Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Newborn metabolic vulnerability profile identifies preterm infants at risk for mortality and morbidity

Abstract

Background

Identifying preterm infants at risk for mortality or major morbidity traditionally relies on gestational age, birth weight, and other clinical characteristics that offer underwhelming utility. We sought to determine whether a newborn metabolic vulnerability profile at birth can be used to evaluate risk for neonatal mortality and major morbidity in preterm infants.

Methods

This was a population-based retrospective cohort study of preterm infants born between 2005 and 2011 in California. We created a newborn metabolic vulnerability profile wherein maternal/infant characteristics along with routine newborn screening metabolites were evaluated for their association with neonatal mortality or major morbidity.

Results

Nine thousand six hundred and thirty-nine (9.2%) preterm infants experienced mortality or at least one complication. Six characteristics and 19 metabolites were included in the final metabolic vulnerability model. The model demonstrated exceptional performance for the composite outcome of mortality or any major morbidity (AUC 0.923 (95% CI: 0.917–0.929). Performance was maintained across mortality and morbidity subgroups (AUCs 0.893–0.979).

Conclusions

Metabolites measured as part of routine newborn screening can be used to create a metabolic vulnerability profile. These findings lay the foundation for targeted clinical monitoring and further investigation of biological pathways that may increase the risk of neonatal death or major complications in infants born preterm.

Impact

  • We built a newborn metabolic vulnerability profile that could identify preterm infants at risk for major morbidity and mortality.

  • Identifying high-risk infants by this method is novel to the field and outperforms models currently in use that rely primarily on infant characteristics.

  • Utilizing the newborn metabolic vulnerability profile for precision clinical monitoring and targeted investigation of etiologic pathways could lead to reductions in the incidence and severity of major morbidities associated with preterm birth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Reference for race/ethnicity is white and the reference for education is >12 years.

References

  1. 1.

    Martin, J. A., Hamilton, B. E., Osterman, M. J. K., Driscoll, A. K. & Drake, P. Births: final data for 2016. Natl Vital Stat. Rep. 67, 1–55 (2018).

    PubMed  Google Scholar 

  2. 2.

    Chawanpaiboon, S. et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health 7, e37–e46 (2018).

  3. 3.

    Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. Lancet 388, 3027–3035 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Liu, L. et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385, 430–440 (2015).

    PubMed  Google Scholar 

  5. 5.

    UN Inter-Agency Group. Levels & Trends in Child Mortality: Report 2017 (UN Inter-Agency Group for Child Mortality Estimation, New York, 2017).

  6. 6.

    Benitz, W. E. & Committee on Fetus and Newborn. Patent ductus arteriosus in preterm infants. Pediatrics 137, e20153730 (2016).

  7. 7.

    Platt, M. J. Outcomes in preterm infants. Public Health 128, 399–403 (2014).

    CAS  PubMed  Google Scholar 

  8. 8.

    Huang, J. et al. Association between perinatal hypoxic-ischemia and periventricular leukomalacia in preterm infants: a systematic review and meta-analysis. PLoS ONE 12, e0184993 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wang, L. W., Lin, Y. C., Wang, S. T. & Huang, C. C. Identifying risk factors shared by bronchopulmonary dysplasia, severe retinopathy, and cystic periventricular leukomalacia in very preterm infants for targeted intervention. Neonatology 114, 17–24 (2018).

  10. 10.

    Saigal, S. & Doyle, L. W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261–269 (2008).

    PubMed  Google Scholar 

  11. 11.

    Mwaniki, M. K., Atieno, M., Lawn, J. E. & Newton, C. R. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet 379, 445–452 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Purisch, S. E. & Gyamfi-Bannerman, C. Epidemiology of preterm birth. Semin. Perinatol. 41, 387–391 (2017).

    PubMed  Google Scholar 

  13. 13.

    Ancel, P. Y. et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. 169, 230–238 (2015).

    PubMed  Google Scholar 

  14. 14.

    Anderson, J. G. et al. Survival and major morbidity of extremely preterm infants: a population-based study. Pediatrics 138, e20154434 (2016).

