Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Analgesia for fetal pain during prenatal surgery: 10 years of progress

Abstract

Some doubts on the necessity and safety of providing analgesia to the fetus during prenatal surgery were raised 10 years ago. They were related to four matters: fetal sleep due to neuroinhibitors in fetal blood, the immaturity of the cerebral cortex, safety, and the need for fetal direct analgesia. These objections now seem obsolete. This review shows that neuroinhibitors give fetuses at most some transient sedation, but not a complete analgesia, that the cerebral cortex is not indispensable to feel pain, when subcortical structures for pain perception are present, and that maternal anesthesia seems not sufficient to anesthetize the fetus. Current drugs used for maternal analgesia pass through the placenta only partially so that they cannot guarantee a sufficient analgesia to the fetus. Extraction indices, that is, how much each analgesic drug crosses the placenta, are provided here. We here report safety guidelines for fetal direct analgesia. In conclusion, the human fetus can feel pain when it undergoes surgical interventions and direct analgesia must be provided to it.

Impact

  • Fetal pain is evident in the second half of pregnancy.

  • Progress in the physiology of fetal pain, which is reviewed in this report, supports the notion that the fetus reacts to painful interventions during fetal surgery.

  • Evidence here reported shows that it is an error to believe that the fetus is in a continuous and unchanging state of sedation and analgesia.

  • Data are given that disclose that drugs used for maternal analgesia cross the placenta only partially, so that they cannot guarantee a sufficient analgesia to the fetus.

  • Safety guidelines are given for fetal direct analgesia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fetal surgery: number of clinical studies per year.
Fig. 2: Fetal pain.

References

  1. 1.

    Royal College of Obstetricians and Gynaecologists. Fetal Awareness: Review of Research and Recommendations for Practice (RCOG Press, London, 2010).

  2. 2.

    Mellor, D. J., Diesch, T. J., Gunn, A. J. & Bennet, L. The importance of ‘awareness’ for understanding fetal pain. Brain Res. Rev. 49, 455–471 (2005).

  3. 3.

    Sekulic, S. et al. Appearance of fetal pain could be associated with maturation of the mesodiencephalic structures. J. Pain Res. 9, 1031–1038 (2016).

  4. 4.

    Bellieni, C. V. & Buonocore, G. Is fetal pain a real evidence? J. Matern. Fetal Neonatal Med. 25, 1203–1208 (2012).

    PubMed  Google Scholar 

  5. 5.

    Houfflin Debarge, V., Dutriez, I., Pusniak, B., Delarue, E. & Storme, L. Fetal pain: immediate and long term consequences]. Bull. Acad. Natl. Med. 194, 903–911 (2010).

    PubMed  Google Scholar 

  6. 6.

    Platt, M. W. Fetal awareness and fetal pain: the emperor’s new clothes. Arch. Dis. Child Fetal Neonatal Ed. 96, F236–F237 (2011).

    PubMed  Google Scholar 

  7. 7.

    Bernardes, L. S., Grupo de Estudo da Dor Fetal (Fetal Pain Study Group) et al. On the feasibility of accessing acute pain-related facial expressions in the human fetus and its potential implications: a case report. Pain Rep. 3, e673 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bellieni, C. V. & Buonocore, G. Fetal pain debate may weaken the fight for newborns’ analgesia. J. Pain 20, 366–367 (2019).

    CAS  PubMed  Google Scholar 

  9. 9.

    Bellieni, C. V. New insights into fetal pain. Semin. Fetal Neonatal Med. 24, 101001 (2019).

    PubMed  Google Scholar 

  10. 10.

    Derbyshire, S. W. & Bockmann, J. C. Reconsidering fetal pain. J. Med. Ethics 46, 3–6 (2020).

    PubMed  Google Scholar 

  11. 11.

    Kadic, A. S. & Kurjak, A. Cognitive functions of the fetus. Ultraschall Med. 39, 181–189 (2018).

    PubMed  Google Scholar 

  12. 12.

