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Stimulating and maintaining spontaneous breathing during
transition of preterm infants
Janneke Dekker1, Anton H. van Kaam2, Charles C. Roehr3,4, Andreas W. Flemmer5, Elizabeth E. Foglia6, Stuart B. Hooper7,8 and
Arjan B. te Pas1

Most preterm infants breathe at birth, but need additional respiratory support due to immaturity of the lung and respiratory control
mechanisms. To avoid lung injury, the focus of respiratory support has shifted from invasive towards non-invasive ventilation.
However, applying effective non-invasive ventilation is difficult due to mask leak and airway obstruction. The larynx has been
overlooked as one of the causes for obstruction, preventing face mask ventilation from inflating the lung. The larynx remains mostly
closed at birth, only opening briefly during a spontaneous breath. Stimulating and supporting spontaneous breathing could
enhance the success of non-invasive ventilation by ensuring that the larynx remains open. Maintaining adequate spontaneous
breathing and thereby reducing the need for invasive ventilation is not only important directly after birth, but also in the first hours
after admission to the NICU. Respiratory distress syndrome is an important cause of respiratory failure. Traditionally, treatment of
RDS required intubation and mechanical ventilation to administer exogenous surfactant. However, new ways have been
implemented to administer surfactant and preserve spontaneous breathing while maintaining non-invasive support. In this
narrative review we aim to describe interventions focused on stimulation and maintenance of spontaneous breathing of preterm
infants in the first hours after birth.
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INTRODUCTION
Compared to term infants, the respiratory system of preterm
infants is structurally and biochemically immature, with a highly
compliant chest wall, a large gas diffusion barrier, and stiff lungs
due to structural immaturity and surfactant deficiency.1 Although
most preterm infants breathe at birth, respiratory support is often
needed to ensure adequate gas exchange.2,3 While traditionally
the infant was intubated and mechanically ventilated, there is
considerable evidence that this approach increases the risk of lung
and brain injury with subsequent long-term impairment of lung
function and neurodevelopment.4,5 To avoid injury, the focus of
respiratory support has therefore shifted toward more non-
invasive approaches, such as applying positive pressure support
or ventilation via face mask.6–10 However, little is known on how
non-invasive respiratory support interacts with the infant’s
changing physiology. It is unknown whether applied strategies
are effective, counterproductive, or even injurious.
The effectiveness of non-invasive ventilation might be ham-

pered by a number of reasons. For instance, mask leak is often not
recognized by the caregiver and represents one of the major
causes of ineffective ventilation, as it reduces the administered
tidal volumes.11–13 Ventilating non-invasively by face mask with-
out leakage requires training and experience.12–15 In addition,

commercially available face masks are commonly not of an
appropriate size for the infant’s face, particularly in preterm
infants, making it difficult to avoid placing the rim over the chin or
eyes.16–18 As a result, efforts have been made to implementing
extra training,19 improving ventilation devices,20 and designing
different masks.21 Another complication is that, in an effort to
minimize mask leak during ventilation, caregivers may also
inadvertently further reduce the effectiveness of ventilation by
pressing too hard and obstructing the upper airways.13,22,23

The adducted larynx at birth has so far been overlooked as a
possible cause for obstruction. Lung aeration can only take place
in case of an open airway—including the larynx.2,24,25 However,
during fetal life the larynx is chronically adducted to promote lung
expansion and thereby lung growth and it is unknown when and
how the larynx adapts to the new function after birth.25,26 There is
now evidence that immediately after birth the larynx continues to
function as it does in fetal life and remains mostly closed, making
ventilation strategies inadequate when applied non-invasively.24

This was recently demonstrated in a preterm rabbit model
showing that, at birth, the larynx is predominantly closed during
apnea and opens only briefly when a breath is taken. This pattern
changes and the larynx remains mainly open once a stable
breathing pattern has been established.24 This explains the
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distention of the upper airway that can occur during mask
ventilation, as has been demonstrated in preterm lambs and
infants by van Vonderen et al.27 This should be taken into account
when targeting ventilation, because tidal volumes could be
interpreted as “appropriate” during mask ventilation, while the
closed larynx prevents lung aeration and gas exchange, which
results in inadequate ventilation. Stimulating spontaneous breath-
ing of preterm infants at birth could therefore enhance the
success of non-invasive ventilation at birth.
Maintaining spontaneous breathing is also an important goal in

the first hours after admission to the Neonatal Intensive Care Unit
(NICU). While the majority of preterm infants leave the delivery
room supported by non-invasive ventilation, a proportion of them
will suffer from severe respiratory distress syndrome, for which
administration of exogenous surfactant might be needed.28

