Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges

Article metrics


Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21st century.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Kochanek, K. D., Murphy, S. L., Xu, J., Arias, E. Mortality in the United States, 2016. NCHS Data Brief, no 293. [Internet]. Hyattsville, MD: 2017. Available from:

  2. 2.

    Nitkin, C. R., Bonfield, T. L. Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements. Stem Cells Transl Med 2016 (cited 20 Sep 2016) Available from:

  3. 3.

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705, (2001).

  4. 4.

    Friedenstein, A. J., Gorskaja, J. F. & Kulagina, N. N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274, (1976).

  5. 5.

    Kern, S., Eichler, H., Stoeve, J., Klüter, H. & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294–1301, (2006).

  6. 6.

    Miao, Z. et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30, 681–687, (2006).

  7. 7.

    Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 8:315–317.

  8. 8.

    Wegmeyer, H. et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 22, 2606–2618 (2013).

  9. 9.

    Hoffmann, A., Floerkemeier, T., Melzer, C. & Hass, R. Comparison of in vitro-cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. J. Tissue Eng. Regen. Med. 11, 2565–2581 (2017).

  10. 10.

    Bernardo, M. E., Pagliara, D. & Locatelli, F. Mesenchymal stromal cell therapy: a revolution in Regenerative Medicine? Bone Marrow Transpl. 47, 164–171 (2012).

  11. 11.

    Cunningham, C. J., Redondo-Castro, E. & Allan, S. M. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J. Cereb. Blood Flow. Metab. 38, 1276–1292 (2018).

  12. 12.

    Grisafi, D. et al. Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pedia. Pulmonol. 48, 1070–1080 (2013).

  13. 13.

    McCulloh, C. J. et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J. Pedia. Surg. 53, 1215–1220 (2018).

  14. 14.

    Dekoninck, P. et al. The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenat. Diagn. 35, 833–840 (2015).

  15. 15.

    Zani, A. et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 63, 300–309 (2014).

  16. 16.

    Erkers, T. et al. Treatment of severe chronic graft-versus-host disease with decidual stromal cells and tracing with (111)indium radiolabeling. Stem Cells Dev. 24, 253–263 (2015).

  17. 17.

    Wehman, B. et al. Cardiac progenitor cells enhance neonatal right ventricular function after pulmonary artery banding. Ann. Thorac. Surg. 104, 2045–2053 (2017).

  18. 18.

    Avolio, E. et al. Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J. Am. Heart Assoc. 4, e002043 (2015).

  19. 19.

    Nakanishi, K. et al. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats. Sci. Rep. 7, 44111 (2017).

  20. 20.

    Drobyshevsky, A. et al. Human umbilical cord blood cells ameliorate motor deficits in rabbits in a cerebral palsy model. Dev. Neurosci. 37, 349–362 (2015).

  21. 21.

    Greggio, S., De Paula, S., Azevedo, P. N., Venturin, G. T. & Dacosta, J. C. Intra-arterial transplantation of human umbilical cord blood mononuclear cells in neonatal hypoxic-ischemic rats. Life Sci. 96, 33–39 (2014).

  22. 22.

    Brizard, C. P. et al. Safety of intracoronary human cord blood stem cells in a lamb model of infant cardiopulmonary bypass. Ann. Thorac. Surg. 100, 1021–1029 (2015).

  23. 23.

    Prockop, D. J., Kota, D. J., Bazhanov, N. & Reger, R. L. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J. Cell Mol. Med. 14, 2190–2199 (2010).

  24. 24.

    Fung, M. E. & Thébaud, B. Stem cell-based therapy for neonatal lung disease: it is in the juice. Pediatr. Res. 75, 2–7 (2014).

  25. 25.

    Lee, J. W., Fang, X., Krasnodembskaya, A., Howard, J. P. & Matthay, M. A. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29, 913–919 (2011).

  26. 26.

    Augustine, S. et al. Mesenchymal stromal cell therapy in bronchopulmonary dysplasia: systematic review and meta-analysis of preclinical studies. Stem Cells Transl. Med. 6, 2079–2093 (2017).

  27. 27.

    Ortiz, L. A. et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl Acad. Sci. USA 104, 11002–11007 (2007).

  28. 28.

    Chaubey, S. et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 9, 173 (2018).

  29. 29.

    Bartosh, T. J. et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl Acad. Sci. USA 107, 13724–13729 (2010).

  30. 30.

    Németh, K. et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49 (2009).

  31. 31.

    Ono, M. et al. Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1. Mol. Ther. 23, 549–560 (2015).

  32. 32.

    Li, L. L. et al. Mesenchymal stem cells overexpressing adrenomedullin improve heart function through antifibrotic action in rats experiencing heart failure. Mol. Med Rep. 17, 1437–1444 (2018).

  33. 33.

