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Exercise-associated prevention of adult cardiovascular disease
in children and adolescents: monocytes, molecular
mechanisms, and a call for discovery
Dan M. Cooper1 and Shlomit Radom-Aizik1

Atherosclerosis originates in childhood and adolescence. The goal of this review is to highlight how exercise and physical activity
during childhood and adolescence, critical periods of growth and development, can prevent adult cardiovascular disease (CVD),
particularly through molecular mechanisms of monocytes, a key cell of the innate immune system. Monocytes are heterogeneous
and pluripotential cells that can, paradoxically, play a role in both the instigation and prevention of atherosclerosis. Recent
discoveries in young adults reveal that brief exercise affects monocyte gene pathways promoting a cell phenotype that patrols the
vascular system and repairs injuries. Concurrently, exercise inhibits pro-inflammatory monocytes, cells that contribute to vascular
damage and plaque formation. Because CVD is typically asymptomatic in youth, minimally invasive techniques must be honed to
study the subtle anatomic and physiologic evidence of vascular dysfunction. Exercise gas exchange and heart rate measures can be
combined with ultrasound assessments of vascular anatomy and reactivity, and near-infrared spectroscopy to quantify impaired O2

transport that is often hidden at rest. Combined with functional, transcriptomic, and epigenetic monocyte expression and measures
of monocyte–endothelium interaction, molecular mechanisms of early CVD can be formulated, and then translated into effective
physical activity-based strategies in youth to prevent adult-onset CVD.

Pediatric Research (2020) 87:309–318; https://doi.org/10.1038/s41390-019-0581-7

INTRODUCTION AND GOALS OF THE REVIEW
Children are the most naturally physically active human beings,
reduced physical activity (PA) is a cardinal sign of childhood
disease, and exercise testing provides clues to mechanisms of
health and disease that are often hidden when the child is at rest.
Despite this, and because mechanistic studies, data analytics, and
testing protocols have failed to keep pace with enabling
technologies and computing capacity, biomarkers of fitness and
PA have yet to be widely incorporated into translational research
and clinical practice designed to prevent adult-onset diseases
during childhood. Challenges also arise because acceptable
standards for research in healthy children are appropriately high.
Innovative thinking is required to minimize the invasiveness of
any experimental procedure and ensure that protocols are child
friendly, engaging not only the volunteers themselves but also
their parents or guardians.
The goal of this review is to focus on a major global health

problem, cardiovascular disease (CVD). Adult, clinically sympto-
matic CVD is a major and tragic cause of morbidity and early
mortality throughout the world.1 Surprisingly, CVD starts in
childhood even though its symptoms are absent until much later
in life.2,3 Large-scale studies of CVD risk suggest that sufficient and
sustained levels of PAtivity during childhood may protect against
adult CVD.4–8 Because critical gaps still exist in our understanding
of the pediatric origins of CVD, specific therapies, precise
prescriptions for exercise, nutrition, and other child-appropriate
lifestyle interventions are inadequate or lacking. In this review, we

focus on novel conceptual and experimental developments
involving the potential role of a specific innate immune cell, the
monocyte, in the early pathophysiology of adult CVD (Fig. 1).

THE CENTRAL ROLE PLAYED BY MONOCYTES IN
TRANSDUCING EXERCISE INTO HEALTH BENEFITS IN CHILD
HEALTH AND DISEASE
Once considered to be single-purpose cells that could only react
in highly circumscribed ways to invading organisms, monocytes
(and other innate immune cell types such as natural killer cells and
granulocytes) are now known to be involved in a range of
functions that can “learn” through genomic mechanisms and
either benefit health or exacerbate disease.9,10 Monocytes are
accessible through phlebotomy in pediatric research; thus, like
in adults, their function can be studied. Monocytes are the
precursors for tissue macrophages. Both monocytes and macro-
phages play a role in the pathogenesis of atherosclerosis, and
while they share many cellular markers, the precise and complex
mechanisms through which the monocyte transforms into a
macrophage has not yet been fully elucidated.11 New data from a
variety of research groups demonstrate the effect of brief exercise
on gene and microRNA expression of circulating immune cells in
children and adults. These initial studies permit an identification
of specific mechanisms in child health that link exercise and
innate immune cell function with disease prevention and clinical
outcomes.12,13
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Many of the genomic and epigenetic pathways identified in
leukocytes of children and adults are related to growth and repair,
as well as prevention of diseases such as asthma, cancer, and
atherosclerosis14,15 (Fig. 2). Advanced use of techniques such as
flow cytometry has stimulated research into the effect of acute
and chronic exercise on leukocyte function [summarized recently
by Gjevestad et al.,16] including the impact of exercise on
mitochondrial function17 and oxidative stress,18,19 each of which
has been implicated as an essential component of the molecular
transduction of PA in other tissues, such as the skeletal muscle.20

