Dilated hypertrophy: a distinct pattern of cardiac remodeling in preterm infants

Abstract

Background

Young adults born preterm have remodeled hearts, i.e., altered cardiac shape and size with impaired cardiac function. At present, the natural history and pattern of prematurity related cardiac remodeling are not clearly established. The aim of this study was to compare the left ventricle (LV) geometry and function of preterm infants at 36 weeks postmenstrual age (PMA) with gestation matched newborn infants.

Methods

LV end diastolic volume index (LV EDVI), LV mass index (LVMI), relative wall thickness (RWT), and sphericity index (SI) were prospectively obtained with echocardiography. LV geometry was classified according to the Gaasch method. LV function was assessed by determining ejection fraction (EF), longitudinal strain (LS), mitral annulus systolic motion (s’), and estimated LV filling pressure (E/e’).

Results

Eighty-three preterm infants between 23 and 29 weeks gestation, and 40 infants of 36 weeks gestation at birth were analysed. LV EDVI, LVMI, SI, LS, s’, and E/e’ were higher in preterm group while RWT and EF were comparable between groups. LV showed normal geometry in 55.4%, physiological enlargement in 23% and dilated hypertrophy in 21.6% preterm infants.

Conclusion

At 36 week, preterm infants have significantly dilated, hypertrophied, and more spherical LV with impaired diastolic function compared with PMA matched newborn infants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Barker, D. J., Winter, P. D., Osmond, C., Margetts, B. & Simmonds, S. J. Weight in infancy and death from ischaemic heart disease. Lancet 2, 577–80 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    Dalziel, S. R., Parag, V., Rodgers, A. & Harding, J. E. Cardiovascular risk factors at age 30 following pre-term birth. Int J. Epidemiol. 36, 907–15 (2007).

    Article  Google Scholar 

  3. 3.

    Darlow B. A., Horwood L. J., Woodward L. J. et al. The New Zealand 1986 very low birth weight cohort as young adults: mapping the road ahead. BMC Pediatr. 15, (2015).

  4. 4.

    Wilson-Costello, D. Is there evidence that long-term outcomes have improved with intensive care? Semin. Fetal Neonatal Med. 12, 344–54 (2007).

    Article  Google Scholar 

  5. 5.

    Aye, C. Y. L., Lewandowski, A. J. & Lamata, P. et al. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm. Pediatr. Res. 82, 36–46 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Carr, H., Cnattingius, S., Granath, F., Ludvigsson, J. F. & Edstedt Bonamy, A. K. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol. 69, 2634–42 (2017).

    Article  Google Scholar 

  7. 7.

    Kozak-Barany, A., Jokinen, E., Saraste, M., Tuominen, J. & Valimaki, I. Development of left ventricular systolic and diastolic function in preterm infants during the first month of life: a prospective follow-up study. J. Pediatr. 139, 539–45 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Lewandowski, A. J., Augustine, D. & Lamata, P. et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127, 197–206 (2013).

    Article  Google Scholar 

  9. 9.

    Li, F., Wang, X., Capasso, J. M. & Gerdes, A. M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28, 1737–46 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    Mayhew, T. M., Pharaoh, A., Austin, A. & Fagan, D. G. Stereological estimates of nuclear number in human ventricular cardiomyocytes before and after birth obtained using physical disectors. J. Anat. 191(Pt 1), 107–15 (1997).

    Article  Google Scholar 

  11. 11.

    Bensley, J. G., Stacy, V. K., De Matteo, R., Harding, R. & Black, M. J. Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur. Heart J. 31, 2058–66 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Kehat, I. & Molkentin, J. D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 122, 2727–35 (2010).

    Article  Google Scholar 

  13. 13.

    Rudolph, A. M. Myocardial growth before and after birth: clinical implications. Acta Paediatr. 89, 129–33 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Huckstep, O. J., Williamson, W. & Telles, F. et al. Physiological stress elicits impaired left ventricular function in preterm-born adults. J. Am. Coll. Cardiol. 71, 1347–56 (2018).

    Article  Google Scholar 

  15. 15.

    Mohlkert, L. A. Hallberg J., Broberg O. et al. The preterm heart in childhood: left ventricular structure, geometry, and function assessed by echocardiography in 6-year-old survivors of periviable births. J Am. Heart Assoc. 7, 2018.

  16. 16.

    Cox D. J., Bai W., Price A. N., Edwards A. D., Rueckert D. et al. Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatri. Res. 2018.

  17. 17.

    Barbieri, A., Rossi, A. & Gaibazzi, N. et al. Refined 4-group classification of left ventricular hypertrophy based on ventricular concentricity and volume dilatation outlines distinct noninvasive hemodynamic profiles in a large contemporary echocardiographic population. Echocardiography. 35, 1258–65 (2018).

    Article  Google Scholar 

  18. 18.

    Gaasch, W. H. & Zile, M. R. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J. Am. Coll. Cardiol. 58, 1733–40 (2011).

    Article  Google Scholar 

  19. 19.

    Khouri, M. G., Peshock, R. M., Ayers, C. R., de Lemos, J. A. & Drazner, M. H. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas heart study. Circ. Cardiovasc. Imaging. 3, 164–71 (2010).

    Article  Google Scholar 

  20. 20.

    Marwick, T. H., Gillebert, T. C. & Aurigemma, G. et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE)dagger. Eur. Heart J. Cardiovasc. Imaging. 16, 577–605 (2015).