    Xu, Y.-X. et al. Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med. Hypotheses 71, 390–393 (2008).

  34. 34.

    Chang, Y. S. et al. Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury. Am. J. Respir. Cell Mol. Biol. 51, 391–399 (2014).

  35. 35.

    Lee, J. W., Fang, X., Matthay, M. A., Serikov, V., Gupta, N. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl Acad. Sci. USA 106, 16357–16362 (2009).

  36. 36.

    van Niel, G., Porto-Carreiro, I., Simoes, S. & Raposo, G. Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13–21 (2006).

  37. 37.

    Stoorvogel, W. Functional transfer of microRNA by exosomes. Blood 119, 646–648 (2012).

  38. 38.

    van Haaften, T. et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am. J. Respir. Crit. Care Med. 180, 1131–1142 (2009).

  39. 39.

    Aslam, M. et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 180, 1122–1130 (2009).

  40. 40.

    Pierro, M. et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax 68, 475–484 (2013).

  41. 41.

    Waszak, P. et al. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev. 21, 2789–2797 (2012).

  42. 42.

    Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., Perez-Fernandez, R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int. J. Mol. Sci. 18, 1852 (2017). Available from:

  43. 43.

    Park, S.-J. et al. Tumorigenicity evaluation of umbilical cord blood-derived mesenchymal stem cells. Toxicol. Res. 32, 251–258 (2016).

  44. 44.

    Barkholt, L. et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies - Bridging scientific observations and regulatory viewpoints. Cytotherapy 15, 753–759 (2013).

  45. 45.

    Hamidian, Jahromi, S., Estrada, C., Li, Y., Cheng, E., Davies, J. E. Human umbilical cord perivascular cells and human bone marrow mesenchymal stromal cells transplanted intramuscularly respond to a distant source of inflammation. Stem Cells Dev. 2018;27:scd.2017.0248. Available from:

  46. 46.

    Luan, Y. et al. Bone marrow-derived mesenchymal stem cells protect against lung injury in a mouse model of bronchopulmonary dysplasia. Mol. Med. Rep. 11, 1945–1950 (2015).

  47. 47.

    Gholamrezanezhad, A. et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl. Med. Biol. 38, 961–967 (2011).

  48. 48.

    Zhang, X. et al. Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy. J. Neurosci. Res 92, 35–45 (2014).

  49. 49.

    Tanaka, E. et al. Dose-dependent effect of intravenous administration of human umbilical cord-derived mesenchymal stem cells in neonatal stroke mice. Front Neurol. 9, 133 (2018).

  50. 50.

    Donega, V. et al. Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse. Pediatr. Res. 78, 520–526 (2015).

  51. 51.

    Donega, V. et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp. Neurol. 261, 53–64 (2014).

  52. 52.

    Park, D. et al. Transplantation of human adipose tissue-derived mesenchymal stem cells restores the neurobehavioral disorders of rats with neonatal hypoxic-ischemic encephalopathy. Cell Med. 5, 17–28 (2013).

  53. 53.

    Chou, H. C., Li, Y. T. & Chen, C. M. Human mesenchymal stem cells attenuate experimental bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Am. J. Transl. Res. 8, 342–353 (2016).

  54. 54.

    Ding, H. et al. Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol. Immunol. 14, 693–701 (2017).

  55. 55.

    Sammour, I. et al. The effect of gender on mesenchymal stem cell (MSC) efficacy in neonatal hyperoxia-induced lung injury. PLoS ONE 11, e0164269 (2016).

  56. 56.

    Willis, G. R. et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med. 197, 104–116 (2018).

  57. 57.

    Woik, N. & Kroll, J. Regulation of lung development and regeneration by the vascular system. Cell Mol. Life Sci. 72, 2709–2718 (2015).

  58. 58.

    Montemurro, T. et al. Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration. Eur. J. Cell Biol. 95, 228–238 (2016).

  59. 59.

    Wen, Y.-C. et al. EphA2-positive human umbilical cord-derived mesenchymal stem cells exert anti-fibrosis and immunomodulatory activities via secretion of prostaglandin E2. Taiwan J. Obstet. Gynecol. 57, 722–725 (2018).

  60. 60.

    Luan, Y. et al. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling. Oncotarget 7, 47082–47094 (2016).

  61. 61.

    Hou, C. et al. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat. Biochem. Biophys. Res. Commun. 495, 1972–1979 (2018).

  62. 62.

    Liu, L. et al. Intranasal versus intraperitoneal delivery of human umbilical cord tissue–derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury. Am. J. Pathol. 184, 3344–3358 (2014).

  63. 63.

    Zhang, Z.-H. et al. Protective effects of BMSCs in combination with erythropoietin in bronchopulmonary dysplasia-induced lung injury. Mol. Med Rep. 14, 1302–1308 (2016).

  64. 64.