Exercise-sensitive monocytes may play a role in vascular health
Circulating monocytes are a heterogeneous set of pluripotential
innate immune cells that can paradoxically play a role in both the
instigation and prevention of atherosclerotic plaques (Fig. 1).
Exercise, even very brief exercise lasting only a few minutes, leads
to leukocytosis with substantial increases in circulating monocytes

in both laboratory and field settings in adults and children.21 The
idea that the exercise-associated increase in the number of
circulating monocytes would be accompanied by changes in their
gene, and microRNA expression was first demonstrated in young
adults.13 The response to acute exercise was substantial in the
range and magnitude of gene expression (894 genes altered),
gene pathways, and microRNA (19 microRNAs). A remarkably
consistent pattern of change emerged from our studies, namely,
that exercise could shift monocyte gene expression profiles and
function to anti-inflammatory and anti-atherogenic activity.
Clearly, future research will be necessary to distinguish how
monocyte responses to acute exercise are influenced by fitness
and training, the latter determined in large measure by chronic
exercise.
Several gene pathways known to be related to atherosclerosis

were enriched, including mitogen-activated protein kinase
signaling pathway [e.g., interleukin-4 (IL-4) stimulation of anti-
inflammatory macrophages22] and apoptosis pathway [upregulated
in peripheral blood mononuclear cells in patients with peripheral
arterial diseases.23] Two particularly intriguing observations led
to the formulation of additional hypotheses to explain potential
anti-atherosclerotic effects of exercise on monocytes. First, the
transcription factors NR4A1 and NR4A2, belonging to the nuclear
hormone receptor superfamily, were upregulated following exercise
in monocytes by 3- and 5-fold, respectively. Several investigators
have noted that in murine models,24 the NR4A superfamily plays a
role in shaping monocytes to become patrolling cells that crawl
along the endothelium and survey the capillaries for microparticles,
cellular debris, and other signs of endothelial damage and
disruption. They found that these patrolling monocytes could, in
conjunction with neutrophils, ameliorate endothelial cell necrosis
without extravasation or diapedesis. They concluded that, when
carefully regulated, the NR4A1-activated nonclassical monocytes
could play a protective role in vascular health.
The second compelling observation was that gene expression

of key members of the epidermal growth factor family was also
upregulated in monocytes by brief exercise [amphiregulin (AREG)
by 19.3-fold, heparin-binding growth factor by 7.8-fold, and
epiregulin by 6.8-fold]. These pleiotropic growth factors are
involved in tissue healing and repair, and vascular smooth muscle
growth.25–27] Interestingly, monocyte EGR2 [early-growth response
2, which when upregulated shifts monocytes to macrophages,
hastening vascular complications in diabetes28] was reduced in
response to exercise by 4.4-fold. In Table 1, we show that acute
exercise can alter monocyte gene expression in a way that renders
them protective against the development of atherosclerosis.
These mechanisms should be studied in healthy children and
adolescents, and expand our knowledge of how exercise might
play a role in preventing preclinical pediatric origins of athero-
sclerosis. The role of microRNAs in the regulation of athero-
sclerosis has also received a great deal of attention over the past
several years. As shown in Table 2, a number of the monocyte
microRNAs that were affected by brief exercise are involved in the
pathogenesis of vascular disease.