Traditionally, intubation and subsequently mechanical ventilation
was required to administer surfactant, increasing the risk for
ventilation-induced lung injury.29 However, recent trials have
demonstrated the feasibility and efficacy of surfactant adminis-
tration in a minimally invasive way, thereby omitting
intubation.30,31 A stable respiratory drive is a prerequisite to make
this procedure successful in avoiding intubation and mechanical
ventilation.
In this narrative review, we aimed to describe interventions to

stimulate and maintain spontaneous breathing of preterm infants
at birth and in the first hours after admission in the NICU. An
overview of these interventions with outcomes is shown in
Table 1.

STIMULATING SPONTANEOUS BREATHING AT BIRTH
Tactile stimulation
While fetuses utilize breathing movements during pregnancy to
promote lung expansion and growth, the purpose of breathing
movements after birth changes to establishing lung aeration and

gas exchange.32 The triggers for changing from discontinuous
fetal breathing movement to a more continuous postnatal
breathing pattern are not clear but could include activation of
chemoreceptors, increased PCO2 levels, loss of factors inhibiting
respiratory center activity (prostaglandins, progesterone metabo-
lites, adenosine), cold stimulus to the skin, and physical stimuli
(light, temperature, handling).33

Although there is little data on effectivity of tactile stimulation
at birth, it seems logical that this would increase respiratory effort
and it has therefore been incorporated in the international
resuscitation guidelines. So far, only a few experimental studies
have focused on tactile stimulation. Faridy showed that newborn
rat pups die from respiratory distress if the mother is prevented to
perform her stimulation process (licking, rolling, and biting the
pup).34 In addition, the breathing rate is higher in preterm rats
receiving tactile stimulation that simulates licking from the
mother, compared to rat pups not receiving this stimulation.35 It
is possible that physical stimulation increases breathing effort, by
causing a change in arousal state of the infant.36–38

International resuscitation guidelines recommend tactile man-
euvers such as warming, drying, and rubbing the back or soles of
the feet to stimulate respiratory activity in (preterm) infants at
birth.39,40 However, the guidelines do not specifically indicate
timing and methods of stimulation, which is probably the reason
why in recent studies a wide variety of practices have been
used.41–44

Dekker et al. and Baik-Schneditz et al. observed that the primary
method of stimulation varied from rubbing the soles of the feet to
rubbing the chest and/or back.41–43 Activation of different sensory
pathways could be involved in these methods of application
(Fig. 1). Stimulation of proprioceptors activated by changing the
position of the feet and legs by rubbing the soles of the feet has
been shown to reduce breathing pauses and increase respiratory
rate.45,46 Rubbing the chest or back, thereby activating the
somatic or visceral mechanoreceptors in the thoracic region,

Table 1. Overview of interventions used to stimulate or maintain spontaneous breathing

Intervention Method Outcome on breathing effort Demonstrated in

Application of tactile stimulation Changes arousal state
Stimulates proprioceptors
Activates somatic/visceral mechanoreceptors

Increased breathing rate
Repetitively applied tactile stimulation
leads to better oxygenation, decreased
FiO2 need, non-significant increase in
respiratory effort

Preterm rats
Human preterm
infants

Administration of an initial
FiO2 of 1.0

Increases partial pressure of oxygen→reduces
hypoxia-initiated respiratory depression

More stable breathing pattern, less apnea
Higher respiratory effort, better
oxygenation, shorter duration of mask
ventilation

Preterm rabbits
Human preterm
infants

Administration of caffeine Reduces adenosine-induced respiratory
depression

Higher respiratory effort, gestational age-
dependent effect
No decrease in SpO2 after cord clamping
with antenatal caffeine, which does occur
without caffeine