  15. 15.

    Hintz, S. R. et al. Changes in mortality and morbidities among infants born at less than 25 weeks during the post-surfactant era. Arch. Dis. Child. Fetal Neonatal Ed. 90, F128–F133 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kyser, K. L., Morriss, F. H. Jr., Bell, E. F., Klein, J. M. & Dagle, J. M. Improving survival of extremely preterm infants born between 22 and 25 weeks of gestation. Obstet. Gynecol. 119, 795–800 (2012).

    PubMed  Google Scholar 

  17. 17.

    Rysavy, M. A. et al. Between-hospital variation in treatment and outcomes in extremely preterm infants. N. Engl. J. Med. 372, 1801–1811 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Younge, N. et al. Survival and neurodevelopmental outcomes among periviable infants. N. Engl. J. Med. 376, 617–628 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tyson, J. E. et al. Intensive care for extreme prematurity-moving beyond gestational age. N. Engl. J. Med. 358, 1672–1681 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lawn, J. E. et al. Every newborn: progress, priorities, and potential beyond survival. Lancet 384, 189–205 (2014).

    PubMed  Google Scholar 

  21. 21.

    Bennett, M. J. Newborn screening for metabolic diseases: saving children’s lives and improving outcomes. Clin. Biochem. 47, 693–694 (2014).

    PubMed  Google Scholar 

  22. 22.

    Ryckman, K. K. et al. Association of amino acids with common complications of prematurity. Pediatr. Res. 73, 700–705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Fell, D. B. et al. Using newborn screening analytes to identify cases of neonatal sepsis. Sci. Rep. 7, 18020 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    McCarthy, M. E. et al. Newborn metabolic profile associated with hyperbilirubinemia with and without kernicterus. Clin. Transl. Sci. 12, 28–38 (2018).

  25. 25.

    Oltman, S. P. et al. Initial metabolic profiles are associated with 7-day survival among infants born at 22-25 weeks of gestation. J. Pediatr. 198, 194.e3–200.e3 (2018).

    Google Scholar 

  26. 26.

    Steurer, M. A. et al. Altered metabolites in newborns with persistent pulmonary hypertension. Pediatr. Res. 84, 272–278 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sylvester, K. G. et al. Acylcarnitine profiles reflect metabolic vulnerability for necrotizing enterocolitis in newborns born premature. J. Pediatr. 181, 80.e1–85.e1 (2016).

  28. 28.

    Feuchtbaum, L., Carter, J., Dowray, S., Currier, R. J. & Lorey, F. Birth prevalence of disorders detectable through newborn screening by race/ethnicity. Genet. Med. 14, 937–945 (2012).

    PubMed  Google Scholar 

  29. 29.

    Jelliffe-Pawlowski, L. L., Norton, M. E., Baer, R. J., Santos, N. & Rutherford, G. W. Gestational dating by metabolic profile at birth: a California cohort study. Am. J. Obstet. Gynecol. 214, 511.e511–511.e513 (2016).

    Google Scholar 

  30. 30.

    Talge, N. M., Mudd, L. M., Sikorskii, A. & Basso, O. United States birth weight reference corrected for implausible gestational age estimates. Pediatrics 133, 844–853 (2014).

    PubMed  Google Scholar 

  31. 31.

    Kotelchuck, M. The Adequacy of Prenatal Care Utilization Index: its US distribution and association with low birthweight. Am. J. Public Health 84, 1486–1489 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kotelchuck, M. An evaluation of the Kessner Adequacy of Prenatal Care Index and a proposed Adequacy of Prenatal Care Utilization Index. Am. J. Public Health 84, 1414–1420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lin, H. J. et al. Extremely high phenylalanine levels in a newborn on parenteral nutrition: phenylketonuria in the neonatal intensive care unit. J. Perinatol. 31, 507–510 (2011).

    CAS  PubMed  Google Scholar 

  34. 34.

    Morris, M. et al. Reduction in newborn screening metabolic false-positive results following a new collection protocol. Genet. Med. 16, 477–483 (2014).

