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Privacy-protecting multivariable-adjusted distributed
regression analysis for multi-center pediatric study
Sengwee Toh1, Sheryl L. Rifas-Shiman2, Pi-I D. Lin2, L. Charles Bailey3, Christopher B. Forrest3, Casie E. Horgan1, Douglas Lunsford4,
Erick Moyneur5, Jessica L. Sturtevant1, Jessica G. Young1 and Jason P. Block2 on behalf of the PCORnet Antibiotics and Childhood
Growth Study Group

BACKGROUND: Privacy-protecting analytic approaches without centralized pooling of individual-level data, such as distributed
regression, are particularly important for vulnerable populations, such as children, but these methods have not yet been tested in
multi-center pediatric studies.
METHODS: Using the electronic health data from 34 healthcare institutions in the National Patient-Centered Clinical Research
Network (PCORnet), we fit 12 multivariable-adjusted linear regression models to assess the associations of antibiotic use
<24 months of age with body mass index z-score at 48 to <72 months of age. We ran these models using pooled individual-level
data and conventional multivariable-adjusted regression (reference method), as well as using the more privacy-protecting pooled
summary-level intermediate statistics and distributed regression technique. We compared the results from these two methods.
RESULTS: Pooled individual-level and distributed linear regression analyses produced virtually identical parameter estimates and
standard errors. Across all 12 models, the maximum difference in any of the parameter estimates or standard errors was 4.4833 ×
10−10.
CONCLUSIONS: We demonstrated empirically the feasibility and validity of distributed linear regression analysis using only
summary-level information within a large multi-center study of children. This approach could enable expanded opportunities for
multi-center pediatric research, especially when sharing of granular individual-level data is challenging.

Pediatric Research (2020) 87:1086–1092; https://doi.org/10.1038/s41390-019-0596-0

INTRODUCTION
The use of large clinical data sources for research on children can
substantially improve pragmatic evaluations of clinical interven-
tions, enable disease surveillance and rare disease research, and
expedite assessments of exposure-disease associations.1 The
widespread adoption of electronic health records (EHRs) and the
development of multi-center clinical data networks have facili-
tated these types of investigations on diverse populations using
real-world data.2 This new era presents unique challenges,
especially for pediatric research.3 Privacy protections for children
are more stringent than the general population, because of the
classification of children as a vulnerable population in the U.S.
Department of Health and Human Services regulations for the
protection of human subjects in research.4 New methodologies
and approaches are needed to properly protect children and their
data.
There are several ways to conduct multi-center or multi-

database studies. An intuitive and conventional approach is to
pool the entire databases or the derived study-specific individual-
level datasets for analysis. However, centralized pooling of
detailed individual-level datasets, even when stripped of direct
patient identifiers, is not always possible. Healthcare systems and

patients are often concerned about patient privacy and con-
fidentiality, unauthorized uses of transferred data, or unintended
disclosures of sensitive corporate or institutional information,
issues compounded with pediatric research.5–8 Contractual
agreements between health plans, delivery systems, and their
members or patients may further restrict sharing of individual-
level data with other entities for secondary purposes such as
research. These challenges can be addressed in part by proper
governance, appropriate ethical approval and data use agree-
ments, and applicable updates to laws or regulations that oversee
privacy protection in research. However, the considerable amount
of time and resources required to obtain layers of formal
agreements and approvals may render the project infeasible.
Another promising option is to employ more privacy-protecting

analytic methods that require less granular information from
participating sites yet provide results equivalent or very similar to
those from the conventional pooled individual-level data analysis.
In this article, we describe the application of distributed linear
regression, a method that allows researchers to use only
summary-level information to perform standard multivariable-
adjusted linear regression analysis that is traditionally done by
pooling individual-level data.9,10 Distributed regression requires
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only intermediate summary statistics (e.g., sums of squares and
cross product matrix) to be shared but produces statistically
equivalent results as if the individual-level datasets were
pooled.9,10 We have previously demonstrated the use of this
analytic method by comparing different bariatric surgery proce-
dures in an adult study conducted within a large distributed
research network.11 Here, we describe the use of this analytic
method in a pediatric study conducted within the same network.

