Role of dopamine and selective dopamine receptor agonists on mouse ductus arteriosus tone and responsiveness



Indomethacin treatment for patent ductus arteriosus (PDA) is associated with acute kidney injury (AKI). Fenoldopam, a dopamine (DA) DA1-like receptor agonist dilates the renal vasculature and may preserve renal function during indomethacin treatment. However, limited information exists on DA receptor-mediated signaling in the ductus and fenoldopam may prevent ductus closure given its vasodilatory nature.


DA receptor expression in CD-1 mouse vessels was analyzed by qPCR and immunohistochemistry. Concentration−response curves were established using pressure myography. Pretreatment with SCH23390 (DA1-like receptor antagonist), phentolamine (α -adrenergic receptor antagonist) or indomethacin addressed mechanisms for DA-induced changes. Fenoldopam’s effects on postnatal ductus closure were evaluated in vivo.


DA1 receptors were expressed equally in ductus and aorta. High-dose DA induced modest vasoconstriction under newborn O2 conditions. Phentolamine inhibited DA-induced constriction, while SCH23390 augmented constriction, consistent with a vasodilatory role for DA1 receptors. Despite this, fenoldopam had little effect on ductus tone nor indomethacin- or O2-induced constriction and did not impair postnatal closure in vivo.


DA receptors are present in the ductus but have limited physiologic effects. DA-induced ductus vasoconstriction is mediated via α-adrenergic pathways. The absence of DA1-mediated impairment of ductus closure supports the study of potential role for fenoldopam during PDA treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dopamine receptors are expressed and functional in the isolated ductus.
Fig. 2: Fenoldopam has minimal effect on ductus tone.
Fig. 3: Fenoldopam does not impair oxygen-induced constriction of the ductus arteriosus.
Fig. 4: Fenoldopam has no effect on indomethacin-induced constriction of the ductus arteriosus.
Fig. 5: Fenoldopam exposure does not prevent postnatal closure of the ductus.


  1. 1.

    Gillam-Krakauer, M. & Reese, J. Diagnosis and management of patent ductus arteriosus. Neoreviews 19, e394–e402 (2018).

    Article  Google Scholar 

  2. 2.

    Clyman, R. I. et al. PDA-TOLERATE Trial: an exploratory randomized controlled trial of treatment of moderate-to-large patent ductus arteriosus at 1 week of age. J. Pediatr. 205, 41–48.e46 (2019).

    Article  Google Scholar 

  3. 3.

    Shaffer, C. L. et al. Effect of age and birth weight on indomethacin pharmacodynamics in neonates treated for patent ductus arteriosus. Crit. Care Med. 30, 343–348 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    Lee, J. et al. Randomized trial of prolonged low-dose versus conventional-dose indomethacin for treating patent ductus arteriosus in very low birth weight infants. Pediatrics 112, 345–350 (2003).

    Article  Google Scholar 

  5. 5.

    Barrington K. J., Brion L. P. Dopamine versus no treatment to prevent renal dysfunction in indomethacin‐treated preterm newborn infants. Cochrane Database Syst. Rev. 2002, CD003213.

  6. 6.

    Costello, J. M. et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr. Crit. Care Med. 7, 28–33 (2006).

    Article  Google Scholar 

  7. 7.

    Zangrillo, A. et al. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J. Cardiothorac. Vasc. Anesth. 26, 407–413 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Segar, J. L., Smith, F. G., Guillery, E. N., Jose, P. A. & Robillard, J. E. Ontogeny of renal response to specific dopamine DA1-receptor stimulation in sheep. Am. J. Physiol. 263, R868–R873 (1992).

    CAS  PubMed  Google Scholar 

  9. 9.

    Hooper, C. W. et al. Selective serotonin reuptake inhibitor exposure constricts the mouse ductus arteriosus in utero. Am. J. Physiol. Heart Circ. Physiol. 311, H572–H581 (2016).

    Article  Google Scholar 

  10. 10.

    Reese, J. et al. Regulation of the fetal mouse ductus arteriosus is dependent on interaction of nitric oxide and COX enzymes in the ductal wall. Prostaglandins Other Lipid Mediat. 88, 89–96 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Cotton, R. B. et al. Cimetidine-associated patent ductus arteriosus is mediated via a cytochrome P450 mechanism independent of H2 receptor antagonism. J. Mol. Cell Cardiol. 59, 86–94 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Pfaltzgraff, E. R. et al. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult. J. Mol. Cell Cardiol. 69, 88–96 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Shelton, E. L. et al. Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone. Physiol. Genomics 46, 457–466 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Vucovich, M. M. et al. Aminoglycoside-mediated relaxation of the ductus arteriosus in sepsis-associated PDA. Am. J. Physiol. Heart Circ. Physiol. 307, H732–H740 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Bucolo, C., Leggio, G. M., Drago, F. & Salomone Dopamine outside the brain: the eye, cardiovascular system and endocrine pancreas. Pharmacol. Therapeutics 9, 107392 (2019).

    Article  Google Scholar 

  16. 16.

    Shepperson, N. B., Duval, N. & Langer, S. Z. Dopamine decreases mesenteric blood flow in the anaesthetised dog through the stimulation of postsynaptic alpha 2-adrenoceptors. Eur. J. Pharm. 81, 627–635 (1982).

    CAS  Article  Google Scholar 

  17. 17.

    Hughes, A. D. & Sever, P. S. The action of dopamine and vascular dopamine (DA1) receptor agonists on human isolated subcutaneous and omental small arteries. Br. J. Pharm. 97, 950–956 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    Kohli, J. D., Glock, D. & Goldberg, L. I. Relative DA1-dopamine-receptor agonist and alpha-adrenoceptor antagonist activity of fenoldopam in the anesthetized dog. J. Cardiovasc. Pharm. 11, 123–126 (1988).

