HLA class II genes in precision-based care of childhood diseases: what we can learn from celiac disease


Celiac disease (CeD) is a chronic immuno-mediated enteropathy caused by dietary gluten with marked autoimmunity traits. The human leukocyte antigen (HLA) class II heterodimers represent the main predisposing factor, although environmental agents, as viral infection, gut microbiota, and dietary regimen, also contribute to CeD risk. These molecules are involved in autoimmunity as they present self-antigens to autoreactive T cells that have escaped the thymic negative selection. In CeD, the HLA class II risk alleles, DQA1*05-DQB1*02 and DQA1*03-DQB1*03, encode for DQ2.5 and DQ8 heterodimers, and, furthermore, disease susceptibility was found strictly dependent on the dose of these genes. This finding questioned how the expression of HLA-DQ risk genes, and of relative surface protein on antigen-presenting cells, might be relevant for the magnitude of anti-gluten inflammatory response in CeD patients, and impact the natural history of disease, its pathomechanisms, and compliance to dietary treatment. In this scenario, new personalized medical approaches will be desirable to support an early, accurate, and non-invasive diagnosis, and to define genotype-guided preventive and therapeutic strategies for CeD. To reach this goal, a stratification of genetic risk, disease outcome, and therapy compliance based on HLA genotypes, DQ2.5/DQ8 expression measurement and magnitude of T cell response to gluten is mandatory.


  • This article revises the current knowledge on how different HLA haplotypes, carrying the DQ2.5/DQ8 risk alleles, impact the onset of CeD.

  • This review discusses how the expression of susceptibility HLA-DQ genes can determine the risk assessment, outcome, and prevention of CeD.

  • The recent insights on the environmental factors contributing to CeD in childhood are reviewed.

  • This review discusses the use of HLA risk gene expression as a tool to support medical precision approaches for an early and non-invasive diagnosis of CeD, and to define genotype-guided preventive and therapeutic strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The HLA haplotype carrying the DQ2.5 encoding genes, DQB1*02 and DQA1*05, is associated with a high/moderate risk to develop CeD.


  1. 1.

    Budin-Ljøsne, I. & Harris, J. R. Ask not what personalized medicine can do for you - ask what you can do for personalized medicine. Public Health Genomics 18, 131–138 (2015).

    Article  Google Scholar 

  2. 2.

    Fernando, M. M. A. et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 4, e1000024 (2008).

  3. 3.

    Takaba, H. & Takayanagi, H. The Mechanisms of T cell selection in the thymus. Trends Immunol. 38, 805–816 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Lindfors, K. et al. Coeliac disease. Nat. Rev. Dis. Primers 5, 3 (2019).

  6. 6.

    Viken, M. K. et al. HLA class II alleles in Norwegian patients with coexisting type 1 diabetes and celiac disease. HLA 89, 278–284 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Smigoc Schweiger, D. et al. High-risk genotypes HLA-DR3-DQ2/DR3-DQ2 and DR3-DQ2/DR4-DQ8 in co-occurrence of type 1 diabetes and celiac disease. Autoimmunity 49, 240–247 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Van Lummel, M. et al. Type 1 diabetes-associated HLA-DQ8 transdimer accommodates a unique peptide repertoire. J. Biol. Chem. 287, 9514–9524 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    Meijer, C., Shamir, R., Szajewska, H. & Mearin, L. Celiac disease prevention. Front. Pediatr. 6, 368 (2018).

  10. 10.

    Gutierrez-Achury, J. et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nat. Genet. 47, 577–578 (2015).

  11. 11.

    de Punder, K. & Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 5, 771–787 (2013).

    Article  Google Scholar 

  12. 12.

    Lionetti, E. & Catassi, C. Co-localization of gluten consumption and HLA-DQ2 and -DQ8 genotypes, a clue to the history of celiac disease. Dig. Liver Dis. 46, 1057–1063 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Makharia, G. K. & Catassi, C. Celiac disease in Asia. Gastroenterol. Clin. N. Am. 48, 101–113 (2019).

    Article  Google Scholar 

  14. 14.

    Cataldo, F., Lio, D., Simpore, J. & Musumeci, S. Consumption of wheat foodstuffs: not a risk for celiac disease occurrence in Burkina Faso [3]. J. Pediatr. Gastroenterol. Nutr. 35, 233–234 (2002).

    Article  Google Scholar 

  15. 15.

    Abadie, V., Sollid, L. M., Barreiro, L. B. & Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29, 493–525 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Mustalahti, K. et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann. Med. 42, 587–595 (2010).

