Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stimulating and maintaining spontaneous breathing during transition of preterm infants

Abstract

Most preterm infants breathe at birth, but need additional respiratory support due to immaturity of the lung and respiratory control mechanisms. To avoid lung injury, the focus of respiratory support has shifted from invasive towards non-invasive ventilation. However, applying effective non-invasive ventilation is difficult due to mask leak and airway obstruction. The larynx has been overlooked as one of the causes for obstruction, preventing face mask ventilation from inflating the lung. The larynx remains mostly closed at birth, only opening briefly during a spontaneous breath. Stimulating and supporting spontaneous breathing could enhance the success of non-invasive ventilation by ensuring that the larynx remains open. Maintaining adequate spontaneous breathing and thereby reducing the need for invasive ventilation is not only important directly after birth, but also in the first hours after admission to the NICU. Respiratory distress syndrome is an important cause of respiratory failure. Traditionally, treatment of RDS required intubation and mechanical ventilation to administer exogenous surfactant. However, new ways have been implemented to administer surfactant and preserve spontaneous breathing while maintaining non-invasive support. In this narrative review we aim to describe interventions focused on stimulation and maintenance of spontaneous breathing of preterm infants in the first hours after birth.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Wiswell, T. E. Resuscitation in the delivery room: lung protection from the first breath. Respir. Care 56, 1360–1367 (2011). Discussion 1367–1368.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    van Vonderen, J. J., Hooper, S. B., Hummler, H. D., Lopriore, E. & te Pas, A. B. Effects of a sustained inflation in preterm infants at birth. J. Pediatr. 165, 903–908 e1 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    O’Donnell, C. P., Kamlin, C. O., Davis, P. G. & Morley, C. J. Crying and breathing by extremely preterm infants immediately after birth. J. Pediatr. 156, 846–847 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Schmolzer, G. M. et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ 347, f5980 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Roehr, C. C. et al. Positive effects of early continuous positive airway pressure on pulmonary function in extremely premature infants: results of a subgroup analysis of the COIN trial. Arch. Dis. Child. Fetal Neonatal Ed. 96, F371–F373 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Mehler, K. et al. Outcome of extremely low gestational age newborns after introduction of a revised protocol to assist preterm infants in their transition to extrauterine life. Acta Paediatr. 101, 1232–1239 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Thomas, C. W., Meinzen-Derr, J., Hoath, S. B. & Narendran, V. Neurodevelopmental outcomes of extremely low birth weight infants ventilated with continuous positive airway pressure vs. mechanical ventilation. Indian J. Pediatr. 79, 218–223 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Morley, C. J. et al. Nasal CPAP or intubation at birth for very preterm infants. N. Engl. J. Med. 358, 700–708 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Wintermark, P., Tolsa, J. F., Van Melle, G., Forcada-Guex, M. & Moessinger, A. C. Long-term outcome of preterm infants treated with nasal continuous positive airway pressure. Eur. J. Pediatr. 166, 473–483 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network et al. Early CPAP versus surfactant in extremely preterm infants. N. Engl. J. Med. 362, 1970–1979 (2010).

  11. 11.

    Schilleman, K. et al. Evaluating manual inflations and breathing during mask ventilation in preterm infants at birth. J. Pediatr. 162, 457–463 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Schmolzer, G. M. et al. Assessment of tidal volume and gas leak during mask ventilation of preterm infants in the delivery room. Arch. Dis. Child. Fetal Neonatal Ed. 95, F393–F397 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Schilleman, K. et al. Leak and obstruction with mask ventilation during simulated neonatal resuscitation. Arch. Dis. Child. Fetal Neonatal Ed. 95, F398–F402 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Palme, C., Nystrom, B. & Tunell, R. An evaluation of the efficiency of face masks in the resuscitation of newborn infants. Lancet 1, 207–210 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Wood, F. E., Morley, C. J., Dawson, J. A. & Davis, P. G. A respiratory function monitor improves mask ventilation. Arch. Dis. Child. Fetal Neonatal Ed. 93, F380–F381 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    UK RC. Newborn Life Support, 3rd edn (UK Resuscitation Council, London, 2011).

