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Gestational age-dependent development of the neonatal
metabolome
Madeleine Ernst1,2, Simon Rogers3, Ulrik Lausten-Thomsen4, Anders Björkbom1,2, Susan Svane Laursen1,2, Julie Courraud1,2,
Anders Børglum2,5,6,7, Merete Nordentoft2,8,9, Thomas Werge2,9,10,11, Preben Bo Mortensen2,12,13, David M. Hougaard1,2 and
Arieh S. Cohen1,2

BACKGROUND: Prematurity is a severe pathophysiological condition, however, little is known about the gestational age-
dependent development of the neonatal metabolome.
METHODS: Using an untargeted liquid chromatography-tandem mass spectrometry metabolomics protocol, we measured over
9000 metabolites in 298 neonatal residual heel prick dried blood spots retrieved from the Danish Neonatal Screening Biobank. By
combining multiple state-of-the-art metabolome mining tools, we retrieved chemical structural information at a broad level for over
5000 (60%) metabolites and assessed their relation to gestational age.
RESULTS: A total of 1459 (~16%) metabolites were significantly correlated with gestational age (false discovery rate-adjusted P <
0.05), whereas 83 metabolites explained on average 48% of the variance in gestational age. Using a custom algorithm based on
hypergeometric testing, we identified compound classes (617 metabolites) overrepresented with metabolites correlating with
gestational age (P < 0.05). Metabolites significantly related to gestational age included bile acids, carnitines, polyamines, amino
acid-derived compounds, nucleotides, phosphatidylcholines and dipeptides, as well as treatment-related metabolites, such as
antibiotics and caffeine.
CONCLUSIONS: Our findings elucidate the gestational age-dependent development of the neonatal blood metabolome and
suggest that the application of metabolomics tools has great potential to reveal novel biochemical underpinnings of disease and
improve our understanding of complex pathophysiological mechanisms underlying prematurity-associated disorders.
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IMPACT:

● A large variation in the neonatal dried blood spot metabolome from residual heel pricks stored at the Danish Neonatal
Screening Biobank can be explained by gestational age.

● While previous studies have assessed the relation of selected metabolic markers to gestational age, this study assesses
metabolome-wide changes related to prematurity. Using a combination of recently developed metabolome mining tools, we
assess the relation of over 9000 metabolic features to gestational age.

● The ability to assess metabolome-wide changes related to prematurity in neonates could pave the way to finding novel
biochemical underpinnings of health complications related to preterm birth.

INTRODUCTION
Prematurity is a complex and challenging pathophysiological
condition associated with increased morbidity and mortality.1,2

Numerous early- and late-onset disorders are associated with
preterm birth, including psychiatric disorders.3 The risk of
complications is inversely correlated to the gestational age at
birth but with large variations within age groups. It is likely

that the individual degree of metabolic prematurity more
accurately represents the complication risk. Metabolomic
analyses could allow for an individual assessment of multiorgan
function and maturity, and may thus contribute to improved
understanding of pathophysiological mechanisms behind the
development of prematurity-associated disorders. However,
currently, there is limited knowledge on the metabolomic
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profile of preterm neonates4–6 and on how to assess metabolic
maturity.
Growing evidence suggests a strong link between early-life

microbiota and disease,7 as well as short- and as long-term
complications associated with preterm birth, such as necrotizing
enterocolitis, diabetes, cardiovascular disease, neurodevelopmen-
tal disorders and neuropsychiatric disorders have been related to
the underdevelopment of the gut microbiota, gastrointestinal
tract and immune system.3,8–13 Although the exact timing of the
establishment of the intestinal microbiome in human life remains
unknown,14 it is generally agreed upon that the gut microbial
colonization starts at birth at the latest and undergoes shifts in
composition and structure as the host matures over time.15–19