THE PEDIATRIC ORIGINS OF ADULT CVD
Exercise in children and adolescents is not merely play, but is an
essential component of growth and development.29–31 Children
are among the most spontaneously physically active human
beings.32 It is not surprising that participation in PA is a major
determinant of health across the lifespan and health-related
quality of life in both healthy children and in children with chronic
diseases.33,34 Despite this essential biologic role for PA, children
have not been spared the relentless reduction in levels of PA that
is creating a crisis in health care in our nation and throughout the
world.35 Recognition of the enormous morbidity and cost of
physical inactivity-related diseases, such as atherosclerosis, type 2

Fig. 1 Exercise promotes cardiovascular health through reprogram-
ming of monocytes. Our recently published data show that exercise
leads to increased NR4A1, NR4A2, and AREG (the amphiregulin gene)
gene expression.13 These are associated with patrolling monocyte
subtypes that, in contrast to pro-inflammatory monocyte subtypes,
patrol the vascular and repair damaged tissues rather than contribute
to atherosclerosis
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Fig. 2 Examples of gene expression changes in circulating leukocytes
following brief exercise. These reveal intriguing mechanistic links
between physical activity and health. We hypothesize that these
effects are influenced by growth and maturational status. Data are
from refs. 13,128,129
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diabetes, and osteoporosis, has spurred new policy initiatives
targeting preventive medicine early in life.36

The concept of pediatric origins of adult health and disease is
gaining scientific merit,37,38 highlighting the need to transform
existing notions of how to evaluate health in a growing child. A
physically inactive (even normal-weight) child may have no
symptoms of disease, but evidence of deterioration in vascular
health may already be present.39,40 Although as yet insufficiently
studied, there is increasing evidence that the rapidly changing
phenotype associated with normal growth and development is
accompanied by global changes in gene expression.41 The pattern
of change of gene and epigenetic expression during childhood is
likely to influence the response to acute exercise and habitual
physical activity. The notion of what it means to be a healthy child
must change and include robust metrics of physical fitness and
their biologic underpinnings.
Equally worrisome is that the deleterious health effects of physical

inactivity and poor fitness are exacerbated in children with chronic
disease and/or disabilities42,43 or with environmental–lifestyle
conditions like obesity.44 Children with diseases or conditions
previously associated with mortality during the first two decades of
life (e.g., sickle cell disease, cystic fibrosis) are living longer due to
remarkable advances in research and care, but are often unable to
achieve levels of PA and fitness associated with health benefits in
otherwise healthy children.45,46 Not surprisingly, the healthspan [the
period of life free from serious chronic diseases and disability47] of

children with chronic diseases is threatened not only by the
underlying disease, but also by the compounding effects of
insufficient PA and sedentary behavior. Increasing PA and fitness
is feasible, but has proven quite challenging to implement in a
systematic manner.48

Once a pattern of physical inactivity and a sedentary lifestyle is
established, a vicious cycle ensues, in which constraints on PA
harm immediate health and contribute to lifelong health
impairment ranging from cardiovascular and metabolic disease
to osteoporosis.49,50 Exactly what constitutes ideal physical fitness
in a child with a chronic condition (or, in fact, a child considered to
be otherwise healthy) remains unknown. Finding beneficial levels
of PA in children with chronic disease or disability is challenging
because the optimal range of exercise is much narrower than in a
healthy child (Fig. 3).
The need to explore mechanisms focused on the earliest origins

of CVD is highlighted in children who survive acute lymphocytic
leukemia (ALL). The remarkable success in treating children with
ALL is among the great achievements of translational and clinical
research of the last generation.51 Physical fitness is low in ALL
survivors,52,53 and the healthspan of child and adolescent
survivors of ALL remains threatened.54,55 In particular, CVD risk is
increased and is associated with obesity and metabolic syndrome.
Gibson et al.56 outlined the current state of knowledge regarding
many of the health threats faced by ALL survivors, “Unfortunately,
treatment is not without consequence; 50% of childhood ALL

Table 1. Differential exercise regulation of monocyte genes previously associated with inflammation and/or CAD

Gene CAD Exercise Possible mechanisms

CD36 ↑ ↓ Facilitates scavenging of modified LDL and activates inflammatory pathways131

TLR4 ↑ ↓ Pathogenesis and destabilization of atherosclerotic plaques132

VCAN ↑ ↓ Versican is involved in advanced lesions of atherosclerosis at the borders of lipid-filled necrotic cores as well as at the
plaque–thrombus interface133

DNAJB6 ↑ ↓ Controls HSP function, known to be a key immune modulator in atherosclerotic plaques134

