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Foetal lung volumes in pregnant women who deliver very
preterm: a pilot study
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BACKGROUND: Infants born preterm are at increased risk of pulmonary morbidity. The contribution of antenatal factors to
impairments in lung structure/function has not been fully elucidated. This study aimed to compare standardized lung volumes from
foetuses that were delivered <32 weeks’ gestation with foetuses that were delivered >37 weeks.
METHODS: Fourteen women who delivered <32 weeks gestation and 56 women who delivered >37 underwent a foetal MRI. Slice-
volume reconstruction was then used and the foetal lungs were then segmented using multi-atlas approaches. Body volumes were
calculated by manual segmentation and lung:body volume ratios generated.
RESULTS: Mean gestation at MRI of the preterm group was 27+2 weeks (SD 2.9, range 20+6–31+3) and control group 25+3 weeks
(SD 4.7 range 20+5–31+6). Mean gestation at delivery of the preterm group was 29+2 weeks (SD 2.6, range 22+0–32+0). Lung:body
volume ratios and foetal lung volumes were smaller in foetuses that were delivered preterm both with and without preterm
premature rupture of membranes compared to those born at term (p < 0.001 in all cases).
CONCLUSIONS: Foetuses that were delivered very preterm had reduced lung volumes when standardized for foetal size,
irrespective of ruptured membranes. These are novel findings and suggest an antenatal aetiology of insult and possible focus for
future preventative therapies.
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INTRODUCTION
Preterm birth (PTB) is the most important single determinant of
adverse infant outcome with regard to survival and quality of life.1

Morbidity is inversely correlated to gestational age (GA), and the
most significant adverse outcomes are associated with delivery
before 32 weeks.
Although the advent of antenatal steroids has significantly

improved respiratory morbidity of infants born preterm, specifi-
cally respiratory distress syndrome (RDS), it remains a significant
complication associated with PTB.2 RDS results from failure of
adequate lung expansion post-delivery due to surfactant defi-
ciency. Many of these infants progress to prolonged supplemen-
tary oxygen requirement with additional effects from ventilator
and hyperoxic-induced acute lung injury.3 This chronic evolving
condition is referred to as bronchopulmonary dysplasia (BPD) and
complications can persist into adulthood.4 The aetiology is
complex and multifactorial: genetic predisposition and infection
have been implicated in its development.2 Various factors are
thought to culminate in inflammatory cytokine and chemokine
release, ultimately disrupting alveolar and microvascular develop-
ment of the peripheral lung.5 The understanding of BPD
associated with PTB is hampered by a lack of antenatally derived
assessments that can be utilized to predict long-term outcomes
and mechanisms underlying the disease pathogenesis.2

Infection/inflammation has been implicated in the aetiology of
PTB and approximately 80% of cases of PTB prior to 28 weeks
have evidence of significant microbial colonization within
placental parenchyma.6 It is therefore hypothesized that

infection/inflammation associated with events triggering PTB
may additionally affect antenatal lung development. No studies
to date have explored lung volumes standardized for the overall
size of the foetus in pregnancies that subsequently deliver
preterm. This study therefore has two aims: (1) to establish
magnetic resonance imaging (MRI)-derived normative ranges for
foetal lung volumes standardizing for foetal size and (2) to
compare standardized lung volumes in foetuses that were
subsequently delivered <32 weeks gestation with a group of
control foetuses that were delivered at term.

METHODS
Mothers of foetuses at high risk of PTB were prospectively
recruited from the antenatal ward and the Preterm Surveillance
Clinic at St Thomas’ Hospital London between December 2015
and October 2017.
Inclusion criteria were: GA 20–32 weeks, high risk of PTB