METHODS
Pooled de-identified individual-level data analysis in a multi-center
study
In a typical multi-center pediatric study, the analysis center, which
can also be a data-contributing site, receives data from all
participating sites and performs the statistical analysis using the
pooled data. The convention in most multi-center studies is to
request de-identified individual-level datasets from the participat-
ing sites. In pooled individual-level data analysis, the participating
sites send the analysis center an analytic dataset with distinct
covariate information from each patient. Each site-specific dataset
includes one or more rows (or observations) per patient and one
column per covariate (e.g., treatment status, outcome status,
confounders). Upon pooling, the combined dataset is essentially a
bigger individual-level dataset that allows the analysis center to
perform a wide range of statistical analyses. Direct patient
identifiers and most protected health information per the U.S.
Health Insurance Portability and Accountability Act can often be
removed or masked without compromising the validity of the
analysis.12

Distributed linear regression in a multi-center study
Distributed regression is another approach that allows for the
execution of standard multivariable-adjusted regression analysis in
a multi-center study using only summary-level information from
each data-contributing site.9–11 It performs the same numeric
algorithm as standard individual-level regression analysis and,
therefore, should theoretically produce the same results. For
continuous outcomes, researchers can employ distributed linear
regression to generate total sums of squares and cross products
(SSCP) matrix for the intercept, the dependent variable (i.e.,
outcome), and independent variables (i.e., treatment and covari-
ates) at each data-contributing site. Once this summary-level
information is provided to the analysis center, it can be used to
produce parameter estimates and standard errors (or 95%
confidence intervals).9–11 Some standard statistical software
procedures, including PROC REG in SAS (SAS Institute, Cary, North
Carolina), can input or output the SSCP matrix, which can then be
used to perform the distributed analysis. In practice, distributed
linear regression analysis and the pooled individual-level data
analysis follow similar steps but the former requires more data
processing (specifically, the creation of SSCP matrix) to occur at
the participating sites.

Application of distributed linear regression in a multi-center
pediatric study
Setting. The National Patient-Centered Clinical Research Net-
work (PCORnet) is a large distributed data network designed to
facilitate multi-center research. During the time of this study,
PCORnet included 13 Clinical Research Networks (CRNs), 20
Patient-Powered Research Networks (PPRNs), and 2 Health Plan
Research Networks (HPRNs).13 In Fall 2018, the network
condensed to nine CRNs, all of which were included in this
study. The CRNs are each composed of multiple healthcare
institutions, which in total contribute EHR or other healthcare
data, including some pharmacy dispensing data, from millions of
individuals. The PPRNs and HPRNs also can contribute data for
patient-centered research projects. PCORnet uses a common

data model that includes data across 15 tables and approxi-
mately 100 variables.14 Data elements include patient demo-
graphics, diagnoses, procedures, vital signs, prescribed or
dispensed medications, laboratory test results, and mortality.
The PCORnet Antibiotics and Childhood Growth Study was one
of two inaugural observational demonstration projects funded
to help develop the PCORnet data infrastructure. The other
study was the PCORnet Bariatric Study,15,16 which has previously
examined the distributed linear regression technique in an adult
cohort.11 For these two studies, we had pooled individual-level
data and the capacity to conduct distributed linear regression,
allowing for direct comparisons of results from both analytic
approaches.

Study cohort. Initiated in 2016, the PCORnet Antibiotics and
Childhood Growth Study examined the association of antibiotic
use at <24 months of age with body mass index (BMI) z-score and
overweight and obesity at age 48 to <72 months. Details of the
study are available elsewhere.17,18 Briefly, the study included data
from 2009 to 2016 from 35 healthcare institutions that were
organized into 28 “network partners” or distinct databases that
served as the basis of the distributed analysis described in this
article. Children were eligible for inclusion if they had same-day
height and weight measures at 0 to <12 months, 12 to
<30 months, and 48 to <72 months of age. Requiring multiple
longitudinal measures ensured that children were receiving
regular care over time, allowing for better capture of antibiotic
prescriptions. During the outcome assessment period of age 48 to
<72 months, we used the same-day height and weight measures
closest to 60 months to calculate age-sex-specific BMI z-scores,
using publicly available macros from the Centers for Disease
Control and Prevention.19 The final sample size in the main study
was 362,550 children. For the methods study described here, we
used data from 27 network partners, including 34 of the 35
healthcare institutions; one network partner was unable to
participate because it did not have the necessary SAS software
to run the linear regression model.