    Noia, G. in Neonatal Pain (eds Buonocore, G. & Bellieni, C. V.) 53–63 (Springer, 2017).

  13. 13.

    Derbyshire, S. W. Fetal pain: an infantile debate. Bioethics 15, 77–84 (2001).

    CAS  PubMed  Google Scholar 

  14. 14.

    Derbyshire, S. W. & Furedi, A. Do fetuses feel pain? “Fetal pain” is a misnomer. BMJ 313, 795 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Narisawa, Y., Hashimoto, K., Nihei, Y. & Pietruk, T. Biological significance of dermal Merkel cells in development of cutaneous nerves in human fetal skin. J. Histochem. Cytochem. 40, 65–71 (1992).

    CAS  PubMed  Google Scholar 

  16. 16.

    Okado, N. Onset of synapse formation in the human spinal cord. J. Comp. Neurol. 201, 211–219 (1981).

    CAS  PubMed  Google Scholar 

  17. 17.

    Terenghi, G., Sundaresan, M., Moscoso, G. & Polak, J. M. Neuropeptides and a neuronal marker in cutaneous innervation during human foetal development. J. Comp. Neurol. 328, 595–603 (1993).

    CAS  PubMed  Google Scholar 

  18. 18.

    Koltzenburg, M. The changing sensitivity in the life of the nociceptor. Pain https://doi.org/10.1016/s0304-3959(99)00142-6 (Suppl. 6), S93–S102 (1999).

  19. 19.

    Amella, C. et al. Spatial and temporal dynamics of innervation during the development of fetal human pancreas. Neuroscience 154, 1477–1487 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Tadros, M. A., Lim, R., Hughes, D. I., Brichta, A. M. & Callister, R. J. Electrical maturation of spinal neurons in the human fetus: comparison of ventral and dorsal horn. J. Neurophysiol. 114, 2661–2671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Larsen, W. J., Sherman, L. S., Potter, S. S. & Scott, W. J. (eds). Human Embryology 3rd edn (Churchill Livingstone, Philadelphia, 2001).

  22. 22.

    de Graaf-Peters, V. B. & Hadders-Algra, M. Ontogeny of the human central nervous system: what is happening when? Early Hum. Dev. 82, 257–266 (2006).

    PubMed  Google Scholar 

  23. 23.

    Page, S. The neuroanatomy and physiology of pain perception in the developing human. Issues Law Med. 30, 227–236 (2015).

    PubMed  Google Scholar 

  24. 24.

    Kostovic, I. & Judas, M. Transient patterns of cortical lamination during prenatal life: do they have implications for treatment? Neurosci. Biobehav. Rev. 31, 1157–1168 (2007).

    PubMed  Google Scholar 

  25. 25.

    Yen, C.-T. & Lu, P.-L. Thalamus pain. Acta Anaesthesiol. Taiwan. 51, 73–80 (2013).

    PubMed  Google Scholar 

  26. 26.

    Sekulic, S. et al. Appearance of fetal pain could be associated with maturation of the mesodiencephalic structures. J. Pain Res. 9, 1031–1038 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Qiu, A. et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl. Psychiatry 5, e508 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Klancy, B. & Anand, K. S. Fetal pain?. Pain 14, 1–6 (2006).

    Google Scholar 

  29. 29.

    Kanold, P. O. & Luhmann, H. J. The subplate and early cortical circuits. Annu. Rev. Neurosci. 33, 23–48 (2010).

    CAS  PubMed  Google Scholar 

  30. 30.

    Wess, J. M., Isaiah, A., Watkins, P. V. & Kanold, P. O. Subplate neurons are the first cortical neurons to respond to sensory stimuli. Proc. Natl. Acad. Sci. USA 114, 12602–12607 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kostović, I. & Judaš, M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr. 99, 1119–1127 (2010).

    PubMed  Google Scholar 

  32. 32.

    Ulfig, N., Neudorfer, F. & Bohl, J. Transient structures of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence. Histol. Histopathol. 15, 771–790 (2000).

