and was included during
the reverse association between current LOS and future risk of
readmission.37–40 Unlike the machine learning model, this mixed
effects model did not incorporate important interactions
between predictors. Rather, it was used to provide simplified
inference that does not capture the full interplay of factors
associated with prolonged LOS. However, a two-way statistical
interaction between head trauma and number of comorbid
conditions indicate the existence of more complex relations
between the variables. Therefore, we included a machine
learning model that can capture all these complex interactions

Numbers of meds - first 24 h 

Number of comorbid conditions

Max. LOS - prior 6 mo

Admitted from ED

ED visits - prior 6mo

Medicare/Medicaid ins, ref: Commercial

Other race, ref: Caucasian

Black, ref: Caucasian

Sex, Male

Free-standing pediatric hospital

Trauma:burns/corrosions (T20-T32)

Trauma:head (S00-S09)

Trauma:confirmed child abuse (T74)

Trauma:suspected child abuse (T76)

Trauma:shoulder/upper arm (S40-S49)

Trauma:wrist,hand,fingers (S60-S69)

Trauma:knee, lower leg (S80-S89)

Trauma:elbow, forearm (S50-S59)

Trauma:ankle, foot (S90-S99)

Trauma:thorex (S20-S29)

Trauma:neck (S10-S19)

Trauma:unspecified body region (T14)

Trauma:multiple body regions (T07)

Self-pay, ref: Commercial

Asian/Pacific Islander, ref:Caucasian

0.4 0.2 0.0 0.0 0.1 0.2 0.3

Relative importance Frequency in model

Other Govt., ref: Commercial

Native American, ref: Caucasian

Hypothermia (T68)

Hispanic, ref:Caucasian

Trauma:penetrating natural orifice (T15-T19)

Early complications of trauma(T79)

Trauma:hip,thigh (S70-79)

Readmission history - prior 6mo

Trauma:abs/back/spine/pelvis/genital (S30-S39)

Other insurance, ref: Commercial

Age (yrs)

Fig. 2 Relative variable importance and frequency of use in the extreme gradient boosting model.
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in a computationally feasible way. The machine learning model
captured the importance of the trauma to the head ranking it
among the top ten most important variables.
There are several limitations of this study. The most important

of these is the use of diagnosis codes for determination of trauma
and the absence of the mechanism of injury. The use of diagnosis
codes is unavoidable in the case of retrospective studies using
large multicenter electronic medical record databases. The most
consistent documentation of patient condition across multiple
hospitals are standard diagnostic codes. However, across a given
diagnosis code a wide range of injury severity may occur. The
relatively frequent closed head injury with small intracranial
hemorrhage and short hospital stay may be coded similarly as the
much less frequent massive head injury with extensive and
permanent neurologic damage and prolonged LOS. A diagnosis-
based model that fails to account for severity or need for
intervention may fail to properly predict LOS in a subset of
severely injured patients. The closest to a proxy for severity of
illness or injury in this study are the number of medications
administered during the first 24 h of admission, and the number of
comorbid diagnoses.
The mechanism of injury may provide additional information in

understanding and predicting prolonged LOS. Future studies
should be conducted to see if the mechanism of injury modifies
the risk of prolonged LOS beyond the type of trauma. Lastly, the
mixed effects model identified associations with prolonged LOS
which may not be causal factors.

CONCLUSION
The use of statistical and machine learning models to predict LOS
in a large pediatric trauma database offers the potential to allow
early targeted interventions, improved assessments, and optimal
utilization of resources both for individual patients and across
trauma systems. This study aimed to identify both discrete risk
factors as well as a machine learning tool that could alert front-line
caregivers upon admission which patients may have a longer LOS.
This has implications for system demand, bed planning, staffing
decisions, as well as individual patient concerns such as risk
assessment, hospital-acquired condition risk, early mobilization
goals, family caregiver arrangements, and post-discharge rehabi-
litation needs. Continued refinement of this model may inform
prevention, assessment, and mitigation efforts for both pediatric
and adult trauma patients.
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