Human preterm
infants
Preterm lambs

Delayed cord clamping after
aeration of the lung

Increased pulmonary blood flow associated
with aeration replaces umbilical venous
return→increases ventilation/perfusion
ratio→increases oxygenation
Reduces risk for hypoxia-induced respiratory
depression while placental gas exchange
is intact

Not evaluated yet –

Application of continuous
positive airway pressure

Increases pressure gradient to increase
surface area available for gas exchange

Improved oxygenation
Lower breathing effort

Preterm lambs
Human preterm
infants

Administration of surfactant by
minimal/less invasive procedure
after low-dose sedation

Avoids intubation and risk for mechanical
ventilation, without resulting in less comfort

More often desaturation with need for
nasal intermittent positive pressure
ventilation, without increased risk for
intubation

Human preterm
infants

Stimulating and maintaining spontaneous breathing during transition of. . .
J Dekker et al.

723

Pediatric Research (2021) 90:722 – 730

1
2
3
4
5
6
7
8
9
0
()
;,:



might affect the respiratory center as well.47,48 Activating a larger
number of receptors by applying stimulation to a larger cutaneous
surface area might increase the effect. However, the most effective
method of stimulation remains unclear.
The reported incidence of stimulation varies between 35% in

the study of Baik-Schneditz et al. and 90% in the study of van
Henten et al.41–44 Lower percentages of stimulation were reported
in infants <30 weeks of gestation, who are wrapped in a
polyethylene bag.42,43 The polyethylene bag might form a physical
barrier and thereby contributes to the omission of stimulation.49,50

However, these infants usually need more (respiratory) support
and could benefit from receiving tactile stimulation.
The true effect of tactile stimulation on respiratory effort is

difficult to determine in human preterm infants. Clinical equipoise
for omitting stimulation is not possible as tactile stimulation has
been common practice for many years and has become a
fundamental intervention of resuscitation, even though recent
studies described that one third to even two thirds of infants do
not receive any stimulation.41,42 Therefore, the effect of standard
stimulation (stimulation at the discretion of the caregiver) was
recently compared to a strict protocol of repetitive stimulation in a
randomized controlled trial (RCT) in preterm infants at birth. It was
hypothesized that repetitive stimulation, consisting of stimulation
episodes of 10 s alternated with pauses of 10 s, would improve
breathing effort. Pauses in stimulation were included in an
attempt to avoid habituation of the reflex.51 Respiratory effort
was shown to be higher in the repetitive stimulation group, but
these differences did not reach statistical significance. However,
while infants in the repetitive stimulation group had significantly
better oxygenation, despite requiring a significantly lower FiO2,
the findings of an increased respiratory effort were clinically
relevant and indicate that applying repetitive stimulation may
facilitate the respiratory transition of preterm infants at birth.52 It is
important to note that, despite the fact that infants in the
standard stimulation group were supposedly stimulated based on
clinical indication, these infants received much higher levels of
stimulation than previously observed in cohort studies (96% vs.
67%).41–43,52 It is likely that performing studies on a maneuver like

tactile stimulation produced a Hawthorne effect, leading to an
increase in application of stimulation in the control group.52 This
explains the smaller than expected differences between the
intervention and control groups in respiratory effort, resulting in
an underestimation of the effect. Although further larger trials are
needed to test the effect of repetitive stimulation on clinical
outcomes, the demonstrated positive effect on respiratory effort
may reduce further our ability to attain clinical equipoise.52

Oxygenation
It is well established that, in utero, when oxygenation levels are
reduced below normal (PaO2 <25–30mmHg), fetal breathing
movements are greatly reduced or even abolished.38,53–56 On the
other hand, hyperoxia can stimulate fetal breathing movements,
but the stimulatory effect is not sustained.57–59

After birth, it is now well established that the inhibitory effect of
hypoxia (PaO2 <20–25mmHg) on breathing persists for
days–weeks; it diminishes with time and eventually switches to
a stimulation of respiratory drive, which persists for the remainder
of our lives.60 In addition, intermittent hypoxia during uterine
contractions might elevate fetal plasma adenosine concentrations,
which also could inhibit peripheral and central chemoreceptors
and cause respiratory depression.61