    PubMed  Google Scholar 

  21. 21.

    Zile, M. R., Gaasch, W. H., Patel, K., Aban, I. B. & Ahmed, A. Adverse left ventricular remodeling in community-dwelling older adults predicts incident heart failure and mortality. JACC Heart Fail. 2, 512–22 (2014).

    Article  Google Scholar 

  22. 22.

    Lopez, L., Colan, S. D. & Frommelt, P. C. et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 23, 465–95 (2010).

    Article  Google Scholar 

  23. 23.

    de Waal, K., Phad, N., Lakkundi, A. & Tan, P. Cardiac function after the immediate transitional period in very preterm infants using speckle tracking analysis. Pediatr. Cardiol. 37, 295–303 (2016).

    Article  Google Scholar 

  24. 24.

    Phad, N., de Waal, K. & Jones, M. Agreement and reliability of the velocity time integral method and the method of disks to determine stroke volume in preterm infants. Early Hum. Dev. 125, 31–4 (2018).

    Article  Google Scholar 

  25. 25.

    Bergmann, O., Zdunek, S. & Felker, A. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–75 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Friedman, W. F. The intrinsic physiologic properties of the developing heart. Prog. Cardiovasc. Dis. 15, 87–111 (1972).

    CAS  Article  Google Scholar 

  27. 27.

    de Waal, K., Phad, N., Collins, N. & Boyle, A. Cardiac remodeling in preterm infants with prolonged exposure to a patent ductus arteriosus. Congenit. Heart Dis. 12, 364–72 (2017).

    Article  Google Scholar 

  28. 28.

    Hooper, S. B., Te Pas, A. B., Lang, J. & van Vonderen, J. J. et al. Cardiovascular transition at birth: a physiological sequence. Pediatr. Res. 77, 608–14 (2015).

    Article  Google Scholar 

  29. 29.

    Morton, S. U. & Brodsky, D. Fetal physiology and the transition to extrauterine life. Clin. Perinatol. 43, 395–407 (2016).

    Article  Google Scholar 

  30. 30.

    Pejovic, B., Peco-Antic, A. & Marinkovic-Eric, J. Blood pressure in non-critically ill preterm and full-term neonates. Pediatr. Nephrol. 22, 249–57 (2007).

    Article  Google Scholar 

  31. 31.

    Krumholz, H. M., Larson, M. & Levy, D. Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J. Am. Coll. Cardiol. 25, 879–84 (1995).

    CAS  Article  Google Scholar 

  32. 32.

    Kowalski, R. R., Beare, R., Doyle, L. W., Smolich, J. J. & Cheung, M. M. Victorian infant collaborative study. elevated blood pressure with reduced left ventricular and aortic dimensions in adolescents born extremely preterm. J. Pediatr. 172, e2 (2016).

    Article  Google Scholar 

  33. 33.

    Choudhry, S., Salter, A. & Cunningham, T. W. et al. Normative left ventricular M-Mode echocardiographic values in preterm infants up to 2 kg. J. Am. Soc. Echocardiogr. 30, 781–9 e4 (2017).

    Article  Google Scholar 

  34. 34.

    Guzeltas, A. & Eroglu, A. G. Reference values for echocardiographic measurements of healthy newborns. Cardiol. Young. 22, 152–7 (2012).

    Article  Google Scholar 

  35. 35.

    Kampmann, C., Wiethoff, C. M. & Wenzel, A. et al. Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart 83, 667–72 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    Di Maria, M. V., Younoszai, A. K. & Sontag, M. K. et al. Maturational changes in diastolic longitudinal myocardial velocity in preterm infants. J. Am. Soc. Echocardiogr. 28, 1045–52 (2015).

    Article  Google Scholar 

  37. 37.

    Hirose, A., Khoo, N. S. & Aziz, K. et al. Evolution of left ventricular function in the preterm infant. J. Am. Soc. Echocardiogr. 28, 302–8 (2015).

    Article  Google Scholar 

  38. 38.

    Schubert, U., Muller, M., Abdul-Khaliq, H. & Norman, M. Preterm birth is associated with altered myocardial function in infancy. J. Am. Soc. Echocardiogr. 29, 670–8 (2016).

    Article  Google Scholar 

  39. 39.

    Joyce, J. J., Dickson, P. I., Qi, N., Noble, J. E., Raj, J. U. & Baylen, B. G. Normal right and left ventricular mass development during early infancy. Am. J. Cardiol. 93, 797–801 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank prof John Attia for his guidance on statistical analysis.

Author information

Affiliations

Authors

Contributions

N.S.P. contributed to the study design, performed cardiac scans, collected and analysed data, and drafted the initial paper. K.W. contributed to study design, data collection, and revised the papers. C.H. and C.O. performed the statistical analysis and revised the paper.

Corresponding author

Correspondence to Nilkant S. Phad.

Ethics declarations

Financial support statement

Authors received John Hunter Hospital Charitable Trust research grant (2015) for this study. N. Phad also received the University of Newcastle research scholarship for this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phad, N.S., de Waal, K., Holder, C. et al. Dilated hypertrophy: a distinct pattern of cardiac remodeling in preterm infants. Pediatr Res 87, 146–152 (2020). https://doi.org/10.1038/s41390-019-0568-4

Download citation

Further reading