    Article  Google Scholar 

  17. 17.

    Gatti, S. et al. Increased prevalence of celiac disease in school-age children in Italy. Clin. Gastroenterol. Hepatol. 18, 596–603 (2020).

    Article  Google Scholar 

  18. 18.

    Scherf, K. A. et al. Recent progress and recommendations on celiac disease from the working group on prolamin analysis and toxicity. Front. Nutr. 7, 29 (2020).

    Article  Google Scholar 

  19. 19.

    Delgado, J. F. et al. Paediatric celiac patients carrying the HLA-DR7-DQ2 and HLA-DR3-DQ2 haplotypes display small clinical differences. Acta Paediatr. 103, 238–242 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    Liu, E. et al. Risk of pediatric celiac disease according to HLA haplotype and country. N. Engl. J. Med. 371, 42–49 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    Camarca, A. et al. Gliadin-reactive T cells in Italian children from preventCD cohort at high risk of celiac disease. Pediatr. Allergy Immunol. 28, 362–369 (2017).

    Article  Google Scholar 

  22. 22.

    Husby, S. et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 70, 141–156 (2020).

    Article  Google Scholar 

  23. 23.

    Werkstetter, K. J. et al. Accuracy in diagnosis of celiac disease without biopsies in clinical practice. Gastroenterology 153, 924–935 (2017).

    Article  Google Scholar 

  24. 24.

    Lauret, E. & Rodrigo, L. Celiac disease and autoimmune-associated conditions. BioMed. Res. Int. 2013, 127589 (2013).

    Article  Google Scholar 

  25. 25.

    Hogen Esch, C. E. et al. The PreventCD Study design: towards new strategies for the prevention of coeliac disease. Eur. J. Gastroenterol. Hepatol. 22, 1424–1430 (2010).

    Google Scholar 

  26. 26.

    Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N. Engl. J. Med. 371, 1295–1303 (2014).

    Article  CAS  Google Scholar 

  27. 27.

    Sollid, L. M. The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics 69, 605–616 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Sollid, L. M. & Jabri, B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr. Opin. Immunol. 23, 732–738 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Vorobjova, T., Uibo, O., Heilman, K. & Uibo, R. Increased density of tolerogenic dendritic cells in the small bowel mucosa of celiac patients. World J. Gastroenterol. 21, 439–452 (2015).

    Article  CAS  Google Scholar 

  30. 30.

    Ráki, M. et al. Similar responses of intestinal T cells from untreated children and adults with celiac disease to deamidated gluten epitopes. Gastroenterology 153, e4 (2017).

    Article  CAS  Google Scholar 

  31. 31.

    Di Sabatino, A. et al. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology 133, 1175–1187 (2007).

    Article  CAS  Google Scholar 

  32. 32.

    Ma, W. T., Gao, F., Gu, K. & Chen, D. K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front. Immunol. 10, 1140 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Serena, G. et al. Intestinal epithelium modulates macrophage response to gliadin in celiac disease. Front. Nutr. 6, 167 (2019).

    Article  CAS  Google Scholar 

  34. 34.

    Vorobjova, T. et al. Celiac disease in children, particularly with accompanying type 1 diabetes, is characterized by substantial changes in the blood cytokine balance, which may reflect inflammatory processes in the small intestinal mucosa. J. Immunol. Res. 2019, 6179243 (2019).

    Article  CAS  Google Scholar 

  35. 35.

    Iversen, R. et al. Efficient T cell–B cell collaboration guides autoantibody epitope bias and onset of celiac disease. Proc. Natl Acad. Sci. USA 116, 15134–15139 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Høydahl, L. S. et al. Plasma cells are the most abundant gluten peptide MHC-expressing cells in inflamed intestinal tissues from patients with celiac disease. Gastroenterology 156, 1428–1439.e10 (2019).

    Article  CAS  Google Scholar 

  37. 37.

    Camarca, A. et al. Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. J. Immunol. 182, 4158–4166 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Hardy, M. Y. et al. Consistency in polyclonal T-cell responses to gluten between children and adults with celiac disease. Gastroenterology 149, 1541–1552.e2 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2, 41ra51 (2010).

    Article  CAS  Google Scholar 

  40. 40.

    Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl Acad. Sci. USA 100, 12390–12395 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Sollid, L. M. The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics 69, 605–616 (2017).

  42. 42.