FAM198B ↑ ↓ As yet unknown

HIST1H2BG ↑ ↓ Histone modification is a critical component of a transcriptional cascade regulating SMC proliferation and might play a
role in the development of proliferative vascular diseases135

All data from human subjects. Data from coronary artery disease (CAD) patients is derived from previous studies. The exercise data is from our recent study in
healthy people

Table 2. microRNAs in monocytes significantly (FDR ≤0.05) affected (FC) by exercise and their possible connection to atherosclerosis [exercise data
from our publication13]

microRNA FC Possible link to atherosclerosis

miR-130a ↓1.5 Involved in angiogenesis in endothelial progenitor cells;136 serum biomarker for atherosclerosis137

miR-221 ↓1.3 Involved in vascular remodeling; regulation of monocytes into dendritic cells138

miR-23b ↓1.3 Controls immune tolerance in dendritic cells; plays an atheroprotective role in shear stress vascular remodeling139

miR-29b ↑1.9 Plays a key role in the mechanisms through which LDLs alter vascular smooth muscle function; significantly upregulated in
atherosclerotic aortic aneurysm tissue;140 inhibits migration and proliferation of vascular smooth muscle cells in neointimal
formation141

miR-362-3p ↑1.4 Downregulated more than twofold in both brain and blood following experimental injury to the cerebral vasculature142

miR-660 ↑1.4 Increases the efficiency of ex vivo platelet generation;143 predicts future fatal myocardial infarction in healthy individuals144

miR-140-5p ↑1.3 Circulating levels are elevated in severely obese individuals145

miR-532-5p ↑1.3 Circulating levels are elevated in severely obese individuals145

miR-30e ↑1.3 Substantially downregulated in animal model of atherosclerotic lesions;146 inhibits neointimal hyperplasia by targeting
calmodulin-dependent protein kinase147

miR-15a ↑1.3 Involved in blood–brain barrier disruption in animal models of vascular injury;148 associated with abdominal aortic aneurysms and
peripheral arterial disease149

FC fold change
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survivors in their 20s will have at least one chronic medical
condition. Early death is also a recognized problem; the
standardized mortality ratio among those who survive 5 years
from diagnosis is 9.5 (8.8–10.2) with non-cancer-related mortality
frequently attributed to a cardiovascular cause.” The mechanisms
of this increased morbidity and mortality are unknown, but as
there is increasing evidence of endothelial dysfunction and
increased CVD risk in survivors of childhood ALL,57,58 due, possibly
to chronic inflammatory activation and immune dysregulation.54

TRACKING FITNESS AND CVD RISK DURING CHILDHOOD AND
ACROSS THE LIFESPAN
Several pioneering, thoughtfully designed, long-term studies now
confirm that CVD risk factors begin in youth, track into
symptomatic atherosclerosis in adulthood, but are, fortunately,
modifiable [e.g., the Muscatine Study,4 the Young Finns Study,5,59

the Bogalusa Heart Study,6 the CARDIA study,7 Pathobiological
Determinants of Atherosclerosis in Youth,8 and the Australian
Childhood Determinants of Adult Health study44] Efforts to
develop childhood- and youth-based preventive interventions
focused on nutrition and physical activity, in combination or
separately, have not met expectations. For example, Project
HEALTHY, the largest NIH school-based study ever undertaken to
prevent obesity and type 2 diabetes in children through changes
in the school nutrition and physical education did show a modest
benefit on obese middle school children, but did not succeed in
demonstrating a more robust population effect.48

The current epidemic of childhood obesity has generated much
research into the specific relationships between CVD risk, fitness,
and nutrition in the overweight child. Childhood obesity is
associated with lifelong increased CVD risk, although the
associations are only weak to moderate.60 Chronic inflammation
characterized by increased levels of circulating inflammatory
cytokines and leukocytosis accompanies childhood obesity,61 and
chronic inflammation is a clear risk factor for the development of
endothelial dysfunction and CVD.62 Particularly intriguing is work
by Mattos et al.,63 who compared monocyte inflammatory
function (obtained under resting conditions) in 11 obese with 9
normal-weight children and adolescents. All traditional monocyte
subsets (classical, intermediate, nonclassical) in the obese
participants produced less IL-10, an anti-inflammatory and anti-
atherosclerotic cytokine,64 than did the normal-weight children
and adolescents.
Chronic inflammation in the pediatric age group is not observed