    CAS  PubMed  Google Scholar 

  33. 33.

    Moore, K. L., Persaud, T. V. N. & Torchia M. G. The Developing Human. Clinically Oriented Embryology 10th edn (Elsevier, Phladelphia, 2016).

  34. 34.

    Lagercrantz, H. The emergence of consciousness: science and ethics. Semin. Fetal Neonatal Med. 19, 300–305 (2014).

    PubMed  Google Scholar 

  35. 35.

    Iannetti, G. D. & Mouraux, A. From the neuromatrix to the pain matrix (and back). Exp. Brain Res. 205, 1–12 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Mouraux, A. et al. A multisensory investigation of the functional significance of the “pain matrix”. Neuroimage 54, 2237–2249 (2011).

    PubMed  Google Scholar 

  37. 37.

    Feinstein, J. S. et al. Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct. Funct. 221, 1499–1511 (2016).

    PubMed  Google Scholar 

  38. 38.

    Salomons, T. V. et al. The “pain matrix” in pain-free individuals. JAMA Neurol. 73, 755 (2016).

    PubMed  Google Scholar 

  39. 39.

    Sewards, T. V. & Sewards, M. A. Visual awareness due to neuronal activities in subcortical structures: a proposal. Conscious Cogn. 9, 86–116 (2000).

    CAS  PubMed  Google Scholar 

  40. 40.

    Pasley, B. N., Mayes, L. C. & Schultz, R. T. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron 42, 163–172 (2004).

    CAS  PubMed  Google Scholar 

  41. 41.

    Shewmon, D. A., Holmes, G. L. & Byrne, P. A. Consciousness in congenitally decorticate children: developmental vegetative state as self-fulfilling prophecy. Dev. Med. Child Neurol. 41, 364–374 (1999).

    CAS  PubMed  Google Scholar 

  42. 42.

    Anand, K. S. & Clancy, B. Fetal pain? Pain 14, 1–4 (2006).

    Google Scholar 

  43. 43.

    Marx, V. & Nagy, E. Fetal behavioral responses to the touch of the mother’s abdomen: a frame-by-frame analysis. Infant Behav. Dev. 47, 83–91 (2017).

    PubMed  Google Scholar 

  44. 44.

    AboEllail, M. A. M. & Hata, T. Fetal face as important indicator of fetal brain function. J. Perinat. Med. 45, 729–736 (2017).

    PubMed  Google Scholar 

  45. 45.

    Reissland, N., Francis, B. & Mason, J. Can healthy fetuses show facial expressions of “pain” or “distress”? PLoS ONE 5, e65530 (2013).

    Google Scholar 

  46. 46.

    Hepper, P. G., Dornan, J. C. & Lynch, C. Sex differences in fetal habituation. Dev. Sci. 15, 373–383 (2012).

    PubMed  Google Scholar 

  47. 47.

    Morsi, A., DeFranco, D. & Witchel, S. F. The hypothalamic-pituitary-adrenal axis and the fetus. Horm. Res. Paediatr. 89, 380–387 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Giannakoulopoulos, X., Sepulveda, W., Kourtis, P., Glover, V. & Fisk, N. M. Fetal plasma cortisol and beta-endorphin response to intrauterine needling. Lancet 344, 77–81 (1994).

    CAS  PubMed  Google Scholar 

  49. 49.

    Giannakoulopoulos, X., Teixeira, J., Fisk, N. & Glover, V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr. Res. 45, 494–499 (1999).

    CAS  PubMed  Google Scholar 

  50. 50.

    Fisk, N. M. et al. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology 95, 828–835 (2001).

    CAS  PubMed  Google Scholar 

  51. 51.

    Piontelli, A. Development of Normal Fetal Movements: The Last 15 Weeks of Gestation (Springer, 2012).

  52. 52.

    Prechtl, H. F. & Einspieler, C. Is neurological assessment of the fetus possible? Eur. J. Obstet. Gynecol. Reprod. Biol. 75, 81–84 (1997).

    CAS  PubMed  Google Scholar 

  53. 53.