encompassing either asymptomatic women with a history of
previous PTB, late miscarriage >16 weeks or cervical surgery with a
>50% risk of PTB in the next 2 weeks (based on an algorithm
derived from quantitative cervico-vaginal fibronectin and cervical
length7) or preterm premature rupture of membranes (PPROM).
Exclusion criteria were: foetuses known to have structural or
chromosomal abnormalities, multiple pregnancies, active labour,
inability to give informed consent, pregnancy complications such
as pre-eclampsia or gestational diabetes, contraindications to MRI
such as claustrophobia or a recently sited metallic implant.
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Following assessment of eligibility, women were invited to
participate and written consent obtained. Foetal MRI was
performed using a 1.5-T Philips Ingenia MRI System (Philips
Medical systems, Best, the Netherlands) with a 32-channel cardiac
coil placed around the mother’s abdomen. Imaging of the foetal
trunk was performed using T2-weighted single-shot turbo spin
echo (ssTSE), acquired in three orthogonal planes using the
following scanning parameters: TR= 25,991 ms, TE= 80ms, slice
thickness 2.5 mm, slice overlap 1.25 mm, and flip angle= 90o. In
addition, T2-weighted ssTSE images were acquired (using a larger
slice thickness/lower resolution) to provide coverage of the whole
uterus, again in three orthogonal planes. Two subjects were
imaged at 3 T on a Philips Achieva system using otherwise similar
procedures.
To obtain volumetric data of the lungs, for each subject, all

available T2-weighted ssTSE stacks covering the foetal thorax,
which were typically corrupted by foetal movement between
individual slices, were motion corrected and combined to produce
a single three-dimensional volumetric image, using slice to
volume reconstruction (SVR).8,9

Normal anatomical atlases were derived from the volumetric
reconstructions of 25 previously imaged normal subjects
(20+1–31+6 weeks’ GA). A mask was initially placed over the
foetal thorax and then lung volumes were manually segmented
for each of these normal subjects from the SVR image using ITK
SNAP (version 2.2.0).10

Lung segmentation was then performed automatically on the
study foetuses using the age-appropriate atlases as follows: eight
age-matched atlas subjects were selected and each was first affine
registered to the study foetus segmented target image to achieve
a global pose alignment.10 Free form deformation-based non-
linear registration with control points spaced at 3 mm intervals
was used to estimate the local deformations. After registration, the
atlas segments were transformed to the target subject using linear
interpolation and a final segmentation was determined by
‘majority vote’.10

Segmentation of the foetal body and amniotic fluid was
performed using the uterine single-shot fast spin echo images
using ITK-SNAP (version 2.2.0) in a two-step process. In each case,
a rough automatic segmentation of the body was obtained based
on image contrast while utilizing user-defined thresholds. Editing
was then performed manually. Intra- and inter-observer variability
had previously been confirmed (intraclass correlation co-efficient
(ICC) intra-observer variability 0.85 and inter-observer ICC 0.971).
Lung:body volumes were then calculated.
A control group was identified from the intelligent foetal

imaging and diagnosis project (www.iFINDproject.com). This is a
study conducted at King’s College London, which aims to improve
foetal ultrasound imaging through automated image processing.
Part of this study combines conventional ultrasound imaging with
more detailed MRI scans to build a comprehensive map of foetal
anatomy to use for computer-assisted diagnosis of foetal
anomalies. Cases were selected from low-risk pregnancies where
the MRI was performed between 20+0 and 32+0 weeks’ gestation
and delivery occurred >37 weeks. All foetuses underwent the
same imaging sequences and reconstruction as described above.
Details of maternal demographics, timing of steroid adminis-

tration, delivery and neonatal parameters were collected, includ-
ing gestation at delivery, sex of infant, birth weight, birth weight
centile, neonatal unit admission, number of days of invasive
ventilation, continuous positive airway pressure and need for
supplemental oxygen.
Data were assessed for normality using distributional plots of

standardized residuals. Demographic and neonatal outcome data
were analysed using Student’s t test where data were continuous
and Chi-squared when categorical. For the low-risk control cases
delivering at term, obtained from the iFIND study, the normal
growth trajectory of lung volume and lung:body volume ratios

between 20 and 32 weeks’ gestation was estimated by maximum
likelihood regression, using the Stata command xriml.11 Gestation-
adjusted centiles were then calculated for all lung volumes and
lung:body volume ratios. Receiver operating characteristic curves
were generated for low lung:body volume ratio and low gestation-
adjusted lung volume centiles as predictors of PTB. Adjusting for
the effects of gestation, multiple regression analysis was used to
produce estimates between foetuses that were delivered preterm
and those that were delivered at term for lung and body volumes
and lung:body volume ratios. Multiple regression analysis was also
used to compare amniotic fluid volumes between foetuses that
were delivered preterm with and without ruptured membranes
and the control group, accounting for the effects of gestation.
For neonatal outcome data (not normally distributed), the

Spearman Rank Correlation was used. Statistical analysis was
performed using the SPSS software package (version 25, SPSS IBM)
and Stata version 14.0 (StataCorp, College Station, Texas, USA).
This study was conducting under the ethics numbers: 07/

H0707/105 and 14/LO/1806.