solely in obese individuals. Inflammatory mediators are higher, for
example, in normal-weight, sedentary high school girls compared

with age- and weight-matched girls who participate in organized
sports.65 Other conditions, such as systemic lupus erythematosus
or inflammatory bowel disease, are accompanied by chronic
inflammation and a proclivity to CVD.66,67 A possible therapeutic
and/or anti-atherosclerotic role for exercise acting, perhaps, as
outlined below through circulating monocytes is a prime target
for translational research.
A challenge in research designed to understand the

inflammation–fitness connection as a factor in CVD risk early in
life is that children are not simply miniature adults [e.g., refs. 68,69]
Physical fitness in both adults and children is commonly measured
by testing, which gauges systemic physiologic responses to acute
exercise. When normalized to body size, strength is lower in
children,70 as is the magnitude of the physiologic response to
chronic exercise training (both resistance and aerobic).71,72

Children are among the most naturally physically active humans32

and oxygen uptake normalized to work rate is higher than in
adults for high-intensity exercise.73 Gas exchange and heart rate
(HR) response kinetics are also different in children74–76 (Fig. 4), as
are metabolic responses, such as lactate kinetics,77 high-energy
intramuscular phosphate dynamics [using 31P-magnetic resonance
spectroscopy,78] and CO2 storage capacity.79 Recent work
demonstrates that leukocytosis in response to exercise is greater
in older compared with younger children.80 Consequently,
maturational and developmental factors must be accounted for
in any attempt to determine how acute or chronic exercise
influences genomic and functional responses of those immune
cells, like monocytes, which might play a role in the earliest
development of CVD.

METHODS TO DETECT VASCULAR INVOLVEMENT IN THE
PEDIATRIC POPULATION
Vascular stiffness
Inflammation is linked to the development of vascular stiffness, a
hallmark of CVD.81 In adults, several studies have demonstrated
specific correlation between monocyte subtypes and noninvasive
metrics of arterial stiffness in patients with CVD.82 Arterial
structure and function can be measured noninvasively in children
with common carotid artery (CCA) intima–media thickness (IMT),
CCA distensibility, and pulse wave velocity (PWV). These measures
are functionally linked because both pressure change and cvBRS
(cardiovagal baroreflex sensitivity) depend on the arterial elastic
properties. cvBRS, CCA distensibility, IMT, and PWV have all
demonstrated utility in identifying both positive and negative
autonomic and arterial alterations in children in response to
physical activity/fitness83 and CVD risk factors, respectively.84–86
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Fig. 3 Health benefits of exercise are determined, in part, by the energy expenditure associated with physical activity. Both too much
(excessive) and too little (sedentarism) exercise can impair health. As shown, the range of healthy exercise is narrower in the child with chronic
disease or disability
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The majority of studies in children demonstrate a positive
correlation between cardiorespiratory fitness and arterial com-
pliance, and an inverse correlation between cardiorespiratory
fitness and stiffness parameters.87,88 Finally, in one recent study
Donghui et al.89 demonstrated that a 6-week exercise training and
nutrition program improved the reactive hyperemia index (felt to
be a measure of microvascular reactivity) in a group of obese
adolescents.

Fitness testing and CVD
Gas exchange in response to exercise is increasingly used as a
noninvasive, albeit indirect, clinically useful biomarker for CVD.
Correlating monocyte function to cardiopulmonary exercise
testing (CPET) could serve as a powerful translational and clinical
research tool in gauging the mechanism of the pediatric origins of
adult CVD. In both adults and children, disambiguating reduced
fitness from true CVD using gas exchange and HR data from CPET
is challenging. In adult studies, innovative data analytics in which
the rich dataset of gas exchange and HR variables obtained during
both submaximal and peak CPET are beginning to identify
noninvasive biomarkers (such as the dynamic relationship
between V̇E and V̇CO2) that correlate with established indexes
of CVD (such as stroke volume measured by stress echocardio-
graphy).90 In a study in adolescents with high body mass index,91