    Horne, R. S. C. in SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future (eds Duncan, J. R. & Byard R. W.) Ch. 22 (University of Adelaide Press, Adelaide, 2018).

  54. 54.

    Gingras, J. L., Mitchell, E. A. & Grattan, K. E. Fetal homologue of infant crying. Arch. Dis. Child Fetal Neonatal 90, F415–F418 (2005).

    CAS  Google Scholar 

  55. 55.

    Suwanrath, C. & Suntharasaj, T. Sleep-wake cycles in normal fetuses. Arch. Gynecol. Obstet. 281, 449–454 (2010).

    PubMed  Google Scholar 

  56. 56.

    Darnall, R. A. The carotid body and arousal in the fetus and neonate. Respir. Physiol. Neurobiol. 185, 132–143 (2013).

    PubMed  Google Scholar 

  57. 57.

    Walusinski, O. Fetal yawning. Front. Neurol. Neurosci. 28, 32–41 (2010).

    PubMed  Google Scholar 

  58. 58.

    Gingras, J. L. & O’Donnell, K. J. State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: an assessment of fetal state, arousal, and regulation competency. Ann. NY Acad. Sci. 846, 262–276 (1998).

    CAS  PubMed  Google Scholar 

  59. 59.

    Shinozuka, N., Okai, T., Kuwabara, Y. & Mizuno, M. The development of sleep-wakefulness cycle and its correlation to other behavior in the human fetus. Asia Ocean. J. Obstet. Gynaecol. 15, 395–402 (1989).

    CAS  Google Scholar 

  60. 60.

    Szeto, H. H., Zhu, Y. S., Amione, J. & Clare, S. Prenatal morphine exposure and sleep-wake disturbances in the fetus. Sleep 11, 121–130 (1988).

    CAS  PubMed  Google Scholar 

  61. 61.

    Szeto, H. H. & Hinman, D. J. Prenatal development of sleep-wake patterns in sheep. Sleep 8, 347–355 (1985).

    CAS  PubMed  Google Scholar 

  62. 62.

    Goodlin, R. C. Fetal arousal by external stimuli. Am. J. Obstet. Gynecol. 146, 744–745 (1983).

    CAS  PubMed  Google Scholar 

  63. 63.

    Nijhuis, J. G., Prechtl, H. F., Martin, C. B. Jr. & Bots, R. S. Are there behavioural states in the human fetus? Early Hum. Dev. 6, 177–195 (1982).

    CAS  PubMed  Google Scholar 

  64. 64.

    Bocchi, C., Vannuccini, S., Severi, F. M., Bellieni, C. V. & Petraglia, F. in Neonatal Pain (eds Buonocore, G. & Bellieni, C. V.) 37–42 (Springer, 2017).

  65. 65.

    Bellieni, C. V. et al. Blink-startle reflex habituation in 30-34-week low-risk fetuses. J. Perinat. Med. 33, 33–37 (2005).

    PubMed  Google Scholar 

  66. 66.

    Stone, P. R., Maternal Sleep In Pregnancy Research Group The University of Auckland et al. An investigation of fetal behavioural states during maternal sleep in healthy late gestation pregnancy: an observational study. J. Physiol. 595, 7441–7450 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Zavala, J. H., Ecklund-Flores, L., Myers, M. M. & Fifer, W. P. Assessment of autonomic function in the late term fetus: the effects of sex and state. Dev. Psychobiol. https://doi.org/10.1002/dev.21865 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Pillai, M. & James, D. Behavioural states in normal mature human fetuses. Arch. Dis. Child 65, 39–43 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Vanhatalo, S. & Kaila, K. Development of neonatal EEG activity: from phenomenology to physiology. Semin. Fetal Neonatal Med. 11, 471–478 (2006).

    PubMed  Google Scholar 

  70. 70.

    Jardri, R. et al. Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage 42, 10–18 (2008).

    PubMed  Google Scholar 

  71. 71.