Up until 2005, guidelines recommended that resuscitation of
preterm infants commenced with a fraction of inspired oxygen
(FiO2) of 1.0 in order to improve oxygenation at birth. However,
oxygen saturations (SpO2) were not monitored consistently, which
resulted in an increased risk for hyperoxia.62 Excessive oxygen
exposure should be avoided in infants during stabilization at birth,
as hyperoxia increases free radical production thereby over-
whelming the immature antioxidant capacity of the preterm
infant, which might lead to damage to cells, enzymes, lipids, DNA,
and proteins.63–65 Meta analyses have found that resuscitation of
term infants at birth with air significantly reduced mortality
compared with infants resuscitated with 100% oxygen.66–68 Less
data are available in preterm infants, although hyperoxia at birth
likely increases the risk of bronchopulmonary dysplasia (BPD).69,70

For this reason, international resuscitation guidelines now
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Light & temperature might stimulate the
respiratory center by inducing arousal

Sound & handling might stimulate the
respiratory center by inducing arousal

Rubbing the chest or back might affect
the respiratory center by activating the

somatic of visceral mechanoreceptors in
the thoracic region

Changing the position of the feet and
legs or rubbing the footsole might

reduce breathing pauses and increases
respiratory rate by activation of the

proprioceptors or somatic receptors

Fig. 1 Pathways involved by different methods of stimulation
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recommend to initiate resuscitation with low FiO2 levels, which
should thereafter be titrated based on SpO2 target ranges.40

However, the SpO2 target ranges are based on data from healthy
term and preterm infants who did not need extensive resuscita-
tion.71 As such, the optimal SpO2 target ranges for compromised
preterm infants are not clear, although it is possible that better
oxygenation is needed for optimal stimulation of spontaneous
breathing. Currently, a trial is being performed evaluating clinical
outcomes after targeting higher SpO2 values at 5 and 10min after
birth.(Registered in the Australian New Zealand Clinical Trial
Registry; ACTRN12615000115538).
Oxygenation is largely defined by the surface area available for

gas exchange and the diffusion distance as well as the partial
pressure gradient for oxygen between the alveoli and adjacent
capillaries. It has become clear that in most very preterm infants
clinicians fail to create adequate lung aeration and thus have to
use a higher FiO2 to compensate for the suboptimal surface area
created for gas exchange. Using the latest resuscitation guidelines,
most preterm infants fail to reach the 25th percentile of the SpO2

reference values in the first minutes after birth, despite the use of
SpO2-based titration.72–78 Caregivers thereby appear to accept
hypoxia and disregard the effect on respiratory effort. As
increasing the FiO2 can reduce the level of hypoxia, this would
be expected to increase the respiratory effort in preterm infants.
However, this has so far only been demonstrated in an
observational study where an increase in respiratory drive was
observed after switching fraction of inspired oxygen from 0.21 to
1.0.79 Nevertheless, it is important to recognize that when hypoxia
persists for longer than the first 5 min after birth, it is associated
with a higher risk of mortality before hospital discharge and
development of intraventricular hemorrhage.80 Caregivers should
aim for an optimal level of oxygenation in preterm infants directly
after birth, while avoiding both hypoxia and hyperoxia.
The effect of oxygenation on respiratory effort at birth was

recently demonstrated in a spontaneously breathing preterm
rabbit model, while supported non-invasively kittens showed a
more stable breathing pattern at birth when FiO2 1.0 was given
compared to FiO2 0.21 (unpublished data). Kittens receiving room
air suffered from apnea, and the breathing pattern was restored
more stable after rescue ventilation was given with a FiO2 of 1.0
compared to room air (unpublished data). In a preterm lamb
model, resuscitation with FiO2 of 1.0 led to an increase in
pulmonary blood flow equal to the increase occurring in term
lambs, permitting optimal gas exchange, while this increase was
not observed in lambs resuscitated with FiO2 0.21 with or without
subsequent SpO2-based titration of FiO2. However, they spent less
time in the SpO2 target range.