the pattern of CPET abnormalities suggested a pervasive
impairment of O2 delivery—an indirect indicator of vascular or
cardiac dysfunction. An easily calculated slope ΔV̇O2/ΔWR, derived
from the submaximal portion of a progressive exercise CPET, is
one relatively accessible approach to gauge the effectiveness of
O2 delivery during exercise in children and adolescents, and
normal values are available.92 As noted above, standardized
fitness assessments are associated with CVD risk in children and
adults, but these typically weak to modest correlations are found
predominantly in large sample studies.
A number of promising technologies are emerging for

noninvasively measuring vascular reactivity and the effectiveness
of O2 delivery at the level of the working muscle during exercise.
Microvascular reactivity can be studied noninvasively in the skin
and has been used to test vascular function in both adults and
adolescents.93 Near-infrared spectroscopy (NIRS) has been used
to gauge the degree of muscle microcirculatory impairment in
patients with heart failure.94 NIRS has also been used to assess
the effect of exercise training in patients with intermittent
claudication.95 Luck et al.96 recently used NIRS in patients with
peripheral artery disease to demonstrate a link between working
muscle ischemia and systemic responses such as higher blood
pressure and HR.

Translational research that combines systemic gas exchange,
noninvasive tissue-specific vascular reactivity and oxygen delivery,
and functional and genomic expression of circulating leukocytes is
certainly feasible in children and adolescents. Such an approach
might bring about a better understanding of what constitutes
healthy levels of physical activity and fitness in healthy children.
Results from healthy children could then be used to improve
therapies for a variety of chronic childhood diseases like sickle cell
anemia,97 in which exercise is impaired and chronic inflammation
[mediated, perhaps, to some degree specifically by monocytes98]
contributes to an impaired healthspan.
Despite the broad recognition that many children in the United

States (and throughout the world) no longer engage in healthy
levels of physical activity,99 defining what the level of optimal
physical activity should be remains quite vague. For example, in a
recent study of 182 9–11 year olds, Füssenich et al.100 noted,
“there were no differences between CCVR [composite cardiovas-
cular risk score] of children who undertook 60min MVPA
(moderate to vigorous physical activity) per day in accordance
with World Health Organization (WHO) recommendations, and
those who did not. This implies that current recommendations
may be an underestimation of the PA necessary to reduce
clustered CVD risk. A gender difference between the CVD risk in
active and inactive children raises the possibility that gender
specific guidelines may be needed, although much work is
needed to determine if these differences are a result of gender
specific responses to PA or sex differences in PA level. Taken
together these findings suggest that in order to reduce CVD risk,
the current guidelines should be updated.” New approaches to
the precise and reproducible assessment of the physiological
response to exercise are needed if we are to advance a
mechanistic knowledge of the pediatric origins of CVD.

MONOCYTE FUNCTION: ROLE IN CVD ACROSS THE LIFESPAN
AND METHODS FOR ASSESSMENT
Monocyte function by flow cytometry
Although it is known that monocyte subtype changes in response
to exercise, the literature is scant and this remains a topic ripe for
additional research. The overall concentration of monocytes
doubles in the circulation as a result of the brief exercise protocol
in both children and adults, reflecting the well-described acute
effect of physical activity on leukocytes in general and monocytes
in particular.13,21 Using flow cytometry, we classified subtypes of
circulating monocytes. The emerging paradigm identifies classical
(CD14++CD16−), intermediate (CD14++CD16+), and nonclassical
(CD14+CD16++) subsets.101 The incidence of ischemic cardiovas-
cular events in a retrospective study was associated with an
increased number of classical monocytes.102 Some investigators
postulate that the classical monocytes represent a more pro-
inflammatory population of cells, and consequently are more
likely to promote rather than attenuate atherosclerosis, but more
work is needed to determine whether monocyte subtypes are
useful biomarkers of clinically apparent cardiovascular disease or
disease risk.103 Devêvre et al.104 have shown that obesity is
associated with an increased proportion of intermediate and
nonclassical monocytes in adults. There is evidence to support an
association between intermediate monocyte subtypes and lipid
levels in people with stable atherosclerosis.105

Consistent with studies done previously in other laboratories,106

we noted a significant increase in nonclassical monocytes after
exercise and a parallel reduction in the proportion of classical
monocytes in young adults (Fig. 5). Whether these observed
differences in CD14 and CD16 monocyte surface markers are
accompanied by changes in gene expression has not been fully
elucidated, although Wong et al.107 found that the monocyte
subtypes appeared to have distinct gene expression patterns.
More recent work using single-cell RNA-sequencing supports an
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even wider array of distinct gene expression patterns among
monocytes.108 Whether these patterns are influenced by exercise
in children and adolescents is unknown.