Recent studies have shown that marker metabolites of
microbial metabolism are readily detectable in human blood
and that the human blood metabolome may predict gut bacterial
α-diversity.20 However, gut microbiome-derived metabolites that
become available to the preterm infant and may impact gut

maturation and overall host metabolism and health remain
unknown.
Monitoring gut microbial health and the metabolic degree of

prematurity during newborn screening could offer a powerful tool
for the early detection and possible early intervention in
prematurity-associated disease progression through probiotics,
diet or microbial transplants. Dried blood spots (DBS) routinely
collected for newborn screening are minimally invasive and
metabolomics approaches enable the simultaneous measurement
of thousands of metabolites, thus offering unique insights into
metabolic underpinnings of complex pathophysiological
conditions.21,22

Here, we hypothesize that metabolic gestational age-
dependent degree of prematurity, which impacts overall host
metabolism and health, may be monitored during newborn
screening. Using DBS retrieved from the Danish Neonatal Screen-
ing Biobank in combination with recently developed computa-
tional metabolomics tools, including mass spectral molecular
networking, unsupervised substructure discovery and in silico
structure annotation,23–26 we assess the gestational age-
dependent development of the blood metabolome of very
preterm to term neonates.

METHODS
Study cohort
Residual extracts from the Danish Newborn Screening programme
comprising all preterm (28–36 weeks) and randomly selected term
to late-term births (37–42 weeks) were collected during the period
from March to June 2016 and stored at −20 °C until analysis. All
original DBS samples were collected 48–72 h after birth. Repeat
analyses (i.e., DBS collected after 72 h after birth) were not
included. The samples were grouped per gestational age in weeks
at birth, resulting in a cohort of a total of 298 newborns (133 girls)
with gestational ages from 28 to 42 weeks (n= 8–68 each)
(Table 1). The study was conducted in accordance with the
Declaration of Helsinki and the protocol complies with the Danish
Ethical Committee law by not being a health research project
(Section 2,1), but a method development study not requiring an
ethical approval.27

Metabolomic profiling
All samples (including blank and pooled quality control samples)
were submitted to untargeted metabolomic profiling using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) at Sta-
tens Serum Institut, Copenhagen, Denmark between July 6, 2016
and July 14, 2016. Raw data files were preprocessed using MZmine
(version 2.40.1).28 A detailed description of LC-MS/MS as well as
preprocessing parameters can be found in the Supplementary
Methods.

Statistical analyses
Overall variation in the metabolome related to gestational age
was assessed using a principal coordinates analysis (PCoA) plot
with the Bray–Curtis dissimilarity. A permutational multivariate
analysis of variance (PERMANOVA)29 model was fitted to the
Bray–Curtis distance matrix to assess the variation in the
metabolome explained by gestational age. To estimate gestational
age from the neonatal metabolome, we used a tenfold cross-
validation (CV) implementation of the least absolute shrinkage
and selection operator (LASSO) method, including comparing its
performance to a Ridge regression, such as that described in
Wilmanski et al.20 Metabolite richness and α-diversity was
assessed using the mean number of metabolites and Shannon
index, respectively, measured per sample and stratified by
categories of prematurity and gestational age. Subsequently, a
Kruskal–Wallis test was used to compare mean metabolite
richness and α-diversity per prematurity category, whereas

Table 1. Distribution of study cohort by sex, gestational age, age at
sampling, multiplicity and mother’s age.

N (%)

Sex

Male 165 (55.4)

Female 133 (44.6)

Age at sampling

2 days 147 (49.3)

3 days 151 (50.7)

Multiple births

No 284 (95.3)

Yes 14 (4.7)

Age of mothers

<20 years 0

20–24 years 32 (10.7)

25–29 years 93 (31.2)

30–34 years 110 (36.9)

35–39 years 52 (17.4)

≥40 years 11 (3.7)

N (%) [mean birth weight; birth
weight range in g]

Gestational age (prematurity
category)

28 weeks (very preterm) 10 (3.3) [1200; 850–1995]

29 weeks (very preterm) 10 (3.3) [2038; 840–3916]