RESULTS
Thirty-eight women were identified as eligible to participate in the
study group: 35 agreed to undergo MRI imaging: 17 delivered
prior to MRI (median 2 days from agreeing to participate, range
0–11 days). Eighteen patients had an MRI: three delivered
>32 weeks. Lung reconstruction was not possible in one case
leaving 14 suitable for analysis. Six women had ruptured and eight
intact membranes at the time of imaging. Twelve were performed
on a 1.5-T and two on a 3-T scanner. Eleven of the 14 cases had
antenatal steroids prior to imaging. Fifty-six controls were
identified from the iFIND study (all healthy volunteers) as a
control group.
Clinical characteristics of the cohorts can be seen in Table 1 and

lung volume, body volume and lung:body volume ratios in
Table 2. Distribution plots for lung volumes and lung:body volume
ratios from 20–32 weeks’ gestation derived from the control group
of foetuses are shown in Fig. 1. In foetuses that were delivered at
term, the lung volume comprised 4.2% of the total body volume
(standard deviation 0.6%) compared to 3.4% in the preterm group
(standard deviation 0.6%).
The gestation-adjusted lung volume centiles and the lung:body

volume ratio were tested as predictors of PTB (Fig. 2). Foetuses
that were delivered preterm had significantly lower lung volumes,
body volumes and lung:body volume ratios at the time of scan
than those that were delivered at term, allowing for gestational
change (Table 2 and Fig. 3). Excluding the two foetuses scanned at
3 T did not affect this finding (accounting for different magnetic
field strengths potentially causing contrast differences and
measurement discrepancies). These results were observed in both
groups: foetuses with ruptured (mean 33,900 mm3, SD 13,500) and
intact membranes (mean 27,200 mm3, SD 13,200; p < 0.001 in both
cases). Body volumes were also significantly smaller in foetuses
that were subsequently delivered preterm (both with (mean
981,000mm3, SD 397,000, p= 0.007) and without (mean 861,000
mm3, SD 421,000; p= 0.009) ruptured membranes) when adjusted
for GA at MRI. When standardized for foetal size, foetuses that
were delivered preterm had significantly lower lung:body volume
ratios. These effects were again observed in both foetuses that
had intact membranes (mean 0.035, SD 0.006) and those with
ruptured membranes (mean 0.032, SD 0.007) at the time of MRI (p
< 0.001 in both cases).
Low values of both lung volume and lung:body volume ratio

appeared predictive of preterm delivery with the gestation-
adjusted centile being superior.
There was no significant difference in the amniotic fluid volume

between the control group and foetuses that were delivered
<32 weeks with intact membranes.
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There was one intrapartum death at 22+0 weeks’ gestation. The
mean number of days from MRI to delivery in the preterm group
was 10.5 (range 0–48). The median number of days of rupture of
membranes to MRI in the group that had PPROM was 4 (range
3–18). Two foetuses that were delivered >37 weeks were admitted
to the neonatal unit, one for a few hours with suspected RDS and

the second for 2 days with hypoglycaemia not requiring
respiratory support.
There was no correlation between respiratory outcomes (length

of ventilation and supplemental oxygen use) and antenatal lung:
body volume ratios (Supplementary Table S1). Placental histology
was available for 12 of the cases: 10 had confirmed
chorioamnionitis.

DISCUSSION
We have reported normal ranges for MRI-derived foetal lung
volumes and lung:body volume ratios of foetuses 20–32 weeks’
gestation. We found a significant reduction in lung volumes in
both foetuses with and without ruptured membranes that were
delivered <32 weeks when standardized for body volume
compared to foetuses that were delivered >37 weeks. Foetuses
that were delivered preterm were globally smaller, when antenatal
MRI-derived body volumes were compared with a control
population that were delivered at term.