    Brillo, E. et al. The effect of prenatal exposure to music on fetal movements and fetal heart rate: a pilot study. J. Matern. Fetal Neonatal Med. 1–9. https://doi.org/10.1080/14767058.2019.1663817 (2019). [Epub ahead of print].

  72. 72.

    Gebuza, G., Dombrowska, A., Kaźmierczak, M., Gierszewska, M. & Mieczkowska, E. The effect of music therapy on the cardiac activity parameters of a fetus in a cardiotocographic examination. J. Matern. Fetal Neonatal Med. 30, 2440–2445 (2017).

    PubMed  Google Scholar 

  73. 73.

    Dunwiddie, T. V. & Worth, T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J. Pharm. Exp. Ther. 220, 70–76 (1982).

    CAS  Google Scholar 

  74. 74.

    Powell, H., Morgan, M. & Sear, J. W. Pregnanolone: a new steroid intravenous anaesthetic. Dose-finding study. Anaesthesia 47, 287–290 (1992).

    CAS  PubMed  Google Scholar 

  75. 75.

    Hering, W. J. et al. Pharmacokinetic-pharmacodynamic modeling of the new steroid hypnotic eltanolone in healthy volunteers. Anesthesiology 85, 1290–1299 (1996).

    CAS  PubMed  Google Scholar 

  76. 76.

    Hill, M. et al. Is maternal progesterone actually independent of the fetal steroids? Physiol. Res. 59, 211–224 (2010).

    CAS  PubMed  Google Scholar 

  77. 77.

    Bicikova, M. et al. Two neuroactive steroids in midpregnancy as measured in maternal and fetal sera and in amniotic fluid. Steroids 67, 399–402 (2002).

    CAS  PubMed  Google Scholar 

  78. 78.

    Klak, J. et al. Pregnanolone isomers, pregnenolone and their polar conjugates around parturition. Physiol. Res. 52, 211–221 (2003).

    CAS  PubMed  Google Scholar 

  79. 79.

    Yoneyama, Y. et al. Plasma adenosine concentration in appropriate- and small-for-gestational-age fetuses. Am. J. Obstet. Gynecol. 170, 684–688 (1994).

    CAS  PubMed  Google Scholar 

  80. 80.

    Yoneyama, Y., Suzuki, S., Sawa, R. & Araki, T. Plasma adenosine concentrations increase in women with hyperemesis gravidarum. Clin. Chim. Acta 342, 99–103 (2004).

    CAS  PubMed  Google Scholar 

  81. 81.

    Melegos, D. N., Yu, H. & Diamandis, E. P. Prostaglandin D2 synthase: a component of human amniotic fluid and its association with fetal abnormalities. Clin. Chem. 42, 1042–1050 (1996).

    CAS  PubMed  Google Scholar 

  82. 82.

    Moon, J. Y. et al. Cytochrome P450-mediated metabolic alterations in preeclampsia evaluated by quantitative steroid signatures. J. Steroid Biochem. Mol. Biol. 139, 182–191 (2014).

    CAS  PubMed  Google Scholar 

  83. 83.

    Rubinchik-Stern, M. & Eyal, S. Drug interactions at the human placenta: what is the evidence? Front. Pharm. 3, 126 (2012).

    Google Scholar 

  84. 84.

    Kan, R. E. et al. Intravenous remifentanil: placental transfer, maternal and neonatal effects. Anesthesiology 88, 1467–1474 (1998).

    CAS  PubMed  Google Scholar 

  85. 85.

    Bonnet, M. P. Sedation and anaesthesia for non-obstetric surgery. Anaesth. Crit. Care Pain Med. 35, S35–S41 (2016).

    PubMed  Google Scholar 

  86. 86.

    Mazze, R. I., Fujinaga, M., Rice, S. A., Harris, S. B. & Baden, J. M. Reproductive and teratogenic effects of nitrous oxide, halothane, isoflurane, and enflurane in Sprague- Dawley rats. Anesthesiology 64, 339–344 (1986).

    CAS  PubMed  Google Scholar 

  87. 87.