30 weeks (very preterm) 8 (2.7) [1725; 1020–3220]

31 weeks (very preterm) 14 (4.7) [1634; 920–1961]

32 weeks (very preterm) 19 (6.4) [1856; 1275–3196]

33 weeks (near term) 17 (5.7) [1952; 1109–2592]

34 weeks (near term) 19 (6.4) [2328; 1440–3685]

35 weeks (near term) 19 (6.4) [2573; 1580–3352]

36 weeks (near term) 18 (6.0) [2858; 2130–3490]

37 weeks (term) 20 (6.7) [3019; 1940–4000]

38 weeks (term) 20 (6.7) [3401; 2990–4345]

39 weeks (term) 19 (6.4) [3397; 2730–4260]

40 weeks (term) 68 (22.8) [3689; 2225–5650]

41 weeks (late term) 19 (6.4) [3720; 2940–4360]

42 weeks (late term) 18 (6.0) [3716; 2986–4760]

Prematurity categories were adapted from ref. 47
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correlation between metabolite richness and gestational age was
evaluated using Kendall’s τ.30

Univariate correlation at the individual metabolite level was
assessed using Kendall’s τ and P values were adjusted for
multiple hypothesis testing using the false discovery rate (FDR)
method.31 To equalize the statistical power for the univariate
correlation analysis, we randomly subsampled 10 individuals per
week of gestational age, with exception of week 30, for which
we only had eight samples available. Within this subsample,
mass spectral features for which FDR-adjusted P < 0.05 were
found. A molecular network was created, and molecular families
enriched for significant features were detected (hypergeometric
test, see Supplementary Methods). To demonstrate that our
conclusions are not sensitive to the particular subsample,
we repeated the univariate analysis across 1000 subsamples
and explored the spectral relationships across the entire sample
set. Specifically, for each feature we assessed whether it
appeared more often than would be expected, considering
a feature significant if its frequency of appearance had a
probability below 5% of occurring by chance (≥130 times based
upon 11% features being chosen, on average, from each
subsample, for more details, see Supplementary Methods). To
check whether the same relationships between correlation and
spectral similarity are recovered when considering all 1000 sub-
samples, we identified features whose spectral neighbourhood
(cosine similarity ≥ 0.7) was enriched for features identified as

significant across the subsamples as described above (hyper-
geometric test, for more details, see Supplementary Methods).
Additional information is provided in the Supplementary
Methods. All statistical analyses were performed in R 3.6.132 or
Python 3.7.33 All Jupyter notebooks used for statistical analysis
are publicly available at: https://github.com/madeleineernst/
Prematurity_SupplementaryMaterial.

Metabolite identification
Aggregated MZmine preprocessed MS/MS fragmentation spectra
were submitted to feature-based mass spectral molecular network-
ing through the Global Natural Products Social Molecular Network-
ing Platform (GNPS)24,34,35 and searched against all GNPS spectral
libraries. To further enhance chemical structural information
within the network, substructure information was incorporated
using the GNPS MS2LDA workflow (https://ccms-ucsd.github.
io/GNPSDocumentation/ms2lda/).23 Information from in silico
structure annotations from Network Annotation Propagation25