Monocyte function by tissue-engineered microfluidic endothelial
cell systems
One promising and emerging approach for studying monocyte
behavior in a biologically relevant context is the development of
vascularized micro-organ platform that utilizes microfluidics to
drive vessel network formation within a fibrin gel matrix.109

Specifically, such devices incorporate arteriole (high pressure) and
venule (low pressure) microfluidic channels that flank a central cell
chamber where vascular network formation occurs. In preliminary
studies (Fig. 6), we have demonstrated the feasibility of perfusing
purified, fluorescently labeled human monocytes through these
microvascular networks. Over time, a portion of these monocytes
adheres to the endothelial lining of the vascular network. Closer
examination of monocytes after 18 h of perfusion indicates
extravasation of some cells. At both early and late time points,
adherent and extravasated monocytes are quantified within each
chamber, providing our research with an in vitro quantification of
monocyte function.

MONOCYTE GENE EXPRESSION RESPONSE TO EXERCISE:
POSSIBLE MECHANISMS
Changes in monocyte gene expression can result from the
physiological impact of exercise itself [e.g., heat,110 pH,111

hypoxia,112 turbulence/shear stress,113 and the effect of hormones
and other mediators.114] Changes can also result from the shifting
of populations of immune cells whose gene expression patterns in
their marginated pools (e.g., lung, lymph, bone marrow, vascu-
lature) differ from cells that were in the circulation prior to
exercise.115 Our recent data13 permit us to draw some inferences
concerning possible mechanisms. As noted, we discovered that
AREG gene expression in monocytes increased by 19.3-fold
increase following brief, intense exercise. The circulating mono-
cyte count doubled in response to exercise. If the effect of exercise
on AREG gene expression was solely mediated by the addition of
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marginal monocytes to the circulating pool and not by some
direct effect of exercise on monocyte gene expression, then the
19.3-fold increase that we observed for this gene could occur only
if the monocytes that entered the circulation had been expressing
AREG at levels ~40-fold greater than the circulating monocytes, a
highly unlikely scenario. Similarly, the 4.4-fold decrease in another
gene, EGR2, would be difficult to explain only on the basis of
shifting monocytes into the circulating pool. In the extreme case
that the extra-circulatory monocytes had no detectable expression
of this gene, the lowest possible reduction in gene expression
would be a 2-fold decrease. Thus, it is reasonable to speculate that
exercise has some direct effect on gene expression in the
circulating monocytes. Whatever the mechanism(s) may be, it is
clear that relatively brief exercise alters the gene expression profile
of the circulating pool of monocytes, and it is this pool that will
most likely interact with the endothelium in the prevention or
pathogenesis of atherosclerosis.
A number of intriguing observations have been made in recent

years suggesting that systemic neuroadrenergic and hormonal
responses to exercise may attenuate possible harmful inflamma-
tory effects that typically accompany an outpouring of monocytes
and other inflammatory cells into the circulation. Dimitrov et al.116

demonstrated in adults that the proportion of tumor necrosis
factor producing monocytes was suppressed by exercise. Further,
using an elegant in vitro model, they showed that exercise-
associated increases in epinephrine might be responsible for the
modulating effect on the monocytes. In a group of adults with and
without type 2 diabetes (mean age about 56 years old), Durrer
et al.117 found that one bout of low-volume, high-intensity interval
training (HIIT) reduced TLR2 expression in monocytes [toll-like
receptor-2, known to play a role in atherosclerosis118] with no
effect on neutrophils. The authors suggested that HIIT might be a
useful adjunctive therapy to recued chronic inflammation in
patients with type 2 diabetes. It is not yet understood at what
point during childhood and/or adolescence these exercise-
monocyte interactions become manifest.

