This is an unedited manuscript that has been accepted for publication. Nature Research are providing this early version of the manuscript as a service to our authors and readers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

Early development of the skin microbiome: therapeutic opportunities



As human skin hosts a diverse microbiota in health and disease, there is an emerging consensus that dysregulated interactions between host and microbiome may contribute to chronic inflammatory disease of the skin. Neonatal skin is a unique habitat, structurally similar to the adult but with a different profile of metabolic substrates, environmental stressors, and immune activity. The surface is colonized within moments of birth with a bias toward maternal strains. Initial colonists are outcompeted as environmental exposures increase and host skin matures. Nonetheless, early life microbial acquisitions may have long-lasting effects on health through modulation of host immunity and competitive interactions between bacteria. Microbial ecology and its influence on health have been of interest to dermatologists for >50 years, and an explosion of recent interest in the microbiome has prompted ongoing investigations of several microbial therapeutics for dermatological disease. In this review, we consider how recent insight into the host and microbial factors driving development of the skin microbiome in early life offers new opportunities for therapeutic intervention.


  • Advancement in understanding molecular mechanisms of bacterial competition opens new avenues of investigation into dermatological disease.

  • Primary development of the skin microbiome is determined by immunological features of the cutaneous habitat.

  • Understanding coordinated microbial and immunological development in the pediatric patient requires a multidisciplinary synthesis of primary literature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Goodman, A. L. & Gordon, J. I. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab. 12, 111–116 (2010).

    Google Scholar 

  2. 2.

    Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).

    Google Scholar 

  3. 3.

    Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Google Scholar 

  4. 4.

    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Google Scholar 

  5. 5.

    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).

    Google Scholar 

  6. 6.

    Belkaid, Y. & Naik, S. Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol. 14, 646–653 (2013).

    Google Scholar 

  7. 7.

    Gordon, H. A. & Pesti, L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).

    Google Scholar 

  8. 8.

    Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Google Scholar 

  9. 9.

    Gallo, R. L. Human skin is the largest epithelial surface for interaction with microbes. J. Investig. Dermatol. 137, 1213–1214 (2017).

    Google Scholar 

  10. 10.

    Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. 4, 1431 (2013).

    Google Scholar 

  11. 11.

    Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).

    Google Scholar 

  12. 12.

    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

    Google Scholar 

  13. 13.

    Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Google Scholar 

  14. 14.

    Kong, H. H. & Segre, J. A. The molecular revolution in cutaneous biology: investigating the skin microbiome. J. Investig. Dermatol. 137, e119–e122 (2017).

    Google Scholar 

  15. 15.

    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Google Scholar 

  16. 16.

    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Google Scholar 

  17. 17.

    Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    Google Scholar 

  18. 18.

    Paller, A. S. et al. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143, 26–35 (2019).

    Google Scholar 

  19. 19.

    Fyhrquist, N. et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 10, 4703 (2019).

    Google Scholar 

  20. 20.

    Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).

    Google Scholar 

  21. 21.

    Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Google Scholar 

  22. 22.

    Parekh, P. J., Balart, L. A. & Johnson, D. A. The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin. Transl. Gastroenterol. 6, e91 (2015).

    Google Scholar 

  23. 23.

    Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Google Scholar 

  24. 24.

    Vogtmann, E. et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS ONE 11, e0155362 (2016).

    Google Scholar 

  25. 25.

    Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Google Scholar 

  26. 26.

    Koch, R. Ueber den augenblicklichen stand der bakteriologischen choleradiagnose. Z. Hyg. Infekt. 14, 319–338 (1893).

    Google Scholar 

  27. 27.

    Ogston, A. Report upon micro-organisms in surgical diseases. Br. Med. J. 1, 369.b2–369.b375 (1881).

    Google Scholar 

  28. 28.

    Whitfield, A., Sabouraud, R. & MacKenna, R. W. Discussion on acne and seborrhoea, their causation and treatment. Br. Med. J. 2, 286–289 (1912).

    Google Scholar 

  29. 29.

    Dr, Sabouraud et al. A discussion on the role of cocci in the pathology of the skin. Br. Med. J. 2, 794–797 (1901).

    Google Scholar 

  30. 30.

    Marples, R. R., Richardson, J. F. & Newton, F. E. Staphylococci as part of the normal flora of human skin. Soc. Appl. Bacteriol. Symp. Ser. 19, 93S–99S (1990).