81

High vs. low FiO2 was compared in recent multicenter trials in
human preterm infants.74,75,77,78,82–85 Infants receiving an initial
FiO2 of 1.0 reached their SpO2 target ranges earlier and remained
within the target ranges for a longer period in some trials,74–78

while in other trials no difference between high and low FiO2

levels on these outcomes were observed.74,75,77,78,83–86 The
difference in effect might be explained by the differences in
titration protocols between studies using different time intervals
and magnitude of steps taken.
So far, the studies comparing different initial FiO2 levels did not

evaluate the effect on respiratory effort. A trial is currently being
performed to test the effect of initial high FiO2 vs. low FiO2 with
subsequent titration based on SpO2 on respiratory effort in the
first minutes after birth (registered in the Dutch Trial Registry
under registry number NTR6878, www.trialregister.nl).

Caffeine
Adenosine acts as a neuromodulator, influencing the tonic
modulation of breathing by inhibiting respiratory effort. The level
of adenosine is influenced by different variables, including
inflammation and hypoxia.61 Caffeine is a methylxanthine that

has a molecular structure similar to adenosine and works as an
adenosine receptor antagonist to reduce adenosine-induced
respiratory depression.87 Although the safety and effectivity of
caffeine to prevent apnea of prematurity has been demonstrated
in a large randomized trial, the optimal timing and dosage is still
unclear.88,89 A systematic review comparing the effects of high vs.
low doses of caffeine in the first days after birth demonstrated
that a high dose of caffeine led to a decrease in BPD, the
combined outcome BPD or death, and extubation failure,
although the level of evidence was reported to be low.90 However,
these findings endorse the possible advantages of a higher dose
of caffeine, which should be confirmed in a large RCT.
Caffeine administered within the first 2 days of life decreases

the risk of developing BPD and improves both short- and long-
term neurodevelopmental outcomes.88,91–94 When administered
within 2 h after birth, it decreases the incidence of continuous
positive airway pressure (CPAP) failure, which in turn could lead to
further improvement in outcome.95 One possible explanation is
increased diaphragm activity, which occurs after administration of
a loading dose of caffeine, leading to higher tidal volumes that are
indicative of an increase in respiratory effort.96 At birth, increased
adenosine levels might lead to depression of the respiratory
center,61 and therefore administering caffeine directly at birth
could counteract this effect by antagonizing adenosine. A recent
trial evaluated the effect of administration of caffeine base
(10 mg/kg, administered by the use of a butterfly needle (21 G)
inserted in the umbilical vein) in the delivery room on respiratory
effort of preterm infants.97 Infants who received caffeine in the
delivery room had a greater respiratory effort, with higher minute
volumes, inspired tidal volumes, and recruitment breaths (with a
tidal volume >8ml/kg), as compared with infants receiving
caffeine after admission to the NICU.97 Although this trial
consisted of a small number of infants with a gestational age of
24–30 weeks, the trial was able to demonstrate a significant
positive correlation between minute volume and gestational age.
The minute volume increased by 2.4 ml/min/kg with each day of
gestational age. This association was even more pronounced
when caffeine was administered in the first minutes after birth
with an increase in minute volume of 4.1 ml/min/kg with each day
of gestational age.97 These results indicate that the stimulatory
effect of caffeine is gestational age dependent, and different
caffeine dosages per gestational age would be needed to gain the
optimal effect on breathing effort.97 More studies on caffeine at
birth are needed with respect to relevant clinical outcomes, as well
as dose finding, since it has been shown that the required
dose might be dependent of gestational age and level of
adenosine present at birth. Inflammation leads to an increase in
adenosine levels, and also the presence of hypoxia leads to an
imbalance between adenosine synthesis and its breakdown.98,99

Because caffeine can freely pass the placenta by passive
diffusion, administration to the mother before or during delivery
could potentially lead to a direct stimulating effect on respiratory
drive of the preterm infant at the time of birth.100 This was
demonstrated in the lamb model of Binder-Heschl et al., which
showed that a loading dose of caffeine base administered to the
ewe resulted in similar plasma caffeine concentration in the
mother and the lamb obtained immediately following infusion.101

In addition, the study of Binder-Heschl et al. showed a significant
decrease in SpO2 after cord clamping in the lambs not receiving
caffeine, while this was absent in the caffeine-treated lambs.101 It
is possible that, when antenatal administration of caffeine leads to
better aeration of the lung, this could decrease the occurrence of
hypoxia after early clamping of the cord.