Statistical analysis
As we did in the main PCORnet Antibiotics and Childhood Growth
Study,18 we examined the continuous outcome of BMI z-score
using the analyses of the pooled de-identified individual-level
data as the benchmark. We fit 12 linear regression models to
assess the associations of antibiotic use <24 months of age with
BMI z-score at 48 to <72 months of age. The 12 models separately
analyzed different categories of antibiotic exposure (all, broad-
spectrum, narrow-spectrum), two exposure types (binary [yes/no],
categorical [0, 1, 2, 3, ≥4 episodes]), and two strata (patients with
and without complex chronic conditions). We used the condition
list developed by Feudtner20 plus hypothyroidism and pituitary
disorders to define complex chronic conditions; these conditions
were generally considered serious chronic childhood illnesses.
Because multiple antibiotic prescriptions may be written to treat

a single illness, we joined together all prescriptions written within
10 days of another prescription to create an antibiotic episode,
and we classified the episode as broad- or narrow-spectrum based
on the broadest spectrum antibiotic prescribed. Narrow-spectrum
antibiotics included mostly amoxicillin but also penicillin and
dicloxacillin; broad-spectrum antibiotics were all others. All models
adjusted for age in months within the 48 to <72 month outcome
assessment window, sex (male/female), race (Asian, Black or
African American, White, Other, Unknown), Hispanic ethnicity (yes/
no), network partner (26 binary indicator variables), preterm birth
status (yes/no), asthma diagnosis (yes/no), and the number of
infection episodes (0, 1, 2, 3, ≥4; treated as a continuous variable
for the purpose of the analysis), systemic corticosteroid prescrip-
tion episodes (0, 1, 2, 3, ≥4; treated as a continuous variable
for the purposes of the analysis), and healthcare encounters
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(log transformed; continuous variable) measured before 24 months
of age.
We then fit the same 12 models using the distributed regression

approach. The SAS package used to extract the individual-level
data from the participating sites (for the benchmark analysis) and
summary-level information (for the distributed linear regression
analysis), as well as the SAS package used to analyze the pooled
data in each approach at the analysis center is freely available at
https://github.com/pcornet-analytics/antibiotics. We performed all
analyses using SAS version 9.4 (SAS Institute, Cary, North Carolina).

RESULTS
We identified 356,283 patients within 27 network partners
(Table 1). The number of patients ranged from 34 to 187,226
across network partners. Figure 1 shows the results from the
pooled de-identified individual-level linear regression model that
assessed the association of any (vs. no) antibiotic use before
24 months of age with BMI z-score at 48 to <72 months, by
network partner, among patients without complex chronic
conditions. Table 2 shows the results from the benchmark pooled
individual-level models (exposure of any vs. no antibiotics for
children without a complex chronic condition) and the corre-
sponding distributed regression models. The results were virtually
identical between the two analytic approaches, with a maximum
difference in any of the parameter estimates and standard errors
being 2.5886 × 10−10. The results from the remaining 11 models
were also essentially identical between the two analytic
approaches (Table 3). Across all 12 models, the maximum
difference in any of the values was 4.4833 × 10−10.

DISCUSSION
Using the association of antibiotic use in early life with weight
outcomes in later childhood, we demonstrated the validity and
feasibility of conducting distributed linear regression analysis in a
real-world multi-center pediatric study. To our knowledge, this is
the first study that employed the more privacy-protecting
distributed regression technique in multi-center pediatric studies.
The validated distributed analytic approach is particularly valuable
for pediatric studies, which face greater scrutiny and require more
privacy protections. In the main PCORnet Antibiotics and Child-
hood Growth study, we required institutions to share de-identified
individual-level data, in part because the distributed approach had
not been used in PCORnet at the time. Two healthcare institutions
that originally signed up for the study could not participate
because they were unwilling to share individual-level data for the
main analysis of the study. Had we used distributed regression,
both could have participated. Moving forward, PCORnet, as a large
distributed network, could consider using only distributed
regression to conduct certain analyses.
Distributed regression can be implemented for other general-