and Dereplicator36 were incorporated using the GNPS MolNetEn-
hancer workflow (https://ccms-ucsd.github.io/GNPSDocumentation/
molnetenhancer/)26 with chemical class annotations retrieved from
the ClassyFire chemical ontology.37 A detailed description of all
workflow parameters can be found in the Supplementary Methods.
Mass spectral molecular network data, data from MS2LDA unsu-
pervised substructure discovery, and in silico structure annotation
are available upon request.
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Fig. 1 Gestational-age dependent variation of the neonatal dried blood spot metabolome. a Principal coordinates analysis using the
Bray–Curtis distance metric. Variation of 2.6% in the data is explained by gestational age (PERMANOVA, P < 0.05, Adonis R2= 0.026).
b Metabolome-estimated gestational age versus observed, ultrasound-guided gestational age. Mean R2 across ten cross-validations, Pearson’s
correlation coefficient and P value are shown. c Box plots for the number of mass spectral features stratified across different prematurity
categories. Significant differences were found across mean number of mass spectral features per prematurity category (very preterm:
28–32 weeks; near term: 33–36 weeks; term: 37–40 weeks; late term: 41–42 weeks) (Kruskal–Wallis, P < 0.05). d Venn diagram illustrating
overlapping metabolites significantly associated with gestational age by univariate correlation analysis, hypergeometric testing at the
molecular family level and LASSO regression.
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RESULTS
A total of 9010 metabolites (mass spectral features with unique
MS/MS fragmentation patterns) were measured. Using a combina-
tion of metabolome mining tools, including mass spectral
molecular networking (GNPS), unsupervised substructure discov-
ery (MS2LDA) and in silico annotation through the MolNetEnhan-
cer workflow,26 putative chemical structural information at the
chemical class level, corresponding to a level 3 metabolite
identification according to the Metabolomics Standard Initiative’s
reporting standards38 could be retrieved for over 60% (5687) of
the detected metabolites (Supplementary Fig. 1).
PCoA and permutational analysis of variance demonstrated that

2.6% of the variation in the metabolomics data could be explained
by gestational age (PERMANOVA, P < 0.05, Adonis R2= 0.026) with
strongest separation observed along PCo3 (Fig. 1a).
The LASSO model suggested that a total of 83 metabolites give

a strong estimate of gestational age, explaining an average of 48%
of the variance (mean out-of-sample R2= 0.48, Pearson’s r= 0.73,
P= 2.4 × 10−50 for metabolome-estimated gestational age versus
observed, ultrasound-guided gestational age) (Fig. 1b and
Supplementary Results). Out of these 83 metabolites, four could
be matched to GNPS library spectra with a mass spectral similarity
score (cosine score) of ≥0.9, including isoleucine–lysine, isoleucine,
ophthalmic acid and N1-acetylspermine. Six metabolites were

selected in all tenfold CV models and were the most influential in
estimating gestational age, whereas 83 metabolites were retained
by at least one model. The chemical structural information could
be retrieved for one of the six metabolites selected by all tenfold
CV models, N1-acetylspermine. No chemical structural information
could be retrieved for the remaining five metabolites selected in
all tenfold CV models. However, by comparing mass spectral
fragmentation spectra to data in the public domain,39 we found
that one of the five metabolites was previously found in human
sputum samples of patients with cystic fibrosis undergoing
antibiotic treatment, faecal samples of children and the surface
of a tomato plant. This could suggest that the unknown structure
is of (anti)microbial nature. A further unknown metabolite was
previously found in diverse human plasma, skin and faecal
samples.
Mean metabolite richness was found to vary significantly with

different categories of prematurity (Kruskal–Wallis, P < 0.05), with
higher numbers of metabolites observed for very preterm versus
term neonates (Fig. 1c). Furthermore, mean metabolite richness
was found to correlate significantly with gestational age (Kendall’s
τ=−0.12, P < 0.05) with more metabolites observed in neonates
born at 28 weeks of gestation (Supplementary Fig. 2). Within-
sample metabolite diversity (Shannon index), on the other hand,
was only found to vary marginally significantly with different

O

H2N

O

OH

NH2

O

N
H

O

NH2

O OH

Glutamine Phenylacetylglutamine

Cardiovascular
disease

N

HN

O

OH

OH

N

NH

O

N

HN

O

OH

N

HN

O

OH

NH2

Histidine Urocanate

Imidazole propionate

cis -urocanate

Glutamate

O

OHHO

O

NH2

Diabetes type II

Intestinal health
Intestinal barrier function

Anti-inflammatory

H
N

O

OH

NH2

KynurenineTryptophan

N

OH

O

OH

Kynurenic
acid 

N

OH

O

Quinaldic acid

O

O OH

NH2

Schizophrenia
Cognitive 
impairment

Anti-inflammatory
Anti-allergic

+ correlation with gestational age

Not detected

No correlation with gestational age

Mediated through gut microbes

– correlation with gestational age
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Gestational age-dependent development of the neonatal metabolome
M Ernst et al.