  17. 17.

    Kattwinkel, J. Textbook of Neonatal Resuscitation, 6th edn (AAP, Elk Grove, Chicago, IL, 2011).

  18. 18.

    Wood, F. E. et al. Assessing the effectiveness of two round neonatal resuscitation masks: study 1. Arch. Dis. Child. Fetal Neonatal Ed. 93, F235–F237 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    van Vonderen, J. J., Witlox, R. S., Kraaij, S. & te Pas, A. B. Two-minute training for improving neonatal bag and mask ventilation. PLoS ONE 9, e109049 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Narayanan, I., Mendhi, M., Bansil, P. & Coffey, P. S. Evaluation of simulated ventilation techniques with the upright and conventional self-inflating neonatal resuscitators. Respir. Care 62, 1428–1436 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    O’Donnell, C. P. et al. Neonatal resuscitation 2: an evaluation of manual ventilation devices and face masks. Arch. Dis. Child. Fetal Neonatal Ed. 90, F392–F396 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Schmolzer, G. M. et al. Airway obstruction and gas leak during mask ventilation of preterm infants in the delivery room. Arch. Dis. Child. Fetal Neonatal Ed. 96, F254–F257 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Finer, N. N., Rich, W., Wang, C. & Leone, T. Airway obstruction during mask ventilation of very low birth weight infants during neonatal resuscitation. Pediatrics 123, 865–869 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Crawshaw, J. R. et al. Laryngeal closure impedes non-invasive ventilation at birth. Arch. Dis. Child. Fetal Neonatal Ed. 103, F112–F119 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Harding, R., Bocking, A. D. & Sigger, J. N. Influence of upper respiratory tract on liquid flow to and from fetal lungs. J. Appl Physiol. (1985) 61, 68–74 (1986).

    CAS  Article  Google Scholar 

  26. 26.

    Harding, R., Bocking, A. D. & Sigger, J. N. Upper airway resistances in fetal sheep: the influence of breathing activity. J. Appl Physiol. (1985) 60, 160–165 (1986).

    CAS  Article  Google Scholar 

  27. 27.

    van Vonderen, J. J., Hooper, S. B., Krabbe, V. B., Siew, M. L. & Te Pas, A. B. Monitoring tidal volumes in preterm infants at birth: mask versus endotracheal ventilation. Arch. Dis. Child. Fetal Neonatal Ed. 100, F43–F46 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Sweet, D. G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2016 update. Neonatology 111, 107–125 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Ammari, A. et al. Variables associated with the early failure of nasal CPAP in very low birth weight infants. J. Pediatr. 147, 341–347 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Kribs, A. Minimally invasive surfactant therapy and noninvasive respiratory support. Clin. Perinatol. 43, 755–771 (2016).

    PubMed  Article  Google Scholar 

  31. 31.

    Dargaville, P. A., Aiyappan, A., Cornelius, A., Williams, C. & De Paoli, A. G. Preliminary evaluation of a new technique of minimally invasive surfactant therapy. Arch. Dis. Child. Fetal Neonatal Ed. 96, F243–F248 (2011).

    PubMed  Article  Google Scholar 

  32. 32.

    Hooper, S. B., Te Pas, A. B. & Kitchen, M. J. Respiratory transition in the newborn: a three-phase process. Arch. Dis. Child. Fetal Neonatal Ed. 101, F266–F271 (2016).

    PubMed  Article  Google Scholar 

  33. 33.

    te Pas, A. B. & Hooper, S. B. in Fetal & Neonatal Lung Development (eds Jobe, A. H., Whitsett, J. A. & Abman, S. H.) Ch. 9 (Cambridge University Press, New York, 2016).

  34. 34.

    Faridy, E. E. Instinctive resuscitation of the newborn rat. Respir. Physiol. 51, 1–19 (1983).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ronca, A. E. & Alberts, J. R. Cutaneous induction of breathing in perinatal rats. Psychobiology 23, 261–269 (1995).