    Google Scholar 

  31. 31.

    Schade, H. & Marchionini, A. Der säuremantel der haut (nach gaskettenmessungen). Klin. Wochenschr. 7, 12–14 (1928).

    Google Scholar 

  32. 32.

    Pillsbury, D. M. & Rebell, G. The bacterial flora of the skin; factors influencing the growth of resident and transient organisms. J. Investig. Dermatol. 18, 173–186 (1952).

    Google Scholar 

  33. 33.

    Marples, R. R. in Skin Bacteria and their Role in Infection (eds Maibach, H. I. & Hildick-Smith, G.) 33–41 (McGraw-Hill, New York, 1965).

  34. 34.

    Cunliffe, W. J. et al. Tetracycline and acne vulgaris: a clinical and laboratory investigation. Br. Med. J. 4, 332–335 (1973).

    Google Scholar 

  35. 35.

    Holland, K. T., Cunliffe, W. J. & Roberts, C. D. Acne vulgaris: an investigation into the number of anaerobic diphtheroids and members of the Micrococcaceae in normal and acne skin. Br. J. Dermatol. 96, 623–626 (1977).

    Google Scholar 

  36. 36.

    Puhvel, S. M. & Amirian, D. A. Bacterial flora of comedones. Br. J. Dermatol. 101, 543–548 (1979).

    Google Scholar 

  37. 37.

    Holland, K. T., Ingham, E. & Cunliffe, W. J. A review, the microbiology of acne. J. Appl. Bacteriol. 51, 195–215 (1981).

    Google Scholar 

  38. 38.

    Planet, P. J., Parker, D., Ruff, N. L. & Shinefield, H. R. Revisiting bacterial interference in the age of methicillin-resistant Staphylococcus aureus: insights into Staphylococcus aureus carriage, pathogenicity and potential control. Pediatr. Infect. Dis. J. 38, 958–966 (2019).

    Google Scholar 

  39. 39.

    Gibbons, S. M. et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl. Environ. Microbiol. 81, 765–773 (2015).

    Google Scholar 

  40. 40.

    Hogan, P. G. et al. Interplay of personal, pet, and environmental colonization in households affected by community-associated methicillin-resistant Staphylococcus aureus. J. Infect. 78, 200–207 (2019).

    Google Scholar 

  41. 41.

    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    Google Scholar 

  42. 42.

    Miller, M. et al. Staphylococcus aureus in the community: colonization versus infection. PLoS ONE 4, e6708 (2009).

    Google Scholar 

  43. 43.

    Mork, R. L. et al. Comprehensive modeling reveals proximity, seasonality, and hygiene practices as key determinants of MRSA colonization in exposed households. Pediatr. Res. 84, 668–676 (2018).

    Google Scholar 

  44. 44.

    Mork, R. L. et al. Longitudinal, strain-specific Staphylococcus aureus introduction and transmission events in households of children with community-associated meticillin-resistant S. aureus skin and soft tissue infection: a prospective cohort study. Lancet Infect. Dis. 20, 188–198 (2019).

  45. 45.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Google Scholar 

  46. 46.

    Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    Google Scholar 

  47. 47.

    Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281–1291 (2016).

    Google Scholar 

  48. 48.

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    Google Scholar 

  49. 49.

    Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).

    Google Scholar 

  50. 50.

    Perez-Muñoz, M. E., Arrieta, M.-C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    Google Scholar 

  51. 51.

    Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).

  52. 52.

    Tapiainen, T. et al. Maternal influence on the fetal microbiome in a population-based study of the first-pass meconium. Pediatr. Res. 84, 371–379 (2018).

  53. 53.

    Younge, N. et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight 4, e127806 (2019).

  54. 54.

    de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    Google Scholar 

  55. 55.

    Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).

    Google Scholar 

  56. 56.

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    Google Scholar 

  57. 57.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Google Scholar 

  58. 58.

    Olm, M. R. et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 27, 601–612 (2017).

    Google Scholar 

  59. 59.

    Sarkany, I. & Gaylarde, C. C. Skin flora of the newborn. Lancet 1, 589–590 (1967).

    Google Scholar 

  60. 60.

    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    Google Scholar 

  61. 61.

    Nishijima, K., Yoneda, M., Hirai, T., Takakuwa, K. & Enomoto, T. Biology of the vernix caseosa: a review. J. Obstet. Gynaecol. Res. 45, 2145–2149 (2019).

