APS Presidential Plenary 2019: the way of science: serendipity and the illusion of linearity

Article metrics

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Nagel, G. W. A Stanford Heritage. Sketches of Ten Teacher-Physicians Whose Standards of Excellence Became the Hallmark of a School of Medicine (Stanford Medical Alumni Association, Stanford, CA, 1970).

  2. 2.

    Stevenson, D. K., Rodgers, P. A. & Vreman, H. J. The use of metalloporphyrins for the chemoprevention of neonatal jaundice. Am. J. Dis. Child. 143, 353–356 (1989).

  3. 3.

    Maines, M. D. Zinc•protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat. Biochim. Biophys. Acta 673, 339–350 (1981).

  4. 4.

    Drummond, G. S. & Kappas, A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc. Natl Acad. Sci. USA 78, 6466–6470 (1981).

  5. 5.

    Vreman, H. J., Rodgers, P. A., Gale, R. & Stevenson, D. K. Carbon monoxide excretion as an index of bilirubin production in rhesus monkeys. J. Med. Primatol. 18, 449–460 (1989).

  6. 6.

    Vallier, H. A., Rodgers, P. A. & Stevenson, D. K. Oral administration of zinc deuteroporphyrin IX 2,4 bis glycol inhibits heme oxygenase in neonatal rats. Dev. Pharm. Ther. 17, 220–222 (1991).

  7. 7.

    Vreman, H. J., Wong, R. J., Kadotani, T. & Stevenson, D. K. Determination of carbon monoxide (CO) in rodent tissue: effect of heme administration and environmental CO exposure. Anal. Biochem. 341, 280–289 (2005).

  8. 8.

    Morioka, I. et al. Systemic effects of orally-administered zinc and tin (IV) metalloporphyrins on heme oxygenase expression in mice. Pediatr. Res. 59, 667–672 (2006).

  9. 9.

    Morisawa, T., Wong, R. J., Bhutani, V. K., Vreman, H. J. & Stevenson, D. K. Inhibition of heme oxygenase activity in newborn mice by azalanstat. Can. J. Physiol. Pharmacol. 86, 651–659 (2008).

  10. 10.

    Tenhunen, R., Marver, H. S. & Schmid, R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl Acad. Sci. USA 61, 748–755 (1968).

  11. 11.

    Stevenson, D. K., Ostrander, C. E. & Johnson, J. D. Effect of erythrocyte destruction on the pulmonary excretion rate of carbon monoxide in adult male Wistar rats. J. Lab. Clin. Med. 94, 649–654 (1979).

  12. 12.

    Stevenson, D. K., Bartoletti, A. L., Ostrander, C. R. & Johnson, J. D. Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. II. Infants of diabeticmothers. J. Pediatr. 94, 956–958 (1979).

  13. 13.

    Sjöstrand, T. Endogenous formation of carbon monoxide in man. Nature 164, 580 (1949).

  14. 14.

    Vreman, H. J. et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin. Chem. 40, 1927–1933 (1994).

  15. 15.

    Vreman, H. J., Baxter, L. M., Stone, R. T. & Stevenson, D. K. Evaluation of a fully automated end-tidal carbon monoxide instrument for breath analysis. Clin. Chem. 42, 50–56 (1996).

  16. 16.

    Vreman, H. J. et al. Validation of the Natus CO-Stat End Tidal Breath Analyzer in children and adults. J. Clin. Monit. Comput. 15, 421–427 (1999).

  17. 17.

    Castillo Cuadrado, M. E. et al. Evaluation of a new end-tidal carbon monoxide monitor from the bench to the bedside. Acta Paediatr. 104, e279–e282 (2015).

  18. 18.

    Contag, C. H. et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531 (1997).

  19. 19.

    Fujioka, K., Kalish, F., Wong, R. J. & Stevenson, D. K. Inhibition of heme oxygenase activity using a microparticle formulation of zinc protoporphyrin in an acute hemolytic newborn mouse model. Pediatr. Res. 79, 251–257 (2016).

  20. 20.

    Morris, B. H. et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 359, 1885–1896 (2008).

  21. 21.

    Silverman, W. A. Ambitious overgeneralisation. Paediatr. Perinat. Epidemiol. 16, 288–289 (2002).

  22. 22.

    Wise, P. H. et al. Risky business: meeting the structural needs of transdisciplinary science. J. Pediatr. 191, 255–258 (2017).

  23. 23.

    Ngo, T. T. M. et al. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science 360, 1133–1136 (2018).

  24. 24.

    Aghaeepour, N. et al. An immune clock of human pregnancy. Sci. Immunol. 2, eaan2946 (2017).

  25. 25.

    Ghaemi, M. S. et al. Multiomics modeling of the immunome, transcriptome, microbiome, proteome, and metabolome adaptations during human pregnancy. Bioinformatics 35, 95–101 (2019).

  26. 26.

    Benaron, D. A. & Stevenson, D. K. Optical time-of-flight and absorbance imaging of biologic media. Science 259, 1463–1466 (1993).

  27. 27.

    Zhang, W. et al. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res. 10, 423–434 (2001).

  28. 28.

    Zhang, W. et al. Selection of potential therapeutics based on in vivo spatiotemporal transcription patterns of heme oxygenase-1. J. Mol. Med. (Berl.) 80, 655–664 (2002).

  29. 29.

    Zhao, H. et al. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol. Imaging 3, 43–54 (2004).

  30. 30.

    Burns-Guydish, S. M. et al. Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr. Res. 58, 153–158 (2005).

Download references

Author information

Correspondence to David K. Stevenson.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stevenson, D.K. APS Presidential Plenary 2019: the way of science: serendipity and the illusion of linearity. Pediatr Res 86, 293–295 (2019) doi:10.1038/s41390-019-0456-y

Download citation