    Google Scholar 

  36. 36.

    Tattersall, G. J. & Milsom, W. K. Hypothermia-induced respiratory arrest and recovery in neonatal rats. Respir. Physiol. Neurobiol. 137, 29–40 (2003).

    PubMed  Article  Google Scholar 

  37. 37.

    Ioffe, S., Jansen, A. H., Russell, B. J. & Chernick, V. Respiratory response to somatic stimulation in fetal lambs during sleep and wakefulness. Pflug. Arch. 388, 143–148 (1980).

    CAS  Article  Google Scholar 

  38. 38.

    Boddy, K., Dawes, G. S., Fisher, R., Pinter, S. & Robinson, J. S. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J. Physiol. 243, 599–618 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Lee, A. C. et al. Neonatal resuscitation and immediate newborn assessment and stimulation for the prevention of neonatal deaths: a systematic review, meta-analysis and Delphi estimation of mortality effect. BMC Public Health 11(Suppl 3), S12 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Wyllie, J. et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 95, 249–263 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Dekker, J. et al. Tactile stimulation to stimulate spontaneous breathing during stabilization of preterm infants at birth: a retrospective analysis. Front. Pediatr. 5, 61 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Gaertner, V. D., Flemmer, S. A., Lorenz, L., Davis, P. G. & Kamlin, C. O. F. Physical stimulation of newborn infants in the delivery room. Arch. Dis. Child. Fetal Neonatal Ed. 103, F132–F136 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Baik-Schneditz, N. et al. Tactile stimulation during neonatal transition and its effect on vital parameters in neonates during neonatal transition. Acta Paediatr. 107, 952–957 (2018).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    van Henten, T. M. A. et al. Tactile stimulation in the delivery room: do we practice what we preach? Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2018-316344 (2019).

  45. 45.

    Ishida, K., Yasuda, Y. & Miyamura, M. Cardiorespiratory response at the onset of passive leg movements during sleep in humans. Eur. J. Appl. Physiol. Occup. Physiol. 66, 507–513 (1993).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kesavan, K., Frank, P., Cordero, D. M., Benharash, P. & Harper, R. M. Neuromodulation of limb proprioceptive afferents decreases apnea of prematurity and accompanying intermittent hypoxia and bradycardia. PLoS ONE 11, e0157349 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47.

    Remmers, J. E. & Marttila, I. Action of intercostal muscle afferents on the respiratory rhythm of anesthetized cats. Respir. Physiol. 24, 31–41 (1975).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Trippenbach, T., Kelly, G. & Marlot, D. Respiratory effects of stimulation of intercostal muscles and saphenous nerve in kittens. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 54, 1736–1744 (1983).

    CAS  PubMed  Google Scholar 

  49. 49.

    Morley, C. New Australian Neonatal Resuscitation Guidelines. J. Paediatr. Child Health 43, 6–8 (2007).

    PubMed  Article  Google Scholar 

  50. 50.

    Rohana, J., Khairina, W., Boo, N. Y. & Shareena, I. Reducing hypothermia in preterm infants with polyethylene wrap. Pediatr. Int. 53, 468–474 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Castellucci, V. F. & Kandel, E. R. A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia. Proc. Natl Acad. Sci. USA 71, 5004–5008 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Dekker, J. et al. Repetitive versus standard tactile stimulation of preterm infants at birth - a randomized controlled trial. Resuscitation 127, 37–43 (2018).

    PubMed  Article  Google Scholar 

  53. 53.

    Murphy, P. J. The fetal circulation. Continuing Educ. Anesth. Crit. Care Pain 5, 107–112 (2005).

  54. 54.

    Patrick, J., Fetherston, W., Vick, H. & Voegelin, R. Human fetal breathing movements and gross fetal body movements at weeks 34 to 35 of gestation. Am. J. Obstet. Gynecol. 130, 693–699 (1978).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Hooper, S. B. & Harding, R. Changes in lung liquid dynamics induced by prolonged fetal hypoxemia. J. Appl Physiol. (1985) 69, 127–135 (1990).