    PubMed  Google Scholar 

  35. 35.

    Ryckman, K. K., Berberich, S. L., Shchelochkov, O. A., Cook, D. E. & Murray, J. C. Clinical and environmental influences on metabolic biomarkers collected for newborn screening. Clin. Biochem. 46, 133–138 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Natarajan, G. & Shankaran, S. Short- and long-term outcomes of moderate and late preterm infants. Am. J. Perinatol. 33, 305–317 (2016).

    PubMed  Google Scholar 

  37. 37.

    Patel, R. M. Short- and long-term outcomes for extremely preterm infants. Am. J. Perinatol. 33, 318–328 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Baer, R. J. et al. Population-based risks of mortality and preterm morbidity by gestational age and birth weight. J. Perinatol. 36, 1008–1013 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Horbar, J. D. et al. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics 129, 1019–1026 (2012).

    PubMed  Google Scholar 

  40. 40.

    Donovan, B. M. et al. Association of newborn screening metabolites with risk of wheezing in childhood. Pediatr. Res. 84, 619–624 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Costeloe, K. L. et al. Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 345, e7976 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Jelliffe-Pawlowski, L. L., Norton, M. E., Baer, R. J., Santos, N. & Rutherford, G. W. Gestational dating by metabolic profile at birth: a California cohort study. Am. J. Obstet. Gynecol. 214, 511.e1–511.e13 (2015).

  43. 43.

    Ryckman, K. K., Berberich, S. L. & Dagle, J. M. Predicting gestational age using neonatal metabolic markers. Am. J. Obstet. Gynecol. 214, 515.e1–515.e13 (2016).

    CAS  Google Scholar 

  44. 44.

    Wilson, K. et al. Accurate prediction of gestational age using newborn screening analyte data. Am. J. Obstet. Gynecol. 214, 513.e1–513.e9 (2016).

    Google Scholar 

  45. 45.

    Atzori, L. et al. 1H NMR-based metabolomic analysis of urine from preterm and term neonates. Front. Biosci. (Elite Ed.) 3, 1005–1012 (2011).

    Google Scholar 

  46. 46.

    Wilson, K. et al. Metabolomics of prematurity: analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age. Pediatr. Res. 75, 367–373 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Clark, R. H., Kelleher, A. S., Chace, D. H. & Spitzer, A. R. Gestational age and age at sampling influence metabolic profiles in premature infants. Pediatrics 134, e37–e46 (2014).

    PubMed  Google Scholar 

  48. 48.

    Ryckman, K. K., Spracklen, C. N., Dagle, J. M. & Murray, J. C. Maternal factors and complications of preterm birth associated with neonatal thyroid stimulating hormone. J. Pediatr. Endocrinol. Metab. 27, 929–938 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kantor, M. J., Leef, K. H., Bartoshesky, L., Getchell, J. & Paul, D. A. Admission thyroid evaluation in very-low-birth-weight infants: association with death and severe intraventricular hemorrhage. Thyroid 13, 965–969 (2003).

    PubMed  Google Scholar 

  50. 50.

    Redding, R. A. & Pereira, C. Thyroid function in respiratory distress syndrome (RDS) of the newborn. Pediatrics 54, 423–428 (1974).

    CAS  PubMed  Google Scholar 

  51. 51.

    Hitchcock, K. R. Lung development and the pulmonary surfactant system: hormonal ifluences. Anat. Rec. 198, 13–34 (1980).

    CAS  PubMed  Google Scholar 

  52. 52.

    Cuestas, R. A., Lindall, A. & Engel, R. R. Low thyroid hormones and respiratory-distress syndrome of the newborn. Studies on cord blood. N. Engl. J. Med. 295, 297–302 (1976).

    CAS  PubMed  Google Scholar 

  53. 53.

    Panicker, V. Genetics of thyroid function and disease. Clin. Biochem. Rev. 32, 165–175 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Simpson, J. et al. Serum thyroid hormones in preterm infants and relationships to indices of severity of intercurrent illness. J. Clin. Endocrinol. Metab. 90, 1271–1279 (2005).