Absolute lung volumes
Previous studies have reported a reduction in absolute MRI-
derived lung volumes in foetuses with PPROM in comparison with
control cohorts.12,13 This finding may partly be explained by the
fact that lung volume in utero also comprises of some amniotic
fluid. However, our finding that a reduction in lung volume also
occurs in foetuses with intact membranes is a novel one. Unlike
the previous studies in foetuses with PPROM, this study is also the
first to standardize the lung volume for overall foetal size.

Body volumes
Our study has demonstrated that foetuses that were delivered
preterm were globally smaller on antenatal MRI imaging; however,
there was no statistical difference in the birth weight centile
between foetuses that were delivered preterm and those that
were delivered at term.
There has been discussion as to whether reference centiles for

preterm babies should be based on ‘typical’ preterm infants or on
healthy growing foetuses that will be delivered at term. The World
Health Organization birth weight centiles14,15 (used to evaluate
birth weight centiles in this study) and the INTERGROWTH
centiles16 both use information from ‘typical’ preterm deliveries.
Gardosi’s customized birth weight centiles, as well as adjusting for
maternal and neonatal features, use healthy term deliveries for
their reference sample and then extrapolate backwards for earlier
gestations.17

This study, and other studies using MRI scanning for foetal
volume, allows direct measurement of body volume in foetuses
that later were delivered both term and preterm. Using volume as
a proxy for weight, our results contribute to the discussion on
foetal reference standards noted above. Unfortunately, owing to
the limitations of data capture in this study it was not possible to
calculate customized birth weight centiles; however, if our results
are confirmed, in a larger more ethnically representative sample,
they would imply that the factors that drive spontaneous PTB may
have a detrimental effect on foetal growth antenatally. This is
supported by the findings of Partap et al., who undertook a
prospective cohort study of nulliparous women with a singleton
pregnancy assessing 3892 women at 20 and 28 weeks’ gestation
using ultrasound. In all, 2.5% of women underwent a spontaneous
PTB. It was noted that slow growth velocity of the femur was
associated with an increased risk of spontaneous PTB.18

Lung:body volume ratios
Lung:body volumes were created in order to standardize for foetal
size. The lung:body volume ratio was consistent across gestation
in the control group. In foetuses that were delivered <32 weeks,
lung:body volume ratios were significantly lower than in foetuses

Table 1. Clinical characteristics of the cohort (t test used for analysis
where data were continuous and Chi-squared where data categorical).

Characteristic Preterm cohort
(n= 14)

Term cohort
(n= 56)

p

Maternal age, years

Mean (SD) 35 (5.7) 33 (4.7) 0.26

Range 28–45 20–42

BMI, kg/m2

Mean ± SD 23.5 (2.9) 23.3 (4.7) 0.67

Range 21–29 20–42

Ethnicity, n (%)

White 6 (43) 48 (85) <0.001

Black 3 (21) 1 (2)

South Asian 3 (21) 1 (2)

East Asian 1 (7) 1 (2)

Other 1 (7) 5 (9)

Parity, n (%)

0 8 (57) 37 (66) 0.01

1 3 (23) 16 (29)

2 1 (8) 3 (5)

3 1 (8) 0

4 1 (8) 0

GA at MRI, weeks

Mean (SD) 27.2 (3.3) 25.4 (2.5) 0.09

Range 20.6–31.4 20.7–31.9

GA at birth, weeks

Mean (SD) 29.2 (2.6) 40 (1.2) <0.001

Range 22–31.9 37.3–42.1

Birth weight, g

Mean (SD) 1353 (330) 3429 (489) <0.001

Range 770–1875 2200–4560

Birth weight centile of live births

0–3 0 3 (5) 0.49

3–10 0 4 (7)

10–25 2 (15) 8 (14)

25–50 4 (31) 10 (18)

50–75 5 (38) 19 (34)

75–90 0 7 (13)

90–97 2 (15) 4 (7)

97–100 0 1 (2)