    CAS  Article  Google Scholar 

  56. 56.

    Baier, R. J. et al. Effects of various concentrations of O-2 and umbilical-cord occlusion on fetal breathing and behavior. J. Appl Physiol. 68, 1597–1604 (1990).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Dawes, G. in Foetal and Neonatal Physiology 125–159 (Year Book, Chicago, IL, 1968).

  58. 58.

    Baier, R. J. et al. Effects of various concentrations of O2 and umbilical cord occlusion on fetal breathing and behavior. J. Appl Physiol. (1985) 68, 1597–1604 (1990).

    CAS  Article  Google Scholar 

  59. 59.

    Gluckman, P. D., Gunn, T. R. & Johnston, B. M. The effect of cooling on breathing and shivering in unanaesthetized fetal lambs in utero. J. Physiol. 343, 495–506 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Davey, M. G., Moss, T. J., McCrabb, G. J. & Harding, R. Prematurity alters hypoxic and hypercapnic ventilatory responses in developing lambs. Respir. Physiol. 105, 57–67 (1996).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Irestedt, L., Dahlin, I., Hertzberg, T., Sollevi, A. & Lagercrantz, H. Adenosine concentration in umbilical cord blood of newborn infants after vaginal delivery and cesarean section. Pediatr. Res. 26, 106–108 (1989).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Whyte, S. D., Sinha, A. K. & Wyllie, J. P. Neonatal resuscitation–a practical assessment. Resuscitation 40, 21–25 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Clyman, R. I., Saugstad, O. D. & Mauray, F. Reactive oxygen metabolites relax the lamb ductus arteriosus by stimulating prostaglandin production. Circ. Res. 64, 1–8 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Saugstad, O. D. Resuscitation with room-air or oxygen supplementation. Clin. Perinatol. 25, 741–756 (1998). xi.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Chen, Y., Whitney, P. L. & Frank, L. Comparative responses of premature versus full-term newborn rats to prolonged hyperoxia. Pediatr. Res. 35, 233–237 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Tan, A., Schulze, A., O’Donnell, C. P. & Davis, P. G. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst. Rev. CD002273 (2005).

  67. 67.

    Saugstad, O. D., Ramji, S. & Vento, M. Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol. Neonate 87, 27–34 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Rabi, Y., Rabi, D. & Yee, W. Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation 72, 353–363 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Saugstad, O. D. Bronchopulmonary dysplasia and oxidative stress: are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr. 86, 1277–1282 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Davis, J. M. Role of oxidant injury in the pathogenesis of neonatal lung disease. Acta Paediatr. Suppl. 91, 23–25 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Dawson, J. A. et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics 125, e1340–e1347 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Goos, T. G. et al. Observing the resuscitation of very preterm infants: are we able to follow the oxygen saturation targets? Resuscitation 84, 1108–1113 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    White, L. N. et al. Achievement of saturation targets in preterm infants < 32 weeks’ gestational age in the delivery room. Arch. Dis. Child. Fetal Neonatal Ed. 102, F423–F427 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Armanian, A. M. & Badiee, Z. Resuscitation of preterm newborns with low concentration oxygen versus high concentration oxygen. J. Res. Pharm. Pract. 1, 25–29 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Kapadia, V. S. et al. Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics 132, e1488–e1496 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Oei, J. L. et al. Targeted oxygen in the resuscitation of preterm infants, a randomized clinical trial. Pediatrics 139, e20161452 (2017).

  77. 77.

    Rook, D. et al. Resuscitation of preterm infants with different inspired oxygen fractions. J. Pediatr. 164, 1322–6 e3 (2014).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Wang, C. L. et al. Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics 121, 1083–1089 (2008).

    PubMed  Article  Google Scholar 

  79. 79.

    van Vonderen, J. J. et al. The administration of 100% oxygen and respiratory drive in very preterm infants at birth. PLoS ONE 8, e76898 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  80. 80.