1399

Pediatric Research (2021) 89:1396 – 1404



categories of prematurity, with higher metabolite diversity
observed in near-term and term born children when compared
to very-preterm and late-term children (Kruskal–Wallis, P= 0.045)
(Supplementary Fig. 3). Within-sample metabolite diversity was
not found to vary significantly between preterm (<37 weeks) and
term (>37 weeks) born children (Wilcoxon’s rank-sum test, P=
0.81).
In the univariate analyses, 1459 metabolites (~16%) were found

to significantly correlate with gestational age (FDR-adjusted P <
0.05, in ≥130 subsamples). Out of these 1459 metabolites, 74
could be chemically structurally annotated through GNPS library
matching, manual or in silico annotation propagation throughout
the mass spectral molecular network, including amino acid
derivatives, carbohydrates (sugars), dipeptides, lipids (bile acids,
carnitines and phospholipid catabolites), nucleotides, polyamines
(N1-acetylspermine, spermine, spermidine and structural analo-
gues) and xenobiotics (caffeine, acetaminophen, antibiotic-
derived metabolites, including penicillamine disulfide, ampicillin
and cefuroxime, as well as compounds related to chlorhexidine, a
common disinfectant) (Supplementary Data 2). Of the 14 amino
acid derivatives significantly correlating with gestational age, eight
were found to possibly be related through the histidine,
tryptophan or phenylalanine and tyrosine metabolic path-
ways,40–43 respectively (Supplementary Data 2 and Fig. 2). Seven
amino acids or catabolites were found to correlate positively with
gestational age (cis-urocanate/urocanate, glutamine, glutamic
acid, histidine, ornithine, serine and valine), whereas seven were

found to correlate negatively with gestational age (3-ureidopro-
pionic acid, imidazole propionate, isoleucine, kynurenic acid,
methionine, phenylacetylglutamine and quinaldic acid). All pep-
tides and chlorhexidine structural analogues were found to
increase with gestational age, whereas antibiotics, caffeine, bile
acids (except for cholic and hyocholic acid), carnitines, most
nucleotide structural analogues, polyamines and sugars were
found to decrease with gestational age. Ophthalmic acid and 4-
hydroxynonenal, two potential indicators of oxidative stress,44–46

were found to increase and decrease with gestational age,
respectively.
A total of 17 molecular families comprising 230 metabolites