    CAS  PubMed  Google Scholar 

  55. 55.

    Thony, B., Auerbach, G. & Blau, N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347(Pt 1), 1–16 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ploder, M. et al. Serum phenylalanine in patients post trauma and with sepsis correlate to neopterin concentrations. Amino Acids 35, 303–307 (2008).

    CAS  PubMed  Google Scholar 

  57. 57.

    Gitto, E., Pellegrino, S., D’Arrigo, S., Barberi, I. & Reiter, R. J. Oxidative stress in resuscitation and in ventilation of newborns. Eur. Respir. J. 34, 1461–1469 (2009).

    CAS  PubMed  Google Scholar 

  58. 58.

    Tataranno, M. L., Perrone, S. & Buonocore, G. Plasma biomarkers of oxidative stress in neonatal brain injury. Clin. Perinatol. 42, 529–539 (2015).

    PubMed  Google Scholar 

  59. 59.

    Vento, M. et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124, e439–e449 (2009).

    PubMed  Google Scholar 

  60. 60.

    Becker, R. M. et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 137, 785–793 (2000).

    CAS  PubMed  Google Scholar 

  61. 61.

    Pearson, D. L. et al. Neonatal pulmonary hypertension-urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001).

    CAS  PubMed  Google Scholar 

  62. 62.

    Celik, I. H., Demirel, G., Canpolat, F. E. & Dilmen, U. Reduced plasma citrulline levels in low birth weight infants with necrotizing enterocolitis. J. Clin. Lab. Anal. 27, 328–332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hediger, N., Landolt, M. A., Diez-Fernandez, C., Huemer, M. & Haberle, J. The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders. J. Inherit. Metab. Dis. 41, 689–698 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Ruder, J., Legacy, J., Russo, G. & Davis, R. Neonatal citrullinemia: novel, reversible neuroimaging findings correlated with ammonia level changes. Pediatr. Neurol. 51, 553–556 (2014).

    PubMed  Google Scholar 

  65. 65.

    Longo, N., Frigeni, M. & Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 1863, 2422–2435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Sauer, S. W., Okun, J. G., Hoffmann, G. F., Koelker, S. & Morath, M. A. Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim. Biophys. Acta 1777, 1276–1282 (2008).

    CAS  PubMed  Google Scholar 

  67. 67.

    Deshmukh, M. & Patole, S. Antenatal corticosteroids for neonates born before 25 weeks-a systematic review and meta-analysis. PLoS ONE 12, e0176090 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Travers, C. P. et al. Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: prospective cohort study. BMJ 356, j1039 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Travers, C. P. et al. Mortality and pulmonary outcomes of extremely preterm infants exposed to antenatal corticosteroids. Am. J. Obstet. Gynecol. 218, 130.e1–130.e13 (2018).

    Google Scholar 

Download references

Acknowledgements

Data from the California Prenatal and Newborn Screening Programs were obtained through the California Biobank Program (Screening Information System request no. 476). Data were obtained with an agreement that the California Department of Public Health is not responsible for the results or conclusions drawn by the authors of this publication. This work was supported by the California Preterm Birth Initiative within the University of California, San Francisco (UCSF).

Author information

Affiliations

Authors

Contributions

S.P.O., E.E.R., R.J.B., K.K.R., and L.L.J.-P. contributed to the conception and design, acquisition of data, or analysis and interpretation of data. All authors contributed to drafting the manuscript or revising it critically for important intellectual content All authors also gave final approval of the version to be published.

Corresponding author

Correspondence to Scott P. Oltman.

Ethics declarations

Competing interests

No authors have any financial ties to products in the study or potential/perceived conflicts of interest.

Consent statement

The State of California granted a waiver of consent for this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oltman, S.P., Rogers, E.E., Baer, R.J. et al. Newborn metabolic vulnerability profile identifies preterm infants at risk for mortality and morbidity. Pediatr Res 89, 1405–1413 (2021). https://doi.org/10.1038/s41390-020-01148-0

Download citation

Search

Quick links