    Fink, R. J., Allen, T. K. & Habib, A. S. Remifentanil for fetal immobilization and analgesia during the ex utero intrapartum treatment procedure under combined spinal-epidural anaesthesia. Br. J. Anaesth. 106, 851–855 (2011).

    CAS  PubMed  Google Scholar 

  88. 88.

    Ngamprasertwong, P. et al. Propofol pharmacokinetics and estimation of fetal propofol exposure during mid-gestational fetal surgery: a maternal-fetal sheep model. PLoS ONE 11, e0146563 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Chestnut, D. H. et al. Chestnut’s Obstetric Anesthesia: Principles and Practice 5th edn, 64–74 (Elsevier Saunders, Philadelphia, 2014).

  90. 90.

    Ansari, J., Carvalho, B., Shafer, S. L. & Flood, P. Pharmacokinetics and pharmacodynamics of drugs commonly used in pregnancy and parturition. Anesth. Analg. 122, 786–804 (2016).

  91. 91.

    Heikkinen, E. M. et al. Foetal fentanyl exposure and ion trapping after intravenous and transdermal administration to the ewe. Basic Clin. Pharm. Toxicol. 120, 195–198 (2017).

    CAS  Google Scholar 

  92. 92.

    Bonnardot, J. P., Maillet, M., Colau, J. C., Millot, F. & Deligne, P. Maternal and fetal concentration of morphine after intrathecal administration during labour. Br. J. Anaesth. 54, 487–489 (1982).

    CAS  PubMed  Google Scholar 

  93. 93.

    Weber, S. U. & Kranke, P. Anesthesia for predelivery procedures: ex-utero intrapartum treatment/intrauterine transfusion/surgery of the fetus. Curr. Opin. Anaesthesiol. 32, 291–297 (2019).

    PubMed  Google Scholar 

  94. 94.

    Bellieni, C. V. et al. Use of fetal analgesia during prenatal surgery. J. Matern. Fetal Neonatal Med. 26, 90–95 (2013).

    PubMed  Google Scholar 

  95. 95.

    Van de Velde, M. & De Buck, F. Fetal and maternal analgesia/anesthesia for fetal procedures. Fetal Diagn. Ther. 31, 201–209 (2012).

    PubMed  Google Scholar 

  96. 96.

    Blickstein, I. & Oppenheimer, I. Compassionate treatment of fetal pain. Curr. Pediatr. Res. 20, 64–68 (2016).

    Google Scholar 

  97. 97.

    Ramirez, M. V. Anesthesia for fetal surgery. Rev. Colomb. Anestesiol. 40, 268–272 (2012).

    Google Scholar 

  98. 98.

    Kodali, B. S. & Bharadwaj, S. Foetal surgery: anaesthetic implications and strategic management. Indian J. Anaesth. 62, 717–723 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Bellieni, C. V., Vannuccini, S. & Petraglia, F. Is fetal analgesia necessary during prenatal surgery? J. Matern. Fetal Neonatal Med. 31, 1241–1245 (2018).

    CAS  PubMed  Google Scholar 

  100. 100.

    Hoagland, M. A. & Chatterjee, D. Anesthesia for fetal surgery. Paediatr. Anaesth. 27, 346–357 (2017).

    PubMed  Google Scholar 

  101. 101.

    Sutton, L. N. Fetal surgery for neural tube defects. Best. Pract. Res. Clin. Obstet. Gynaecol. 22, 175–188 (2008).

    PubMed  Google Scholar 

  102. 102.

    Gupta, R., Kilby, M. & Cooper, G. Fetal surgery and anaesthetic implications. Contin. Educ. Anaesth. Crit. Care Pain 8, 71–75 (2008).

    Google Scholar 

  103. 103.

    Strumper, D. et al. Fetal plasma concentrations after intraamniotic sufentanil in chronically instrumented pregnant sheep. Anesthesiology 98, 1400–1406 (2003).

    PubMed  Google Scholar 

  104. 104.