Delayed cord clamping
Before birth, the placental circulation contains approximately
30–50% of the blood volume of the combined fetal/placental
unit. While the lungs remain unaerated and the pulmonary
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circulation remains vasoconstricted, cardiac output is largely
dependent on venous return from the placenta. Clamping the
umbilical cord before lung aeration, therefore, causes umbilical
venous return to cease, which can lead to a sudden decrease in
cardiac output. However, when the lungs aerate before cord
clamping, the associated increase in pulmonary blood flow can
replace umbilical venous return as the primary source of
ventricular preload and as such cardiac output remains
unchanged. As such, clamping the cord after ventilation onset
has less impact on cardiac output and avoids the cardiovascular
instability at the time of clamping.102,103 This has been
demonstrated in a preterm lamb model showing a more stable
heart rate and arterial pressure when the cord is clamped after
lung aeration compared to clamping before lung aeration.104 In
addition, ventilation before clamping of the umbilical cord has
been shown to increase arterial and cerebral oxygenation.105

Increasing the pulmonary blood flow also leads to a better
ventilation/perfusion ratio, thereby optimizing the uptake of
oxygen leading to better oxygenation. This will enhance
respiratory effort even more.
It is currently unclear how delaying cord clamping affects the

respiratory transition after birth. Keeping the cord intact should
provide the newborn with a baseline PaO2 that is no lower than
that which occurred before birth, assuming that placental gas
exchange is still functional. Delaying cord clamping could thereby
help in the establishment of a continuous breathing pattern after
birth, as severe breathing-inhibitory hypoxia due to cord clamping
would be avoided. On the other hand, the placenta releases
prostaglandins (of the E series) and adenosine into the fetal
circulation that are known to inhibit breathing.106 As such, cutting
the cord might be beneficial for breathing activity as it would
reduce circulating prostaglandin (and adenosine) levels and
thereby reduce any inhibitory effect on breathing.107 However,
as circulating prostaglandins are completely metabolized by
circulation through the lung, the inhibitory effect of the
prostaglandins may only be an issue in apneic infants.108,109 This
makes it only more important that lung aeration occurs while
delaying cord clamping. Also, it is possible that, for those apneic
infants, prostaglandin synthesis inhibitors might result in an
increase in respiratory activity.110

So far, there are no studies assessing respiratory effort of infants
receiving delayed cord clamping. However, Katheria et al. showed
that infants who did not receive respiratory support during
delayed cord clamping needed significantly more stimulation to
initiate breathing, and the duration of stimulation was longer to
maintain spontaneous breathing.111 During delayed cord clamp-
ing, respiratory support could enhance spontaneous breathing by
improving lung aeration, leading to better oxygenation and
reducing hypoxia.105,112 Although timing of the first breath is a
measure of respiratory effort, effectivity of spontaneous breathing
was not objectively evaluated by using respiratory function
parameters. By objectively evaluating respiratory effort during
delayed cord clamping, one could determine to what extent
circulating prostaglandin affects spontaneous breathing, and thus
whether there appears to be an indication for the use of
prostaglandin synthesis inhibitors.

MAINTAINING SPONTANEOUS BREATHING IN THE FIRST
HOURS AFTER BIRTH
Continuous positive airway pressure
Applying CPAP can be used to facilitate respiratory transition at
birth by increasing the pressure gradient, which promotes alveolar
fluid reabsorption and prevents end-expiratory alveolar collapse.
This in turn increases the surface area available for gas
exchange,113 leading to improved oxygen exchange and a
decreased risk of hypoxia.114 Also, functional residual capacity
(FRC) will increase by maintaining alveolar aeration during both

inspiration and expiration, leading to a reduction in work of
breathing.115 In infants who breathe spontaneously at birth, CPAP
is therefore recommended for use as the initial mode of
respiratory support.30,40 Studies showed that the use of CPAP
after the initial stabilization at birth led to decreased BPD rates
when compared to elective intubation and positive pressure
ventilation.4,116