    Picascia, S. et al. Gliadin-Specific CD8 + T cell responses restricted by HLA class I A*0101 and B*0801 molecules in celiac disease patients. J. Immunol. 198, 1838–1845 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Mazzarella, G. et al. Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology 134, 1017–1027 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Pisapia, L. et al. HLA-DQ2.5 genes associated with celiac disease risk are preferentially expressed with respect to non-predisposing HLA genes: Implication for anti-gluten T cell response. J. Autoimmun. 70, 63–72 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Pisapia, L. et al. Differential expression of predisposing HLA-DQ2.5 alleles in DR5/DR7 celiac disease patients affects the pathological immune response to gluten. Scientific Rep. 10, 17227 (2020).

  46. 46.

    Farina, F. et al. HLA-DQA1 and HLA-DQB1 alleles, conferring susceptibility to celiac disease and type 1 diabetes, are more expressed than non-predisposing alleles and are coordinately regulated. Cells 8, 751 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Pisapia, L. et al. The HLA-DRB1 risk alleles for multiple sclerosis are differentially expressed in blood cells of patients from Southern Italy. Int. J. Immunogenet. 46, 479–484 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    Cavalli, G. et al. MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc. Natl Acad Sci. USA 113, 1363–1368 (2016).

  49. 49.

    Hayashi, M. et al. Autoimmune vitiligo is associated with gain-of- function by a transcriptional regulator that elevates expression of HLA-A * 02: 01 in vivo. Proc. Natl Acad. Sci. USA 13, 1357–1362 (2016).

  50. 50.

    Raj, P. et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 5, 1–52 (2016).

    Google Scholar 

  51. 51.

    Gianfrani, C. et al. Expression level of risk genes of MHC class II is a susceptibility factor for autoimmunity: new insights. J. Autoimmun. 89, 1–10 (2018).

    Article  CAS  Google Scholar 

  52. 52.

    Majumder, P., Gomez, J. A. & Boss, J. M. The human major histocompatibility complex class II HLA-DRB1 and HLA-DQA1 genes are separated by a CTCF-binding enhancer-blocking element. J. Biol. Chem. 281, 18435–18443 (2006).

    CAS  Article  Google Scholar 

  53. 53.

    Lam, T. H. et al. Unique alelic eQTL clusters in human MHC haplotypes. G3 7, 2595–2604 (2017).

  54. 54.

    Margaritte-Jeannin, P. et al. HLA-DQ relative risks for coeliac disease in European populations: a study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens 63, 562–567 (2004).

    CAS  Article  Google Scholar 

  55. 55.

    Lebwohl, B., Sanders, D. S. & Green, P. H. R. Coeliac disease. Lancet 391, 70–81 (2018).

    Article  Google Scholar 

  56. 56.

    Caio, G. et al. Celiac disease: a comprehensive current review. BMC Med. 17, 142 (2019).

    Article  CAS  Google Scholar 

  57. 57.

    Poddighe, D., Rebuffi, C., De Silvestri, A. & Capittini, C. Carrier frequency of HLA-DQB1*02 allele in patients affected with celiac disease: a systematic review assessing the potential rationale of a targeted allelic genotyping as a first-line screening. World J. Gastroenterol. 26, 1365–1381 (2020).

    Article  Google Scholar 

  58. 58.

    Capittini, C. et al. Relevance of HLA-DQB1*02 allele in the genetic predisposition of children with celiac disease: additional cues from a meta-analysis. Medicina 55, 190 (2019).

  59. 59.

    De Silvestri, A. et al. HLA-DQ genetics in children with celiac disease: a meta-analysis suggesting a two-step genetic screening procedure starting with HLA-DQ β chains. Pediatr. Res. 83, 564–572 (2018).

    Article  CAS  Google Scholar 

Download references


This work was supported with funds from the Italian Ministry of Health for the research grant RF-2016-02361372 to C.G., and from Italian Ministry of Research and DSB-CNR for Progetto Bandiera InterOmics 2017 to C.G. and G.D.P. We thank the Italian Celiac Disease Foundation (FC) for the Triennial Fellowship to S.V. (FC 009_2016) and to M.L. (Fellowship_ 6_FC_2019).

Author information




F.F., S.P., S.V., and M.L. made substantial contributions to the literature review and drafting the manuscript. G.D.P. and C.G. provided intellectual contributions and critically revised the manuscript. All authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Giovanna Del Pozzo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Del Pozzo, G., Farina, F., Picascia, S. et al. HLA class II genes in precision-based care of childhood diseases: what we can learn from celiac disease. Pediatr Res (2020). https://doi.org/10.1038/s41390-020-01217-4

Download citation