    Google Scholar 

  62. 62.

    Bergström, A., Byaruhanga, R. & Okong, P. The impact of newborn bathing on the prevalence of neonatal hypothermia in Uganda: a randomized, controlled trial. Acta Paediatr. 94, 1462–1467 (2005).

    Google Scholar 

  63. 63.

    Sarkany, I. & Gaylarde, C. C. Bacterial colonisation of the skin of the newborn. J. Pathol. Bacteriol. 95, 115–122 (1968).

    Google Scholar 

  64. 64.

    Medves, J. M. & O’Brien, B. Does bathing newborns remove potentially harmful pathogens from the skin? Birth 28, 161–165 (2001).

    Google Scholar 

  65. 65.

    Visscher, M. O. et al. Vernix caseosa in neonatal adaptation. J. Perinatol. 25, 440–446 (2005).

    Google Scholar 

  66. 66.

    Lund, C. Bathing and beyond: current bathing controversies for newborn infants. Adv. Neonatal Care 16(Suppl 5S), S13–S20 (2016).

    Google Scholar 

  67. 67.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Google Scholar 

  68. 68.

    Verster, A. J. et al. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22, 411.e4–419.e4 (2017).

    Google Scholar 

  69. 69.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Google Scholar 

  70. 70.

    Capone, K. A., Dowd, S. E., Stamatas, G. N. & Nikolovski, J. Diversity of the human skin microbiome early in life. J. Investig. Dermatol. 131, 2026–2032 (2011).

    Google Scholar 

  71. 71.

    Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome assembly across multiple body sites in low-birthweight infants. mBio 4, e00782–00713 (2013).

    Google Scholar 

  72. 72.

    Younge, N. E., Araújo-Pérez, F., Brandon, D. & Seed, P. C. Early-life skin microbiota in hospitalized preterm and full-term infants. Microbiome 6, 98 (2018).

    Google Scholar 

  73. 73.

    Kennedy, E. A. et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J. Allergy Clin. Immunol. 139, 166–172 (2017).

    Google Scholar 

  74. 74.

    Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems (2017).

  75. 75.

    Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).

    Google Scholar 

  76. 76.

    Zhu, T. et al. Age and mothers: potent influences of children’s skin microbiota. J. Investig. Dermatol. 139, 2497.e6–2505.e6 (2019).

    Google Scholar 

  77. 77.

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Google Scholar 

  78. 78.

    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133.e5–145.e5 (2018).

    Google Scholar 

  79. 79.

    Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146.e4–154.e4 (2018).

    Google Scholar 

  80. 80.

    Doege, K. et al. Impact of maternal supplementation with probiotics during pregnancy on atopic eczema in childhood–a meta-analysis. Br. J. Nutr. 107, 1–6 (2012).

    Google Scholar 

  81. 81.

    Shin, H. et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome 3, 59 (2015).

    Google Scholar 

  82. 82.

    Lax, S. et al. Colonization and succession of hospital-associated microbiota. Sci. Transl. Med. 9, eaah6500 (2017).

    Google Scholar 

  83. 83.

    Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).

    Google Scholar 

  84. 84.

    Evans, N. J. & Rutter, N. Development of the epidermis in the newborn. Biol. Neonate 49, 74–80 (1986).

    Google Scholar 

  85. 85.

    Oranges, T., Dini, V. & Romanelli, M. Skin physiology of the neonate and infant: clinical implications. Adv. Wound Care 4, 587–595 (2015).

    Google Scholar 

  86. 86.

    Hoeger, P. H. & Enzmann, C. C. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr. Dermatol. 19, 256–262 (2002).

    Google Scholar 

  87. 87.

    Saijo, S. & Tagami, H. Dry skin of newborn infants: functional analysis of the stratum corneum. Pediatr. Dermatol. 8, 155–159 (1991).

    Google Scholar 

  88. 88.

    Webster, G. F., Ruggieri, M. R. & McGinley, K. J. Correlation of Propionibacterium acnes populations with the presence of triglycerides on nonhuman skin. Appl. Environ. Microbiol. 41, 1269–1270 (1981).

    Google Scholar 

  89. 89.

    Agache, P., Blanc, D., Barrand, C. & Laurent, R. Sebum levels during the first year of life. Br. J. Dermatol. 103, 643–649 (1980).

    Google Scholar 

  90. 90.