THE BRIEF LIFE OF THE MONOCYTE; SEX, AGING, AND THE
IMPACT ON THE LONG-TERM DURATION OF EXERCISE EFFECTS
We are only beginning to study and appreciate the profound
impact that sex has on CVD-related biomarkers. In a recent study,
Lew et al.119 discovered from an existing cohort of thousands of
adults that cardiometabolic biomarker profiles differ significantly
between women and men in the general population. Sex
differences were most apparent for biomarkers of adiposity,
endothelial dysfunction, inflammatory cell recruitment, and
cardiac stress and injury. Included in the differences were higher
levels in females of monocyte chemoattractant protein-1. Campesi
et al.120 recently demonstrated that LPS affects ERα (ER–estrogen
receptor) but not ERβ activation status in monocyte-derived
macrophages (MDM) from young men and women. The significant
role of ERα in LPS-mediated inflammatory responses in MDMs may
represent an initial step in elucidating the effect of sex in the
relationship between LPS and ERα, and, ultimately, in the sex-
related differences in the clinical manifestation of atherosclerosis.
When sex differences in monocyte/macrophage function become
apparent during childhood is not known.
It is well established that immune function is influenced by sex

and maturational status early in life.121 These changes continue as
humans age.122 Less is known about the specific functional
characteristics of monocytes. The proportion of the various
circulating leukocyte subtypes changes during puberty and is
influenced by sex.123 Interestingly, in adults, Metcalf et al.124 found
that unstimulated monocyte subsets did not reveal significant
age-related alternations. However, agonist-stimulated monocytes
isolated from adults and old subjects did show alternations at
transcriptional and functional levels implicating dynamic age-

related changes in regulation of the adaptive immune response
and monocyte function associated with defense mechanisms
against bacteria and viruses. To the extent that acute exercise
stimulates monocytes, exercise may prove to be useful at
uncovering elements of monocyte function related to inflamma-
tion and atherosclerosis that would be hidden at rest.
The lifespan of the monocyte is short, ranging from hours to

several days. This raises the question of whether an active
lifestyle during childhood is effective only insofar as the child or
adolescent exercises regularly and frequently enough to alter
the genomic profile and function of the extant population of
circulating monocytes at the moment that they are tested.
Investigators are just beginning to examine whether the state of
physical fitness is associated with changes in gene expression in
leukocytes, and some intriguing data are emerging. For
example, Queiroga et al.125 found that gene expression (from
whole blood) of PPAR-γ was associated with fitness (as V̇O2max)
in V̇O2max discordant monozygotic twins. Flynn et al.126 showed
that resistance exercise training appeared to lower TLR4 and
CD14 mRNA (from whole blood) in older women. Longer-term
effects of a physically active lifestyle on short-lived cells like
monocytes could occur if exercise somehow influenced
bone marrow stem cells, and while much work needs to be
done, Emmons et al.127 showed in murine models that exercise
can alter trafficking of bone marrow derived hematopoietic
stem cells.

TOWARD THE FUTURE
The data reviewed herein suggest the need to examine the
pediatric origins of CVD in novel ways. The review highlights the
value of exercise in eliciting monocyte function that might be
hidden at rest. Although the value of studies directly in children in
terms of relevance to the development of new therapeutic
approaches is clear, any research in pediatric populations must
take advantage of new technologies that expand the reach of
minimally invasive approaches. Advances in understanding
inflammatory mechanisms that contribute to the earliest mani-
festations of CVD will likely come from studies that combine a
variety of technologies. Much work needs to be done. Data-
intense CPET involving gas exchange, HR, and blood pressure
variables must incorporate protocols that reflect real world
patterns of exercise in children. Machine learning data analytics
should now be applied to CPET to gain insights into gas exchange
signals heretofore impossible to achieve with standardized
approaches. Noninvasive measures of vascular anatomy and
responsiveness using advanced ultrasound technology along with
NIRS approaches to quantify blood flow and dynamic patterns of
hemoglobin can be done in healthy children and in children with
a variety of conditions (obesity, ALL survivors, or children with
sickle cell disease) to yield a better understanding of abnormal
exercise responses in specific diseases and conditions. Functional
and genomic monocyte responses should be gauged in the
context of these advanced dynamic phenotypic metrics. It is this
synergy of tools that will ultimately lead to a better understanding
of the earliest pathogenesis of CVD in children, and shed light on
disease and risk progression across the lifespan.
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