were found to be significantly overrepresented (P < 0.01) with
metabolites correlating with gestational age (non-FDR-adjusted P
< 0.01) by hypergeometric testing in a randomly selected subset
of 148 samples with 10 samples per gestational week selected
(except for week 30, where only eight samples were available)
(Fig. 3). Chemical structure annotation could be retrieved for six
molecular families (152 metabolites) and revealed that carnitine
families mostly correlated positively with gestational age, whereas
nucleotide, bile acid and spermine-related families correlated
negatively with gestational age (Fig. 3, Supplementary Figs. 4–8). A
family of structural analogues of penicillamine, likely a degrada-
tion product of penicillin, was found to correlate negatively with
gestational age, while structural analogues of chlorhexidine, a
common disinfectant, were found to correlate positively with
gestational age. Comparable compound classes were also
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Fig. 3 Molecular families significantly overrepresented in metabolites correlating with gestational age (P < 0.01) identified through
hypergeometric testing in a randomly selected subset of 148 samples (n= 8–10 per week of gestational age). Node colours represent
correlation with gestational age (Kendall’s τ). Metabolites for which chemical structural annotation could be retrieved are indicated with grey
shadowing. The thickness of the lines connecting the nodes represents tandem mass spectral similarity, implying high chemical structural
similarity. Nodes with bold black borders indicate GNPS spectral library hits. Carnitines, bile acids, nucleotides and spermine were previously
reported to be implicated in the maturation of the gastrointestinal tract or being affected by the gut microbiome. Penicillamine could be
reflective of antibiotics use and chlorhexidine, a common skin disinfectant reflective of different sampling strategies across term and preterm
neonates.
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retrieved when looking across all samples. A total of 617
metabolites in the mass spectral molecular network of the full
dataset (298 samples) had significantly more neighbouring
metabolites with a spectral similarity score (cosine score)
>0.7 significantly correlating with gestational age (FDR-adjusted
P < 0.05, in ≥130 subsamples) than would be expected by chance
(P < 0.05). These metabolites included amino and bile acids,
carnitines, dipeptides, nucleotides, phosphatidylcholine-derived
compounds, polyamines and xenobiotics (ampicillin, penicillamine
disulfide and chlorhexidine) (Supplementary Data 2). Six metabo-
lites (four unknown metabolites, N1-acetylspermine and a
carnitine structural analogue) were identified by all three statistical
approaches to be significantly associated with gestational age
(Fig. 1d). Figure 4 shows a summary of a total of 53 mass spectral
features significantly associated with gestational age either by
univariate correlation analysis, hypergeometric testing at the
molecular family level or LASSO regression, for which metabolite
annotations could be retrieved from GNPS with a spectral
similarity (cosine) score ≥0.9, corresponding to a level 2
metabolite identification according to the Metabolomics Standard
Initiative’s reporting standards.38

DISCUSSION
There is currently limited knowledge on the metabolomic status of
preterm neonates and a deeper understanding hereof will help
further elucidate the complex pathophysiology of prematurity.
In this methodological study, tools deployed on untargeted

metabolomics data from newborn DBS were demonstrated to
have great potential to address future research questions. While a
number of studies have assessed variation of a few selected
metabolites with gestational age (e.g. refs. 47–50) this study
assesses full metabolome-wide changes of several thousand of
metabolites related to prematurity in dried blood spots from
newborn screening.5,51

We found that the metabolome of 2–3-day-old neonates is
highly reflective of gestational age. Using statistical modelling,

univariate correlation analysis at the individual metabolite level
and hypergeometric testing at the molecular family level, we
found that 83, 1459 and 617 metabolites, respectively, were
significantly associated with gestational age.
On average only 2–5% of metabolites can be chemically

structurally annotated in untargeted LC-MS/MS-based metabolo-
mics studies.52 Using a combination of different computational
metabolomics tools, we were able to retrieve chemical structural
information at a broad level for nearly 60% of the data collected,
thus representing a major advance in biochemical interpretation.
Furthermore, evaluating changes at the level of chemically
structurally related molecular families (rather than individual
metabolites) through hypergeometric testing is a novel approach,
which allows us to understand metabolic changes of groups of
metabolites changing consistently, but modestly across samples.
This approach increases the chance for novel discoveries and a
potentially better understanding of pathobiological processes as
these metabolites would be missed in univariate approaches.
We identified amino acid-derived metabolites, dipeptides,

polyamines, nucleotides, lipids (bile acids, carnitines and
phosphatidylcholine-derived compounds), sugars and treatment-
related compounds, such as penicillamine disulfide, cefuroxime
and caffeine as significantly correlating with gestational age.
Similarly, LASSO regression identified peptides, a polyamine and
an amino acid (isoleucine) as most influential in estimating
gestational age. Hypergeometric testing at the molecular family
level additionally revealed that carnitine, bile acid, polyamine,
nucleotide, antibiotic, phosphatidylcholine-derived compounds
and chlorhexidine molecular families are most strongly associated
with gestational age.
Our findings are in agreement with previous studies reporting