    Oei, J. L. et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 103, F446–F454 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Chandrasekharan, P. et al. Effect of various inspired oxygen concentrations on pulmonary and systemic hemodynamics and oxygenation during resuscitation in a transitioning preterm model. Pediatr. Res. 84, 743–750 (2018).

  82. 82.

    Boronat, N. et al. Survival and neurodevelopmental outcomes of preterms resuscitated with different oxygen fractions. Pediatrics 138, e20161405 (2016).

  83. 83.

    Escrig, R. et al. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics 121, 875–881 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Kumar, V. H. et al. Oxygen resuscitation and oxidative-stress biomarkers in premature infants. Res. Rep. Neonatol. 4, 91–99 (2014).

    Google Scholar 

  85. 85.

    Vento, M. et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124, e439–e449 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Rabi, Y., Singhal, N. & Nettel-Aguirre, A. Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. Pediatrics 128, e374–e381 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Julien, C. A., Joseph, V. & Bairam, A. Caffeine reduces apnea frequency and enhances ventilatory long-term facilitation in rat pups raised in chronic intermittent hypoxia. Pediatr. Res. 68, 105–111 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Schmidt, B. et al. Caffeine therapy for apnea of prematurity. N. Engl. J. Med. 354, 2112–2121 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Kreutzer, K. & Bassler, D. Caffeine for apnea of prematurity: a neonatal success story. Neonatology 105, 332–336 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Vliegenthart, R., Miedema, M., Hutten, G. J., van Kaam, A. H. & Onland, W. High versus standard dose caffeine for apnoea: a systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 103, F523–F529 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Henderson-Smart, D. J. & Steer, P. A. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst. Rev. CD000273 (2010).

  92. 92.

    Dobson, N. R. et al. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J. Pediatr. 164, 992–8 e3 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Lodha, A. et al. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr. 169, 33–38 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Patel, R. M., Leong, T., Carlton, D. P. & Vyas-Read, S. Early caffeine therapy and clinical outcomes in extremely preterm infants. J. Perinatol. 33, 134–140 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Katheria, A. C. et al. A pilot randomized controlled trial of early versus routine caffeine in extremely premature infants. Am. J. Perinatol. 32, 879–886 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Kraaijenga, J. V., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants. J. Pediatr. 167, 70–75 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Dekker, J. et al. Caffeine to improve breathing effort of preterm infants at birth: a randomized controlled trial. Pediatr. Res. 82, 290–296 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Dunwiddie, T. V. & Masino, S. A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Rivkees, S. A. & Wendler, C. C. Adverse and protective influences of adenosine on the newborn and embryo: implications for preterm white matter injury and embryo protection. Pediatr. Res. 69, 271–278 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Mose, T. et al. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system. J. Toxicol. Environ. Health A 71, 984–991 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Binder-Heschl, C. et al. Haemodynamic effects of prenatal caffeine on the cardiovascular transition in ventilated preterm lambs. PLoS ONE 13, e0200572 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  102. 102.

    Sommers, R. et al. Hemodynamic effects of delayed cord clamping in premature infants. Pediatrics 129, e667–e672 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Meyer, M. P. & Mildenhall, L. Delayed cord clamping and blood flow in the superior vena cava in preterm infants: an observational study. Arch. Dis. Child. Fetal Neonatal Ed. 97, F484–F486 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Bhatt, S. et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J. Physiol. 591, 2113–2126 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Polglase, G. R. et al. Ventilation onset prior to umbilical cord clamping (physiological-based cord clamping) improves systemic and cerebral oxygenation in preterm lambs. PLoS ONE 10, e0117504 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  106. 106.