ized linear methods, including logistic, Poisson, and Cox propor-
tional hazards models.10,21–26 These modeling approaches require
multiple iterative steps, in contrast to the to the single
computation step we demonstrated in this study for linear
regression. The extra iterative process includes exchanges of
intermediate statistics between the analysis center and the
participating sites.27 These steps can be labor-intensive; and the
lack of ability to execute them automatically in standard statistical
software limits the use of the distributed regression. Researchers
have been working to develop statistical packages and stand-
alone software to facilitate the use of distributed regression in
PCORnet and other networks.21,22,25–27 However, there are also
some modeling procedures that cannot currently be performed
with distributed regression, including multi-level modeling and
generalized estimating equations. Some model diagnostics cannot
readily be computed using summary-level information without

making some compromises. For example, residual plots require
data points from individual patients. More methodological
development is needed to expand the capability of distributed
regression methods.
Distributed regression can be more prone to errors because the

analysis center does not have access to the individual-level data

Table 1. Baseline characteristics of the study population from 34
healthcare organizations, organized into 27 distinct network partners
or distinct databases, in the PCORnet Antibiotics and Childhood
Growth Study

Characteristics Total No complex
chronic
condition

With complex
chronic
condition

n= 356,283 n= 304,869 n= 51,414

Female, n (%) 170,784 (48) 147,514 (48) 23,270 (45)

Age at outcome (in
months), n (%)

57.9 (5.2) 57.9 (5.3) 58.0 (4.8)

Race, n (%)

Asian 14,413 (4) 12,874 (4) 1,539 (3)

Black 96,634 (27) 84,076 (28) 12,558 (24)

Other 27,063 (8) 21,514 (7) 5,549 (11)

Unknown 31,001 (9) 28,122 (9) 2,879 (6)

White 187,172 (53) 158,283 (52) 28,889 (56)

Hispanic ethnicity,
n (%)

63,173 (18) 55,439 (18) 7,734 (15)

Preterm birth status,
n (%)

25,801 (7) 16,785 (6) 9,016 (18)

Asthma diagnosis,
n (%)

47,177 (13) 37,951 (12) 9,226 (18)

No. of infection episodesa

0 45,679 (13) 39,835 (13) 5,844 (11)

1 27,396 (8) 23,770 (8) 3,626 (7)

2 32,296 (9) 28,705 (9) 3,591 (7)

3 34,014 (10) 30,413 (10) 3,601 (7)

4+ 216,898 (61) 182,146 (60) 34,752 (68)

No. of corticosteroid prescription episodesa

0 309,206 (87) 266,258 (87) 42,948 (84)

1 31,468 (9) 26,716 (9) 4,752 (9)

2 8,842 (2) 7,095 (2) 1,747 (3)

3 3,471 (1) 2,616 (1) 855 (2)

4+ 3,296 (1) 2,184 (1) 1,112 (2)

No. of healthcare encountersa

0 19,836 (6) 19,092 (6) 744 (1)

1 3,252 (1) 2,898 (1) 354 (1)

2 3,020 (1) 2,530 (1) 490 (1)

3 3,951 (1) 3,257 (1) 694 (1)

4+ 326,224 (92) 277,092 (91) 49,132 (96)

No. systemic antibiotic prescription episodesa

0 151,229 (42) 128,108 (42) 23,121 (45)

1 76,117 (21) 66,177 (22) 9,940 (19)

2 45,443 (13) 39,436 (13) 6,007 (12)

3 28,388 (8) 24,610 (8) 3,778 (7)

4+ 55,106 (15) 46,538 (15) 8,568 (17)

BMI z-score 48 to
<72 months (SD)

0.40 (1.19) 0.41 (1.17) 0.35 (1.30)

BMI body mass index, SD standard deviation
aMeasured before 24 months of age
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from all participating sites for data exploration and data quality
assessment. This may lead to biased results due to the impact of
unappreciated data characteristics that could not be accounted
for in developing the analysis. Because of the reliance on quality of
the underlying data, distributed analyses may be best suited for
mature networks in which multiple cycles of data characterization
and quality assurance have been done. PCORnet is now reaching

that stage of maturity. As an alternative, researchers doing multi-
center research can pursue a hybrid approach whereby they have
access to individual-level data from one or a few institutions as a
beta-testing environment, allowing for assessment of data quality
and testing of analytic programs. A phased process with an initial
round of queries to provide descriptive results for key variables
could also help identify potential data issues early in the process,
before the analytic queries are done.
Distributed regression may also introduce additional time and