While the beneficial effects of CPAP use in the delivery room
have been shown, the optimal CPAP level and strategy remain
unclear. A recent review has shown that there is a wide variety of
CPAP practices across different units, varying in pressure levels
and titration strategies.117 Although the international guidelines
recommend the use of CPAP levels between 5 and 8 cm H2O,
experimental studies have shown that higher CPAP levels lead to
better lung aeration.24,118 Instead of using a fixed CPAP level, we
might need to adjust the level according to the phase of
respiratory transition. It is likely that higher CPAP levels are initially
needed to assist airway liquid clearance during lung aeration,
whereas during the subsequent phase, the primary role of CPAP is
to minimize airway liquid re-entry when the lung is at FRC.117 On
the other hand, sustained high CPAP levels might delay stiffening
of the chest wall by opposing lung recoil. Therefore, CPAP levels
should be weaned down after respiratory transition at birth and
clearance of lung liquid from the interstitial space. However, more
data are needed to define the optimal CPAP strategy for
facilitating and maintaining lung aeration at birth in order to
improve oxygenation without causing overdistension of the
lung.119

Surfactant
After transition has been successfully established, respiratory
distress syndrome (RDS) can cause difficulties in obtaining an
appropriate level of oxygenation, which might lead to CPAP
failure.8,10,120 In this stage, oxygenation can be improved by
treating RDS with exogenous surfactant, as this results in
improved lung compliance and less work of breathing.121

Traditionally, surfactant treatment requires intubation and
mechanical ventilation.122,123 However, surfactant treatment via
an endotracheal tube is usually associated with a loss of
spontaneous breathing and the requirement for mechanical
ventilation.
Recently, minimal or less invasive surfactant administration

techniques have gained increasing favor.31,124 This involves admin-
istering surfactant via nasogastric tubes, angiocatheters, or specially
designed catheters positioned in the trachea while the infant is
spontaneously breathing on CPAP. These techniques have shown to
be effective, resulting in increased breathing effort.125–130 It is
apparent that administering surfactant using these techniques
results in successful surfactant application without mechanical
ventilation in 60% of infants with a birth weight <1500 g124 and in
92% of infants with a gestational age of 29–32 weeks.131

Surfactant administration via these approaches have been
termed “less or minimally invasive (minimally invasive surfactant
therapy (MIST))”, but this terminology is potentially misleading as
the procedure still involves placement of a catheter in the trachea
using a laryngoscope to visualize the vocal cords.31,124,132 It is
known that laryngoscopy is highly uncomfortable, and while
this is performed in an awake infant, his/her attempts to resist this
procedure might lead to negative cardiovascular responses.133–135

As experiencing pain during procedures might affect neurodeve-
lopment of preterm infants, efforts should be taken to reduce pain
or discomfort during a procedure.136 In addition, the use of
sedation to enhance the comfort of the infant during MIST could
increase the chance of an uneventful procedure. On the other
hand, caution is needed as the use of sedation during the
procedure might impair the infant’s respiratory drive.
The choice of sedative during MIST is dependent of the level of

sedation/analgesia that can be achieved, counterbalanced by the
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negative effect it may have on respiratory drive. Remifentanil was
thought to be promising sedative for procedures such as
intubation–surfactant–extubation (INSURE) due to its rapid
distribution and redistribution.137 However, remifentanil is a
potent respiratory depressant and the level of sedation during
INSURE was not shown to be effective.138 Recent trials have shown
an adequate level of sedation when Propofol is used and it is now
widely used for intubation and other procedures.139–141 However,
side effects such as hypotension have been described.142 There is
much controversy whether Propofol provides analgesia next to
sedation.143 Nevertheless, the sedative effect of Propofol might
result in better comfort and thus less stress, thereby avoiding
possible negative effects of MIST on neurodevelopment.144 An
additional benefit of Propofol is its short-acting anesthetic
property, which, in animals, minimizes the swallowing reflex
allowing the larynx to relax and provides easier access to the
upper trachea.
Recent trials have assessed the effect of low-dose Propofol as