Sex of infant, n (%)

Female 7 (50) 35 (63) 0.25

Male 6 (43) 21 (38)

Undetermined 1 (7) 0

Outcome, n (%)

Live to discharge 13 (93) 56 (100) 0.2

Neonatal/
intrapartum death

1 (7)

Statistically significant p<0.05 values are in bold
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that were delivered >37 weeks gestation. This finding was
consistent in foetuses with both ruptured and intact membranes.
Low values of both lung volume and lung:body volume ratio
appeared predictive of preterm delivery with the gestation-
adjusted centile being superior.
Lung:body volume ratios have also been derived using MRI to

investigate foetuses with congenital diaphragmatic hernia.19

Although 44 normal foetuses were assessed, the normative data
were not explicitly reported in their paper. No studies have
previously used lung:body volume ratios to investigate foetuses
that were delivered preterm.
Although a major determinant of lung volume will be amniotic

fluid volume, we have also demonstrated that foetuses which
have intact membranes that were delivered prior to 32 weeks of
gestation also have a reduction in lung:body volume ratios. We

hypothesize that this may be due to cytokines implicated in the
aetiology of PTB also affecting pulmonary development. Infection/
inflammation is reported to be associated in pathways mediating
PTB,20 common even with intact membranes. Foetal membranes
express immune sensors and mount a response to microbial
products with inflammatory activation,21 which can include
cytokines that promote neutrophil and monocyte infiltration.22

Elevated levels of interleukin 1 (IL)-1β and IL-8 have been reported
in umbilical cord blood of neonates delivered with evidence of the
foetal inflammatory response.23 Eighty-three percent of cases that
were delivered preterm in this study had histological evidence of
chorioamnionitis, where histology was available, post-delivery.
Although a number of studies have demonstrated that

exposure to intra-amniotic infection is protective for the devel-
opment of RDS,24 the relationship between BPD and antenatal
infection/inflammation is less well defined. In PTB, normal
pulmonary development is disrupted.25 Pathology specimens of
infants with BPD demonstrate a decreased number of alveoli,
which are larger and more simplified in structure, and blunted
pulmonary microvascular growth.26 Intrauterine infection has
been shown to spread to the lung causing injury and remodelling
in a sheep model27 resulting in persistent changes in lung
morphometry28 and vascular development.29,30 It is therefore
possible that these pathological processes are affecting foetal lung
development.
Numbers in this study are currently small; however, no strong

correlations were observed between antenatal lung:body volume
ratios and short-term neonatal respiratory outcomes. Further
studies will therefore be warranted to explore this association,
increasing the sample size to confirm the findings and taking into
account the multiple confounding factors perinatally as well as the

Table 2. MRI parameters of foetal MRIs controlling for the effect of gestational age at MRI scan by linear regression.

Variable Term cohort, mean (SD) (n= 56) Preterm cohort, mean (SD) (n= 14) Difference in preterm cohort (95% CI) p

Lung volume, mm3 34,700 (17,000) 31,000 (13,300) −13,300 (−18,500 to −8100) <0.001

Body volume, mm3 8,235,300 (725,000) 929,500 (396,300) −136,300 (−208,300 to −64,400) <0.001

Lung:body volume ratio 0.042 (0.006) 0.034 (0.006) −0.008 (−0.12 to −0.004) <0.001
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volume ratios between 20 and 32 weeks’ gestation obtained from a
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varying times between the antenatal MRI and delivery. The
association between markers of infection/inflammation in mater-
nal samples, umbilical cord blood and neonatal samples with
imaging findings will also need further exploration.

CONCLUSIONS
Although it should be noted that numbers in this study are small to
date, it does appear that antenatal lung and body volumes are
smaller in foetuses that were subsequently delivered preterm. In the
future, more work is warranted to see if these findings are
reproducible in a larger group of foetuses. If this is the case, the
findings are novel and may suggest an antenatal aetiology of insult.
This knowledge may facilitate individualization of postnatal treatment
plans and provide a possible focus for future preventive therapies.
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<32 weeks’ gestation and those who were delivered >37 weeks’
gestation. The line of best fit and 95% confidence interval is given
for the control group.
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