significant differences across premature and term born children in
carnitine and amino acid profiles.47–50 In addition, we highlight
many other metabolite classes associated with gestational age,
which in future studies may contribute to a better biochemical
understanding of prematurity and pathophysiological mechan-
isms behind the development of prematurity-associated disorders.
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hypergeometric testing at the molecular family level or LASSO regression. For illustration, a subset of all samples is shown, with
10 subsamples per week of gestational age selected (except for week 30, n= 8). Metabolite annotations retrieved from GNPS with a cosine
score ≥0.9 are shown, corresponding to a level 2 metabolite identification according to the Metabolomics Standard Initiative’s reporting
standards.38
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Some of the metabolites highlighted in our study have, for
example, previously been reported to be implicated by the gut
microbiome (amino and bile acids, carnitines and
phosphatidylcholine-derived compounds), involved in gut matura-
tion (polyamines) or affecting gut microbial composition (anti-
biotics and diet-derived nucleotides)40–43,53–57 (Fig. 2 and
Supplementary Discussion). In very recent studies, some of these
microbiome-derived metabolites have been shown to be asso-
ciated with a diverse range of pathophysiologies related to
preterm birth (Fig. 2). There is a well-established increased risk for
early- and also late-term complications to being born prematurely,
so we can intuitively assume that risk biomarkers may be present
in early-life samples in prematurely born children. In our study, we
identified increased relative amounts of some microbial catabo-
lites in preterm children who have been linked to well-known late-
term complications of prematurity, such as phenylacetylglutamine
(associated with increased risk for cardiovascular disease40,58,59) or
imidazole propionate (associated with type 2 diabetes.42,60)
Similarly, we found that kynurenic acid, a catabolite of tryptophan
metabolism, is negatively correlated with gestational age, with
higher relative abundances observed in preterm infants. Gut
microbiota were shown to play an important role in tryptophan
metabolism41,53 and high levels of kynurenic acid in the central
nervous system have been associated with schizophrenia and
cognitive impairment.61 Corroborating with these findings, pre-
vious studies have found tryptophan and bile acid metabolic
pathways affected by gestational age in urine metabolomics
samples of children at week 4 of age.62

Similarly, ophthalmic acid and 4-hydroxynonenal may be
biomarkers of oxidative stress.44–46 Interestingly, ophthalmic acid
was here found to be positively associated with gestational age,
whereas 4-hydroxynonenal was found to be negatively associated
with gestational age with the highest relative abundance
observed in prematurely born children. Elevated levels of 4-
hydroxynonenal have been proposed to be implicated in
pathophysiological processes of a number of diseases, including
cancer, diabetes, cardiovascular, inflammatory and neurodegen-
erative complications.46

Although this was a methodological study and not designed to
establish a direct causal or pathophysiological link between a
specific marker and a later occurring complication, we may
speculate that the observed difference in the neonatal metabo-
lome may reflect an increased risk of early- or late-term
complications on an individual level.
Common clinical practice, such as antibiotics, use seems

furthermore reflected in the neonatal metabolome and signifi-
cantly related to gestational age. Antibiotic-related metabolites
(penicillamine disulfide and cefuroxime) and caffeine correlated
negatively with gestational age, which reflects that preterm
neonates are at increased risk of infection and often require
broad-spectrum antibiotics from birth onwards.8 Caffeine is the
most commonly used medication for the treatment of apnoea of
prematurity.63 Antibiotics are known to have profound effects on
gut microbial communities, and modified metabolic activity of the
antibiotic-altered gut microbiome has been shown to result in
decreased faecal levels of dipeptides and increased levels of
primary bile acids and sugar alcohols in mice.57 In agreement with
this finding, we here observed decreased blood levels of
dipeptides and increased levels of primary bile acids and sugars,
which could possibly result from an increased antibiotic use in
prematurely born children. Similarly, gestational age-dependent
differential abundance of nucleotides or phosphatidylcholine-
derived compounds among others may be reflective of differential
feeding patterns. Preterm neonates are often fed parenterally,
while term neonates are more likely to be breastfed.
Overall, we found more metabolites in preterm neonates when

compared to term neonates. Within-sample metabolite diversity,
on the other hand, was found to differ only marginally across

different categories of prematurity. Increased metabolite richness
in preterm neonates could be reflective of increased medication in
prematurely born children. Alternatively, it is known that intestinal
permeability is higher in preterm compared to term neonates.64