pre-medication for MIST.144,145 The number of infants who were
assessed to be comfortable (COMFORTneo score <14) was
significantly higher in the group who received low-dose Propofol
compared to no premedication. However, Propofol led to
significantly more desaturations and the need for nasal inter-
mittent mandatory ventilation (NIMV) also increased, although
temporarily.144 This indicates a decrease in respiratory drive or
respiratory effort, which might be counterproductive as the
maintenance of spontaneous breathing is essential for successful
administration of surfactant in a minimal invasive way. However,
this effect was transient and did not lead to an increased need for
intubation. In addition, the maturity of the respiratory center
evolves during gestation, which might influence the response to
pre-medication as well. Indeed, most infants with a gestational
age <32 weeks receiving Propofol needed NIMV.144 It might be
because of a higher risk on side effects that those infants with a
low gestational age receive the lowest amount of analgesic
interventions, while those infants undergo the largest amount of
(painful) procedures.146 Administration of low-dose Propofol could
therefore be considered in obtaining a better level of comfort
during MIST.
Taken altogether, available data indicate that sedatives can be

used to decrease discomfort of infant receiving surfactant non-
invasively, but dose finding and alternative drugs need to be
investigated to decrease the side effect on respiratory effort.

FUTURE PERSPECTIVES
While in this review we have described different ways to stimulate
breathing at birth, it is also important to recognize that using so
many interventions in the delivery room should not interfere with
applying adequate respiratory support (Fig. 2). A possible solution
could be to automate some of the described interventions so that
the health-care professional can focus on respiratory support. We
described that tactile stimulation is often omitted. The develop-
ment and use of a device for automated stimulation based on
respiratory effort of the infant might assist the caregiver during
resuscitation. Hereby, the caregiver can fully focus on applying
optimal non-invasive ventilation by face mask, which might lead
to less leakage or obstruction. Normoxia is also an important
determinant of respiratory drive. Ideally, both hypoxia and
hyperoxia should be avoided. Automated oxygen titration used
during resuscitation of preterm lambs led to similar time spent
below and within SpO2 target range compared to manual FiO2

control, but the time spent above target range was significantly
shorter when using automated control.147 Optimizing automated
oxygen titration in the delivery room by using narrower target
ranges or devices with better algorithms could potentially lead to
more time spent within the SpO2 target range, resulting in
improved respiratory effort.

It has been shown that caffeine can be administered
antenatally, ensuring that the required dose is reached immedi-
ately after birth. Using this approach, it is possible that fewer
interventions will be required in the first minutes after birth that
again enables the caregiver to focus on applying stimulation and
non-invasive respiratory support. In addition, if caffeine is
administered antenatally, the stimulatory effect on respiratory
effort might be present as soon as the infant is born, possibly
leading to a smoother respiratory transition. However, a large trial
is needed to test whether administering caffeine in the delivery
room or even antenatally, in combination with other interventions
focused on stimulation of breathing, will lead to better clinical
outcomes.
In case of signs of RDS after admittance to the NICU, surfactant

should be administered in a way that preserves respiratory drive
and prevents discomfort. When we are able to determine the
optimal dose of Propofol in different gestational age ranges
during this procedure, we might avoid adverse effects on
neurodevelopmental outcome due to stress during the procedure.

CONCLUSION
The success of non-invasive ventilation depends on the effective-
ness of spontaneous breathing both during transition and at the
NICU. At birth, the importance of larynx function has been
overlooked in the story of a successful transition of preterm
infants. Thus, when non-invasive ventilation is desired, interven-
tions that aide laryngeal patency could be a turning point in
current practice. Therefore, the focus of the caregiver needs to

a

b

c

d

Fig. 2 Interventions focused on stimulation of spontaneous breath-
ing during stabilization at birth. a Application of continuous positive
airway pressure, supplemented with inflations if indicated. b Tactile
stimulation. c Administration of supplemental oxygen. d Adminis-
tration of a loading dose of caffeine via the umbilical vein

Stimulating and maintaining spontaneous breathing during transition of. . .
J Dekker et al.

727

Pediatric Research (2021) 90:722 – 730



shift toward stimulation instead of trying to take over the
spontaneous breathing efforts of the infant with positive pressure
ventilation. While different ways for supporting and stimulating
breathing effort have been investigated separately, it is likely that
combining these interventions in a bundle of care will increase the
success in maintaining effective breathing of the preterm infant.
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