    CAS  Article  Google Scholar 

  19. 19.

    Stoller, J. Z., Demauro, S. B., Dagle, J. M. & Reese, J. Current perspectives on pathobiology of the ductus arteriosus. J. Clin. Exp. Cardiol. 8, S8–001 (2012).

    Google Scholar 

  20. 20.

    Hsieh, E. M. et al. Medication use in the neonatal intensive care unit. Am. J. Perinatol. 31, 811–821 (2014).

    Article  Google Scholar 

  21. 21.

    Seri, I., Tulassay, T., Kiszel, J. & Csomor, S. The use of dopamine for the prevention of the renal side effects of indomethacin in premature infants with patent ductus arteriosus. Int. J. Pediatr. Nephrol. 5, 209–214 (1984).

    CAS  PubMed  Google Scholar 

  22. 22.

    Johnston, A. J. et al. Pharmacokinetics and pharmacodynamics of dopamine and norepinephrine in critically ill head-injured patients. Intensive Care Med. 30, 45–50 (2004).

    Article  Google Scholar 

  23. 23.

    Chen, J. X. et al. Isoprostanes as physiological mediators of transition to newborn life: novel mechanisms regulating patency of the term and preterm ductus arteriosus. Pediatr. Res. 72, 122–128 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Hung, Y.-C., Yeh, J.-L. & Hsu, J.-H. Molecular mechanisms for regulating postnatal ductus arteriosus closure. Int. J. Mol. Sci. 19, E1861 (2018).

    Article  Google Scholar 

  25. 25.

    Liet, J. M. et al. Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J. Pediatr. 140, 373–375 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    Fajardo, C. A., Whyte, R. K. & Steele, B. T. Effect of dopamine on failure of indomethacin to close the patent ductus arteriosus. J. Pediatr. 121, 771–775 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    Beaulieu, J. M., Espinoza, S. & Gainetdinov, R. R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharm. 172, 1–23 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Hughes, A. D. & Sever, P. S. Action of fenoldopam, a selective dopamine (DA1) receptor agonist, on isolated human arteries. Blood Vessels 26, 119–127 (1989).

    CAS  PubMed  Google Scholar 

  29. 29.

    Lokhandwala, M. F. & Barrett, R. J. Dopamine receptor agonists in cardiovascular therapy. Drug Dev. Res. 3, 299–310 (1983).

    CAS  Article  Google Scholar 

  30. 30.

    Kim, M. O. et al. Localization of dopamine D1 and D2 receptor mRNAs in the rat systemic and pulmonary vasculatures. Mol. Cells 9, 417–421 (1999).

    CAS  PubMed  Google Scholar 

  31. 31.

    Amenta, F. et al. Localization of dopamine receptor subtypes in systemic arteries. Clin. Exp. Hypertens. 22, 277–288 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Lappe, R. W., Todt, J. A. & Wendt, R. L. Effects of fenoldopam on regional vascular resistance in conscious spontaneously hypertensive rats. J. Pharm. Exp. Ther. 236, 187–191 (1986).

    CAS  Google Scholar 

  33. 33.

    Hammer, G. B., Verghese, S. T., Drover, D. R., Yaster, M. & Tobin, J. R. Pharmacokinetics and pharmacodynamics of fenoldopam mesylate for blood pressure control in pediatric patients. BMC Anesthesiol. 8, 6 (2008).

    Article  Google Scholar 

  34. 34.

    Sato, N. et al. The vasodilatory effects of hydralazine, nicardipine, nitroglycerin, and fenoldopam in the human umbilical artery. Anesth. Analg. 96, 539–544 (2003).

    CAS  PubMed  Google Scholar 

  35. 35.

    Taylor, A. A. et al. Activation of peripheral dopamine presynaptic receptors lowers blood pressure and heart rate in dogs. Hypertension 5, 226–234 (1983).

    CAS  Article  Google Scholar 

  36. 36.

    Li, X. X. et al. Adrenergic and endothelin B receptor-dependent hypertension in dopamine receptor type-2 knockout mice. Hypertension 38, 303–308 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Pyne-Geithman, G. J., Caudell, D. N., Cooper, M., Clark, J. F. & Shutter, L. A. Dopamine D2-receptor-mediated increase in vascular and endothelial NOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in vitro. Neurocrit. Care 10, 225–231 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Escano, C. S. et al. Renal dopaminergic defect in C57Bl/6J mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1660–R1669 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Jose, P. A. et al. The renal dopamine receptors. J. Am. Soc. Nephrol. 2, 1265–1278 (1992).

    CAS  PubMed  Google Scholar 

  40. 40.

    Yoder, S. E. & Yoder, B. A. An evaluation of off-label fenoldopam use in the neonatal intensive care unit. Am. J. Perinatol. 26, 745–750 (2009).

    Article  Google Scholar 

Download references


This study was supported in part by NIH grants HL132805 (E.L.S.), HL109199 (J.R.), HL128386 (J.R., E.L.S.), and DK113073 (J.L.S.).

Author information




S.L.C., M.H., N.B., R.L.S., M.T.Y., C.D.B., E.L.S., J.R., and J.L.S. made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; E.L.S., J.R., and J.L.S. participated in drafting and critical revisions for important intellectual content; J.R. and J.L.S. had final approval of the version to be published.

Corresponding author

Correspondence to Jeffrey L. Segar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crockett, S.L., Harris, M., Boatwright, N. et al. Role of dopamine and selective dopamine receptor agonists on mouse ductus arteriosus tone and responsiveness. Pediatr Res 87, 991–997 (2020).

Download citation