    Pelizzo, G. in Neonatal Pain (eds Buonocore, G. & Bellieni, C. V.) 65–73 (Springer, 2017).

  105. 105.

    Houck, C. S. & Vinson, A. E. Anaesthetic considerations for surgery in newborns. Arch. Dis. Child Fetal Neonatal Ed. 102, F359–F363 (2017).

    PubMed  Google Scholar 

  106. 106.

    Shiono, P. H. & Mills, J. L. Oral clefts and diazepam use during pregnancy. N. Engl. J. Med. 311, 919–920 (1984).

    CAS  PubMed  Google Scholar 

  107. 107.

    Fujinaga, M. & Baden, J. M. Methionine prevents nitrous oxide-induced teratogenicity in rat embryos grown in culture. Anesthesiology 81, 184–189 (1994).

    CAS  PubMed  Google Scholar 

  108. 108.

    Xiong, M. et al. Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci. 4, 356–375 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Zheng, H. et al. Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology 118, 516–526 (2013).

    CAS  PubMed  Google Scholar 

  110. 110.

    Palanisamy, A. et al. Rats exposed to isoflurane in utero during early gestation are behaviorally abnormal as adults. Anesthesiology 114, 521–528 (2011).

    CAS  PubMed  Google Scholar 

  111. 111.

    DiMaggio, C., Sun, L. S., Ing, C. & Li, G. Pediatric anesthesia and neurodevelopmental impairments: a Bayesian meta-analysis. J. Neurosurg. Anesthesiol. 24, 376–381 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Ratnayake, G. & Patil, V. General anaesthesia during caesarean sections: implications for the mother, foetus, anaesthetist and obstetrician. Curr. Opin. Obstet. Gynecol. 31, 393–402 (2019).

    PubMed  Google Scholar 

  113. 113.

    United States Food and Drug Administration. FDA drug safety communication: FDA review results in new warnings about using general anesthetics and sedation drugs in young children and pregnant women. https://www.fda.gov/Drugs/DrugSafety/ucm532356.htm (2018).

  114. 114.

    Adzick, N. S. et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 364, 993–1004 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Belfort, M. A. et al. Feasibility and outcomes of fetoscopic tracheal occlusion for severe left diaphragmatic hernia. Obstet. Gynecol. 129, 20–29 (2017).

    PubMed  Google Scholar 

  116. 116.

    Olutoye, O. A., Baker, B. W., Belfort, M. A. & Olutoye, O. O. Food and Drug Administration warning on anesthesia and brain development: implications for obstetric and fetal surgery. Am. J. Obstet. Gynecol. 218, 98–102 (2018).

    PubMed  Google Scholar 

  117. 117.

    Sun, L. S. et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 315, 2312–2320 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Yu, W., Wu, Z. & Zhao, P. Neurotoxicity effects of anesthetic exposure on the developing brain of nonhuman primates. Med. Hypotheses https://doi.org/10.1016/j.mehy.2020.109647 (2020).

  119. 119.

    Zou, X., Patterson, T. A. & Divine, R. L. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int. J. Dev. Neurosci. 27, 727–731 (2009).

    CAS  PubMed  Google Scholar 

  120. 120.

    Brambrink, A. M., Evers, A. S. & Avidan, M. S. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116, 372–384 (2012).

    CAS  PubMed  Google Scholar 

  121. 121.

    Wang, C., Sadovova, N. & Hotchkiss, C. Blockade of N-methyl-D-aspartate receptors by ketamine produces loss of postnatal day 3 monkey frontal cortical neurons in culture. Toxicol. Sci. 91, 192–201 (2006).

    CAS  PubMed  Google Scholar 

  122. 122.

    Zhou, L. et al. Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of Cynomolgus monkeys. Sci. Rep. 5, 11145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Endesfelder, S. et al. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS ONE 12, e0171498 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Degos, V. et al. Neuroprotective effects of dexmedetomidine against glutamate agonistinduced neuronal cell death are related to increased astrocyte brain-derived neurotrophic factor expression. Anesthesiology 118, 1123–1132 (2013).