burden on data-contributing sites. However, this may not be a
major concern within research networks like PCORnet that have
standardized their information into a common data format. In
these networks, the analysis center can develop an analytic
program that processes the data into the correct format (e.g., SSCP
matrix). As all sites have their data structured in the same manner,
the participating sites can execute the program with minimal
modification to the code. In the case of PCORnet distributed
queries, sites were asked to execute the queries unaltered except
for changing the data library name. As with conventional pooled
individual-level data analysis, all statistical code in distributed
regression can be shared, allowing for any institution to execute
analytic programs on their data in the same manner as the
institutions included in the study.
In addition to distributed regression, there are other privacy-

protecting analytic methods that can perform sophisticated
statistical analysis using only summary-level information in
multi-center pediatric studies, including methods that leverage
confounder summary scores (e.g., propensity scores) and meta-
analysis of site-specific effect estimates.28–31 Some of the analytic
options are available across various methods while others are
unique to specific techniques. For example, it is possible to use
only summary-level information to perform confounder summary
score-matched or -stratified analysis of binary or categorical
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Fig. 1 Results from individual-level linear regression models that
considered antibiotic use as a binary variable (any use vs. no use)
and body mass index z-score as the continuous outcome variable
among patients without complex chronic conditions, by network
partner. The models included all the covariates in Table 2. The values
are parameter estimates for any antibiotic use (vs. no use) and their
95% confidence intervals. One of the 27 network partners was
excluded from this figure due to small sample size (n= 34) but its
data was included in the pooled individual-level data analysis and
distributed regression analysis

Table 2. Comparison of results from pooled individual-level data analysis and distributed regression analysis based on data from 34 healthcare
organizations, organized into 27 distinct network partners (or distinct databases), in the PCORnet Antibiotics and Childhood Growth Study

Variables Parameter estimate Standard error

Pooled individual-level data
analysis

Distributed regression Pooled individual-level data
analysis

Distributed regression

Any antibiotic use (vs. no use)a 0.03419 0.03419 0.00478 0.00478

Female (yes vs. no) 0.01466 0.01466 0.00418 0.00418

Age at outcome (in months)b 0.00489 0.00489 0.00040 0.00040

Race

Asian −0.20892 −0.20892 0.01070 0.01070

Black 0.05863 0.05863 0.00522 0.00522

Other 0.03098 0.03098 0.00890 0.00890

Unknown 0.03669 0.03669 0.00794 0.00794

White REF REF REF REF

Hispanic ethnicity (yes vs. no) 0.33664 0.33664 0.00679 0.00679

Preterm birth status (yes vs. no) −0.22002 −0.22002 0.00928 0.00928

Asthma diagnosis (yes vs. no) 0.15297 0.15297 0.00694 0.00694

No. of infection episodesa,b,c 0.02184 0.02184 0.00195 0.00195

No. of corticosteroid prescription
episodesa,b,c

0.06124 0.06124 0.00394 0.00394

No. of healthcare encountersa,b,d −0.01568 −0.01568 0.00214 0.00214

The results were from a linear regression model that considered antibiotic use as a binary variable (any use vs. no use) and body mass index z-score as the
continuous outcome variable among patients without complex chronic conditions. The model included all the covariates in the table plus 26 indicator
variables for network partners
aMeasured before 24 months of age
bAdjusted for as a continuous variable in the model
cRe-coded as 0, 1, 2, 3, 4+
dLog-transformed
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exposures and binary or time-to-event outcomes with any of these
methods; the results will be identical to those obtained from the
corresponding pooled individual-level data analysis.28–31 Meta-
analysis of site-specific effect estimates allow researchers to
examine the relations between different types of exposures
(binary, categorical, and continuous) and outcomes (binary,
categorical, continuous, and time-to-event); site-specific con-
founding adjustment can be achieved via matching, stratification,
weighting, or modeling. However, meta-analysis of site-specific
effect estimates generally produces results that are similar, but not
identical, to those obtained from the corresponding pooled
individual-level data analysis.28–31

In conclusion, privacy-protecting methods, such as distributed
linear regression, can perform multivariable-adjusted regression
analysis without transferring individual-level data in multi-center
pediatric studies. The analytic approach enables researchers to
analyze data that are otherwise not accessible due to restrictions
to sharing individual-level data, including pediatric data, for which
this approach may be particularly well-suited.
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