    Sippell, W. G., Becker, H., Versmold, H. T., Bidlingmaier, F. & Knorr, D. Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period. I. Spontaneous delivery. J. Clin. Endocrinol. Metab. 46, 971–985 (1978).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Alvaro, R. E. et al. Prostaglandins are responsible for the inhibition of breathing observed with a placental extract in fetal sheep. Respir. Physiol. Neurobiol. 144, 35–44 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Piper, P. J., Vane, J. R. & Wyllie, J. H. Inactivation of prostaglandins by the lungs. Nature 225, 600–604 (1970).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Adamson, S. L., Kuipers, I. M. & Olson, D. M. Umbilical cord occlusion stimulates breathing independent of blood gases and pH. J. Appl Physiol. (1985) 70, 1796–1809 (1991).

    CAS  Article  Google Scholar 

  110. 110.

    Kitterman, J. A., Liggins, G. C., Clements, J. A. & Tooley, W. H. Stimulation of breathing movements in fetal sheep by inhibitors of prostaglandin synthesis. J. Dev. Physiol. 1, 453–466 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Katheria, A. et al. Neonatal resuscitation with an intact cord: a randomized clinical trial. J. Pediatr. 178, 75–80 e3 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Brouwer, E. et al. Physiological-based cord clamping in preterm infants using a new purpose-built resuscitation table: a feasibility study. Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2018-315483 (2018).

  113. 113.

    Polglase, G. R. et al. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. J. Appl Physiol. (1985) 99, 1453–1461 (2005).

    Article  Google Scholar 

  114. 114.

    Probyn, M. E. et al. Positive end expiratory pressure during resuscitation of premature lambs rapidly improves blood gases without adversely affecting arterial pressure. Pediatr. Res. 56, 198–204 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Dysart, K. C. Physiologic basis for nasal continuous positive airway pressure, heated and humidified high-flow nasal cannula, and nasal ventilation. Clin. Perinatol. 43, 621–631 (2016).

    PubMed  Article  Google Scholar 

  116. 116.

    Fischer, H. S. & Buhrer, C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics 132, e1351–e1360 (2013).

    PubMed  Article  Google Scholar 

  117. 117.

    Martherus, T. et al. Supporting breathing of preterm infants at birth: a narrative review. Arch. Dis. Child. Fetal Neonatal Ed. 104, F102–F107 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Kitchen, M. J. et al. Changes in positive end-expiratory pressure alter the distribution of ventilation within the lung immediately after birth in newborn rabbits. PLoS ONE 9, e93391 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  119. 119.

    Ho, J. J., Subramaniam, P. & Davis, P. G. Continuous distending pressure for respiratory distress in preterm infants. Cochrane Database Syst. Rev. CD002271 (2015).

  120. 120.

    Sandri, F. et al. Prophylactic or early selective surfactant combined with nCPAP in very preterm infants. Pediatrics 125, e1402–e1409 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Fujiwara, T. et al. Artificial surfactant therapy in hyaline-membrane disease. Lancet 1, 55–59 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Bahadue, F. L. & Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 11, CD001456 (2012).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Verder, H. et al. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks’ gestation. Pediatrics 103, E24 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Gopel, W. et al. Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial. Lancet 378, 1627–1634 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  125. 125.

    van der Burg, P. S., de Jongh, F. H., Miedema, M., Frerichs, I. & van Kaam, A. H. Effect of minimally invasive surfactant therapy on lung volume and ventilation in preterm infants. J. Pediatr. 170, 67–72 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  126. 126.