    Oh, J., Conlan, S., Polley, E. C., Segre, J. A. & Kong, H. H. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 4, 77 (2012).

    Google Scholar 

  91. 91.

    Mack, M. C. et al. Development of solar UVR-related pigmentation begins as early as the first summer of life. J. Investig. Dermatol. 130, 2335–2338 (2010).

    Google Scholar 

  92. 92.

    Nosanchuk, J. D. & Casadevall, A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob. Agents Chemother. 50, 3519–3528 (2006).

    Google Scholar 

  93. 93.

    Gallo, R. L. & Nakatsuji, T. Microbial symbiosis with the innate immune defense system of the skin. J. Investig. Dermatol. 131, 1974–1980 (2011).

    Google Scholar 

  94. 94.

    Lai, Y. & Gallo, R. L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30, 131–141 (2009).

    Google Scholar 

  95. 95.

    Gläser, R. et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 6, 57–64 (2005).

    Google Scholar 

  96. 96.

    Schauber, J. et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Investig. 117, 803–811 (2007).

    Google Scholar 

  97. 97.

    Tamoutounour, S. et al. Keratinocyte-intrinsic MHCII expression controls microbiota-induced Th1 cell responses. Proc. Natl Acad. Sci. USA 116, 23643–23652 (2019).

    Google Scholar 

  98. 98.

    Thiemann, S. et al. Enhancement of IFNγ production by distinct commensals ameliorates Salmonella-induced disease. Cell Host Microbe 21, 682.e5–694.e5 (2017).

    Google Scholar 

  99. 99.

    Callewaert, C. et al. IL-4Rα blockade by dupilumab decreases Staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. J. Investig. Dermatol. 140, 191.e7–202.e7 (2020).

    Google Scholar 

  100. 100.

    Simpson, E. L. et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375, 2335–2348 (2016).

    Google Scholar 

  101. 101.

    Kobayashi, T. et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell 176, 982.e16–997.e16 (2019).

    Google Scholar 

  102. 102.

    Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Google Scholar 

  103. 103.

    Kabelitz, D. Function and specificity of human gamma/delta-positive T cells. Crit. Rev. Immunol. 11, 281–303 (1992).

    Google Scholar 

  104. 104.

    Sharp, L. L., Jameson, J. M., Cauvi, G. & Havran, W. L. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 6, 73–79 (2005).

    Google Scholar 

  105. 105.

    Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Google Scholar 

  106. 106.

    Selvanantham, T. et al. NKT cell-deficient mice harbor an altered microbiota that fuels intestinal inflammation during chemically induced colitis. J. Immunol. 197, 4464–4472 (2016).

    Google Scholar 

  107. 107.

    Doisne, J.-M. et al. Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor (gamma)t+ and respond preferentially under inflammatory conditions. J. Immunol. 183, 2142–2149 (2009).

    Google Scholar 

  108. 108.

    Ito, T. et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J. Investig. Dermatol. 128, 1196–1206 (2008).

    Google Scholar 

  109. 109.

    Gold, M. C. et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 6, 35–44 (2013).

    Google Scholar 

  110. 110.

    Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    Google Scholar 

  111. 111.

    Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

  112. 112.

    Hinks, T. S. C. et al. Activation and in vivo evolution of the mait cell transcriptome in mice and humans reveals tissue repair functionality. Cell Rep. 28, 3249.e5–3262.e5 (2019).

    Google Scholar 

  113. 113.

    Leng, T. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep. 28, 3077.e5–3091.e5 (2019).

    Google Scholar 

  114. 114.

    Cordoro, K. M. et al. Skin-infiltrating, interleukin-22-producing T cells differentiate pediatric psoriasis from adult psoriasis. J. Am. Acad. Dermatol. 77, 417–424 (2017).

    Google Scholar 

  115. 115.

    Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Google Scholar 

  116. 116.

    Scharschmidt, T. C. et al. Commensal microbes and hair follicle morphogenesis coordinately drive treg migration into neonatal skin. Cell Host Microbe 21, 467.e5–477.e5 (2017).

    Google Scholar 

  117. 117.

    Russler-Germain, E. V., Rengarajan, S. & Hsieh, C.-S. Antigen-specific regulatory T cell responses to intestinal microbiota. Mucosal Immunol. 10, 1375–1386 (2017).

    Google Scholar 

  118. 118.

    Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    Google Scholar 

  119. 119.

    Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Google Scholar 

  120. 120.

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Google Scholar 

  121. 121.

    Mehta, R. S. et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 3, 347–355 (2018).

    Google Scholar 

  122. 122.

    Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638 (2017).

    Google Scholar 

  123. 123.

    Torow, N. & Hornef, M. W. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J. Immunol. 198, 557–563 (2017).

    Google Scholar 

  124. 124.

    Florey, H. W. The use of micro-organisms for therapeutic purposes. Yale J. Biol. Med. 19, 101–117 (1946).

    Google Scholar 

  125. 125.

    Henderson, D. W. Bacterial interference. Bacteriol. Rev. 24, 167–176 (1960).

    Google Scholar 

  126. 126.

    Sprunt, K. & Redman, W. Evidence suggesting importance of role of interbacterial inhibition in maintaining balance of normal flora. Ann. Intern. Med. 68, 579–590 (1968).

    Google Scholar 

  127. 127.

    Schiotz, A. Uskadeliggorelse af infektionsbaerere ved difteri. Ugeskr. Læg. 71, 1382–1384 (1909).

    Google Scholar 

  128. 128.

    Books received. J. Am. Med. Assoc. LIV, 422–422 (1910).

  129. 129.

    Albert, H. The treatment of diphtheria carriers. J. Am. Med. Assoc. 61, 1027–1031 (1913).

    Google Scholar 

  130. 130.

    Jennings, M. A. & Sharp, A. E. Antibacterial activity of the Staphylococcus. Nature 159, 133 (1947).

    Google Scholar 

  131. 131.

    Lorenz, W. F. & Ravenel, M. P. The treatment of diphtheria-carriers by overriding with Staphylococcus aureus. J. Am. Med. Assoc. LIX, 690–693 (1912).

    Google Scholar 

  132. 132.

    Womer, W. A. Results of staphylococcus spray treatment in forty-two cases of diphtheria carriers. J. Am. Med. Assoc. 61, 2293–2294 (1913).

    Google Scholar 

  133. 133.

    Panigrahi, P. et al. Long-term colonization of a Lactobacillus plantarum synbiotic preparation in the neonatal gut. J. Pediatr. Gastroenterol. Nutr. 47, 45–53 (2008).

    Google Scholar 

  134. 134.

    Panigrahi, P. et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412 (2017).

    Google Scholar 

  135. 135.

    Myles, I. A. et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 3, e120608 (2018).

  136. 136.

    Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

  137. 137.

    Blair, J. E. & Carr, M. Staphylococci in hospital-acquired infections; types encountered in the United States. J. Am. Med. Assoc. 166, 1192–1196 (1958).

    Google Scholar 

  138. 138.

    Blair, J. E. & Carr, M. Distribution of phage groups of Staphylococcus aureus in the years 1927 through 1947. Science 132, 1247–1248 (1960).

    Google Scholar 

  139. 139.

    Rountree, P. M. & Freeman, B. M. Infections caused by a particular phage type of Staphylococcus aureus. Med. J. Aust. 42, 157–161 (1955).

    Google Scholar 

  140. 140.

    Boris, M. et al. Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. IV. The Louisiana epidemic. Am. J. Dis. Child. 105, 674–682 (1963).

    Google Scholar 

  141. 141.

    Shinefield, H. R., Ribble, J. C., Boris, M. & Eichenwald, H. F. Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. I. Preliminary observations on artificial colonzation of newborns. Am. J. Dis. Child. 105, 646–654 (1963).

    Google Scholar 

  142. 142.

    Shinefield, H. R., Sutherland, J. M., Ribble, J. C. & Eichenwald, H. F. Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. II. The Ohio epidemic. Am. J. Dis. Child. 105, 655–662 (1963).

    Google Scholar 

  143. 143.

    Shinefield, H. R., Boris, M., Ribble, J. C., Cale, E. F. & Eichenwald, H. F. Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. III. The Georgia epidemic. Am. J. Dis. Child. 105, 663–673 (1963).

    Google Scholar 

  144. 144.

    Shinefield, H. R., Ribble, J. C., Eichenwald, H. F., Boris, M. & Sutherland, J. M. Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. V. An analysis and interpretation. Am. J. Dis. Child. 105, 683–688 (1963).

    Google Scholar 

  145. 145.

    Light, I. J., Sutherland, J. M. & Schott, J. E. Control of a staphylococcal outbreak in a nursery: use of bacterial interference. JAMA 193, 699–704 (1965).