Increased metabolite richness could thus also be reflective of
increased intestinal permeability. The relatively constant within-
sample metabolite diversity across different categories of pre-
maturity would be in agreement with this hypothesis (more versus
more diverse metabolites).
Our data reveal that metabolomic profiling of neonatal DBS in

combination with recently developed computational metabolome
mining methods offers a powerful tool for monitoring gestational
age-dependent metabolic degree of prematurity in neonates and
may contribute to an improved biochemical understanding of
pathophysiological mechanisms behind the development of
prematurity-associated disorders. Some of the metabolites here
identified as significantly related to gestational age have
previously been described to be related to the gut microbiome
and short- as well as long-term health complications related to
preterm birth. This finding is suggestive that catabolites of
microbial metabolism are detectable in the neonatal blood as
early as 2–3 days of life, and untargeted DBS metabolomic
analyses in combination with computational tools applied here
may offer a powerful tool to decipher complex biochemical
underpinnings of prematurity-associated disorders.

Limitations
This study draws strength from being based on a cohort of
samples retrieved from the Danish National Biobank and thus
being collected prospectively as part of the National Newborn
Screening Programme. Therefore, a systematic inclusion bias is not
likely to have influenced the study. Although we detected a large
diversity of metabolites, metabolites extracted and detected in our
study are inherently reflective of metabolites targeted during
neonatal screening of inborn diseases. Furthermore, only informa-
tion provided on each newborn screening specimen, including
gender, gestational age in weeks, age at sampling, multiplicity and
mother’s age were available to us in this methodological study.
Data on other covariates, such as delivery mode, parenteral
nutrition, maternal characteristics or later development of disease,
were not available. A multi-omics approach and extensive
prospective sampling would be needed to establish a direct link
between metabolic markers and later development of
prematurity-associated disorders. Maternal disorders and maternal
medication that may pass the placenta barrier could potentially
impact the results, and comorbidities such as being born small for
gestational age may equally be a confounding factor.65,66 More
samples would allow for more statistical power, whereas an
independent test and training data set would allow for general-
ization of the findings outside this study. Lastly, all metabolite
identifications described here are putative, corresponding to a
level 2–3 identification according to the Metabolomics Standard
Initiative’s reporting standards. Further studies would be needed
for unambiguous chemical structural identification. Although
putative chemical structural information could be retrieved from
a significant amount of metabolic features in this study, chemical
structural information of many features related to gestational age
remains unknown. Further development in the field of computa-
tional metabolomics, and increasing contributions to community-
based metabolomics platforms such as GNPS will play a key role in
improving our understanding of biochemical underpinnings of
diverse pathophysiologies in the coming years.

CONCLUSIONS
Our data demonstrate that the neonatal metabolome is strongly
reflective of gestational age. Some of the metabolites here found
to be significantly associated with gestational age have previously
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been related to the gut microbiome or maturation and short- as
well as long-term complications of preterm birth. This finding
suggests that catabolites of microbial metabolism are detectable
in the neonatal blood as early as 2–3 days of life, and neonatal
dried blood metabolomics may offer a powerful tool to decipher
complex biochemical underpinnings of prematurity-associated
disorders. We show that metabolomic profiling of neonatal DBS in
combination with recently developed computational metabolome
mining methods offers a powerful tool for monitoring metabolic
maturation in preterm neonates. Further studies will be needed to
establish direct causal or pathophysiological links between marker
metabolites and later occurring disorders related to preterm birth.
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