    de Waal, C. G., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. The effect of minimally invasive surfactant therapy on diaphragmatic activity. Neonatology 114, 76–81 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Isayama, T., Iwami, H., McDonald, S. & Beyene, J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: a systematic review and meta-analysis. JAMA 316, 611–624 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Aldana-Aguirre, J. C., Pinto, M., Featherstone, R. M. & Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 102, F17–F23 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Lau, C. S. M., Chamberlain, R. S. & Sun, S. Less invasive surfactant administration reduces the need for mechanical ventilation in preterm infants: a meta-analysis. Glob. Pediatr. Health 4, 2333794X17696683 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Rigo, V., Lefebvre, C. & Broux, I. Surfactant instillation in spontaneously breathing preterm infants: a systematic review and meta-analysis. Eur. J. Pediatr. 175, 1933–1942 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Dargaville, P. A., Ali, S. K. M., Jackson, H. D., Williams, C. & De Paoli, A. G. Impact of minimally invasive surfactant therapy in preterm infants at 29-32 weeks gestation. Neonatology 113, 7–14 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Klotz, D., Porcaro, U., Fleck, T. & Fuchs, H. European perspective on less invasive surfactant administration-a survey. Eur. J. Pediatr. 176, 147–154 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Carbajal, R., Eble, B. & Anand, K. J. Premedication for tracheal intubation in neonates: confusion or controversy? Semin. Perinatol. 31, 309–317 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Pokela, M. L. & Koivisto, M. Physiological changes, plasma beta-endorphin and cortisol responses to tracheal intubation in neonates. Acta Paediatr. 83, 151–156 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Stow, P. J., McLeod, M. E., Burrows, F. A. & Creighton, R. E. Anterior fontanelle pressure responses to tracheal intubation in the awake and anaesthetized infant. Br. J. Anaesth. 60, 167–170 (1988).

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Grunau, R. E., Holsti, L. & Peters, J. W. Long-term consequences of pain in human neonates. Semin. Fetal Neonatal Med. 11, 268–275 (2006).

    PubMed  Article  Google Scholar 

  137. 137.

    Kamata, M. & Tobias, J. D. Remifentanil: applications in neonates. J. Anesth. 30, 449–460 (2016).

    PubMed  Article  Google Scholar 

  138. 138.

    de Kort, E. H., Hanff, L. M., Roofthooft, D., Reiss, I. K. & Simons, S. H. Insufficient sedation and severe side effects after fast administration of remifentanil during INSURE in preterm newborns. Neonatology 111, 172–176 (2017).

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Shah, P. S. & Shah, V. S. Propofol for procedural sedation/anaesthesia in neonates. Cochrane Database Syst. Rev. CD007248 (2011).

  140. 140.

    Smits, A., Thewissen, L., Caicedo, A., Naulaers, G. & Allegaert, K. Propofol dose-finding to reach optimal effect for (semi-)elective intubation in neonates. J. Pediatr. 179, 54–60 e9 (2016).

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Piersigilli, F. et al. Propofol and fentanyl sedation for laser treatment of retinopathy of prematurity to avoid intubation. J. Matern. Fetal Neonatal Med. 32, 517–521 (2017).

  142. 142.

    Dekker, J. et al. Sedation during minimal invasive surfactant therapy in preterm infants. Neonatology 109, 308–313 (2016).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Ghanta, S. et al. Propofol compared with the morphine, atropine, and suxamethonium regimen as induction agents for neonatal endotracheal intubation: a randomized, controlled trial. Pediatrics 119, e1248–e1255 (2007).

    PubMed  Article  Google Scholar 

  144. 144.

    Dekker, J. et al. Sedation during minimal invasive surfactant therapy: a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2018-315015 (2018).

  145. 145.

    Descamps, C. S. et al. Propofol for sedation during less invasive surfactant administration in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 102, F465 (2017).

    PubMed  Article  Google Scholar 

  146. 146.

    Cruz, M. D., Fernandes, A. M. & Oliveira, C. R. Epidemiology of painful procedures performed in neonates: a systematic review of observational studies. Eur. J. Pain. 20, 489–498 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Hutten, M. C. et al. Fully automated predictive intelligent control of oxygenation (PRICO) in resuscitation and ventilation of preterm lambs. Pediatr. Res. 78, 657–663 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank ir. Sophie Cramer for her assistance in providing us with the figures presented in this paper. A.B.t.P. is recipient of a NWO innovational research incentives scheme (VIDI 91716428).

Author contributions

All authors contributed equally and gave approval for the final version to be published.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janneke Dekker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dekker, J., van Kaam, A.H., Roehr, C.C. et al. Stimulating and maintaining spontaneous breathing during transition of preterm infants. Pediatr Res 90, 722–730 (2021). https://doi.org/10.1038/s41390-019-0468-7

Download citation

Further reading

Search

Quick links