    Google Scholar 

  146. 146.

    Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    Google Scholar 

  147. 147.

    Russell, A. B. et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236 (2014).

    Google Scholar 

  148. 148.

    Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    Google Scholar 

  149. 149.

    Ross, B. D. et al. Human gut bacteria contain acquired interbacterial defence systems. Nature 575, 224–228 (2019).

    Google Scholar 

  150. 150.

    Burts, M. L., DeDent, A. C. & Missiakas, D. M. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 69, 736–746 (2008).

    Google Scholar 

  151. 151.

    Christensen, G. J. M. et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 17, 152 (2016).

    Google Scholar 

  152. 152.

    Ohr, R. J., Anderson, M., Shi, M., Schneewind, O. & Missiakas, D. EssD, a nuclease effector of the Staphylococcus aureus ESS pathway. J. Bacteriol. 199, e00528-16 (2017).

  153. 153.

    Whitney, J. C. et al. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. eLife 6, e26938 (2017).

  154. 154.

    Gillor, O., Etzion, A. & Riley, M. A. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol. 81, 591–606 (2008).

    Google Scholar 

  155. 155.

    Klaenhammer, T. R. Bacteriocins of lactic acid bacteria. Biochimie 70, 337–349 (1988).

    Google Scholar 

  156. 156.

    Nes, I. F. et al. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 113–128 (1996).

    Google Scholar 

  157. 157.

    Riley, M. A. & Wertz, J. E. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84, 357–364 (2002).

    Google Scholar 

  158. 158.

    Mota-Meira, M., LaPointe, G., Lacroix, C. & Lavoie, M. C. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob. Agents Chemother. 44, 24–29 (2000).

    Google Scholar 

  159. 159.

    Ikari, N. S., Kenton, D. M. & Young, V. M. Interaction in the germfree mouse intestine of colicinogenic and colicin-sensitive microorganisms. Proc. Soc. Exp. Biol. Med. 130, 1280–1284 (1969).

    Google Scholar 

  160. 160.

    Riley, M. A. & Gordon, D. M. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7, 129–133 (1999).

    Google Scholar 

  161. 161.

    Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    Google Scholar 

  162. 162.

    Chao, L. & Levin, B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl Acad. Sci. USA 78, 6324–6328 (1981).

    Google Scholar 

  163. 163.

    Durrett, R. & Levin, S. Allelopathy in spatially distributed populations. J. Theor. Biol. 185, 165–171 (1997).

    Google Scholar 

  164. 164.

    Noble, W. C. & Willie, J. A. Interactions between antibiotic-producing and non-producing staphylococci in skin surface and sub-surface models. Br. J. Exp. Pathol. 61, 339–343 (1980).

    Google Scholar 

  165. 165.

    O’Sullivan, J. N., Rea, M. C., O’Connor, P. M., Hill, C. & Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. 95, fiy241 (2019).

  166. 166.

    O’Neill, A. M. et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes. J. Investig. Dermatol. 140, 1619.e2–1628.e2 (2020).

  167. 167.

    Claesen, J. et al. Cutibacterium acnes antibiotic production shapes niche competition in the human skin microbiome. Preprint at (2019).

  168. 168.

    Janek, D., Zipperer, A., Kulik, A., Krismer, B. & Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal staphylococcus strains against bacterial competitors. PLoS Pathog. 12, e1005812 (2016).

    Google Scholar 

  169. 169.

    DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Google Scholar 

  170. 170.

    Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).

    Google Scholar 

Download references


B.W.C. is supported by the National Institute of Allergy and Infectious Diseases (5 F30 AI126791).

Author information




B.W.C. drafted the article, revised the article critically for important intellectual content, and approved the final version. A.S.P. revised the article critically for important intellectual content and approved the final version.

Corresponding author

Correspondence to Benjamin W. Casterline.

Ethics declarations

Competing interests

B.W.C.: no competing interests. A.S.P.: consultant with honorarium for AbbVie, Amgen, Celgene, Dermavant, Dermira, Galderma, Eli Lilly, Forte, LEO Pharma Inc., Menlo, Novartis, Pfizer, Regeneron, and Sanofi-Genzyme.

Patient consent

None required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casterline, B.W., Paller, A.S. Early development of the skin microbiome: therapeutic opportunities. Pediatr Res (2020).

Download citation