    CAS  PubMed  Google Scholar 

  125. 125.

    Baumgarten, H. D. & Flake, A. W. Fetal surgery. Pediatr. Clin. N. Am. 66, 295–308 (2019).

    Google Scholar 

  126. 126.

    Bellieni, C. V. Pain assessment in human fetus and infants. AAPS J. 14, 456–461 (2012).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Nicolas, C. T. et al. Fetoscopy-assisted percutaneous decompression of the distal trachea and lungs reverses hydrops fetalis and fetal distress in a fetus with laryngeal atresia. Fetal Diagn. Ther. 46, 75–80 (2019).

    PubMed  Google Scholar 

  128. 128.

    Lapa, D. A. Endoscopic fetal surgery for neural tube defects. Best Pract. Res. Clin. Obstet. Gynaecol. 58, 133–141 (2019).

    PubMed  Google Scholar 

  129. 129.

    Jiang, S. et al. Ex utero intrapartum treatment (EXIT) for fetal neck masses: a tertiary center experience and literature review. Int. J. Pediatr. Otorhinolaryngol. 127, 109642 (2019).

    PubMed  Google Scholar 

  130. 130.

    Dębska, M. et al. Balloon catheterization in fetal lower urinary tract obstruction: an observational study of 10 fetuses. Ultrasound Obstet. Gynecol. https://doi.org/10.1002/uog.21932 (2019).

    Article  Google Scholar 

  131. 131.

    Carrabba, G. et al. Minimally invasive fetal surgery for myelomeningocele: preliminary report from a single center. Neurosurg. Focus 47, E12 (2019).

    PubMed  Google Scholar 

  132. 132.

    Noguchi, S., Tanaka, M. & Terui, K. The first national survey of anesthesia techniques for fetal therapies in Japan. J. Anesth. 33, 665–669 (2019).

    PubMed  Google Scholar 

  133. 133.

    Lowery, C. L. et al. Neurodevelopmental changes of fetal pain. Semin. Perinatol. 31, 275–282 (2007).

    PubMed  Google Scholar 

  134. 134.

    Orser, B. A., Suresh, S. & Evers, A. S. SmartTots update regarding anesthetic neurotoxicity in the developing brain. Anesth. Analg. 126, 1393–1396 (2018).

    PubMed  Google Scholar 

  135. 135.

    Grunau, R. E., Oberlander, T., Holsti, L. & Whitfield, M. F. Bedside application of the Neonatal Facial Coding System in pain assessment of premature neonates. Pain 76, 277–286 (1998).

    PubMed  Google Scholar 

  136. 136.

    Bernardes, L. S., Ottolia, J. F. & Cecchini, M. On the feasibility of accessing acute pain-related facial expressions in the human fetus and its potential implications: a case report. Pain Rep. 3, e673 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Mayorga-Buiza, M. J., Marquez-Rivas, J. & Gomez-Gonzalez, E. Can fetus feel pain in the second trimester? Lessons learned from a sentinel event. Childs Nerv. Syst. 34, 195–196 (2018).

    PubMed  Google Scholar 

  138. 138.

    De Lima, J., Lloyd-Thomas, A. R., Howard, R. F., Sumner, E. & Quinn, T. M. Infant and neonatal pain: anaesthetists’ perceptions and prescribing patterns. BMJ 313, 787 (1996).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Anand, K. J. & Hickey, P. R. Pain and its effects in the human neonate and fetus. N. Engl. J. Med. 317, 1321–1329 (1987).

    CAS  PubMed  Google Scholar 

  140. 140.

    Gonçalves, N., Rebelo, S. & Tavares, I. Fetal pain—neurobiological causes and consequences. Acta Med. Port. 23, 419–426 (2010).

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlo V. Bellieni.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellieni, C.V. Analgesia for fetal pain during prenatal surgery: 10 years of progress. Pediatr Res 89, 1612–1618 (2021). https://doi.org/10.1038/s41390-020-01170-2

Download citation

Further reading

Search

Quick links