    Wehman, B. et al. Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload. Am. J. Physiol. - Hear Circ. Physiol. 310, H1816–H1826 (2016).

  65. 65.

    Dumpa, V. & Bhandari, V. Surfactant, steroids and non-invasive ventilation in the prevention of BPD. Semin Perinatol. 42, 444–452 (2018).

  66. 66.

    Menden, H. L. et al. Nicotinamide adenine dinucleotide phosphate oxidase 2 regulates LPS-induced inflammation and alveolar remodeling in the developing lung. Am. J. Respir. Cell Mol. Biol. 55, 767–778 (2016).

  67. 67.

    Morty, R. E. Recent advances in the pathogenesis of BPD. Semin Perinatol. 42, 404–412 (2018).

  68. 68.

    Bhandari, A. & Bhandari, V. Pathogenesis, pathology and pathophysiology of pulmonary sequelae of bronchopulmonary dysplasia in premature infants. Front Biosci. 8, e370–e380 (2003).

  69. 69.

    Baker, C. D. & Alvira, C. M. Disrupted lung development and bronchopulmonary dysplasia. Curr. Opin. Pediatr. 26, 306–314 (2014).

  70. 70.

    Álvarez-Fuente, M. et al. Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr. Res 85, 432–441 (2019).

  71. 71.

    Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med 163, 1723–1729 (2001).

  72. 72.

    Caplan, A. I. Mesenchymal stem cells: time to change the name! Stem Cells Transl. Med. 6, 1445–1451 (2017).

  73. 73.

    Fischbach, M. A., Bluestone, J. A., Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 2013

  74. 74.

    Pierro, M., Thébaud, B. & Soll, R. Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 11, (CD011932 (2017).

  75. 75.

    Chang, Y. S. et al. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS ONE 8, e52419 (2013).

  76. 76.

    Porzionato, A. et al. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am. J. Physiol. Cell Mol. Physiol. 316, L6–L19 (2019).

  77. 77.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

  78. 78.

    Chang, Y. S. et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J. Pediatr. 164, 966–972.e6 (2014).

  79. 79.

    Ahn, S. Y., Chang, Y. S., Kim, J. H., Sung, S. I. & Park, W. S. Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J. Pediatr. 185, 49–54.e2 (2017).

  80. 80.

    Douglas-Escobar, M. & Weiss, M. D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 169, 397–403 (2015).

  81. 81.

    Gu, Y. et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol. Brain 8, 65 (2015).

  82. 82.

    Park, W. S. et al. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. PLoS ONE 10, e0120893 (2015).

  83. 83.

    Mueller, M. et al. Wharton’s jelly mesenchymal stem cells protect the immature brain in rats and modulate cell fate. Stem Cells Dev. 26, 239–248 (2017).

  84. 84.

    Donega, V. et al. Intranasal administration of human MSC for ischemic brain injury in the mouse: In vitro and in vivo neuroregenerative functions. PLoS ONE 9, e112339 (2014).

  85. 85.

    Grandvuillemin, I. et al. Long-term recovery after endothelial colony-forming cells or human umbilical cord blood cells administration in a rat model of neonatal hypoxic-ischemic encephalopathy. Stem Cells Transl. Med. 6, 1987–1996 (2017).

  86. 86.

    Li, J. et al. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells. Exp. Neurol. 283, 179–187 (2016).

  87. 87.

    Braccioli, L., Heijnen, C. J., Coffer, P. J. & Nijboer, C. H. Delayed administration of neural stem cells after hypoxia-ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice. Pediatr. Res. 81, 127–135 (2017).

  88. 88.

    Cotten, C. M. et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J. Pediatr. 164, 973–979.e1 (2014).

  89. 89.

    Novak, I. et al. Concise review: stem cell interventions for people with cerebral palsy: systematic review with meta-analysis. Stem Cells Transl. Med. 5, 1014–1025 (2016).

  90. 90.

    Wang, X. et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy 15, 1549–1562 (2013).

  91. 91.

    Finch-Edmondson, M., Morgan, C., Hunt, R. W. & Novak, I. Emergent prophylactic, reparative and restorative brain interventions for infants born preterm with cerebral palsy. Front Physiol. 10, 15 (2019).

  92. 92.

    Ahn, S. Y. et al. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44, 497–504 (2013).

  93. 93.

    Zhu, L. H. et al. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res 1563, 13–21 (2014).

  94. 94.

    Ahn, S. Y. et al. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats. Cell Transpl. 26, 145–156 (2017).

  95. 95.

    Morioka, C. et al. Neuroprotective effects of human umbilical cord-derived mesenchymal stem cells on periventricular leukomalacia-like brain injury in neonatal rats. Inflamm. Regen. 37, 1 (2017).

  96. 96.

    Feng, M. et al. Safety of Allogeneic Umbilical Cord Blood Stem Cells Therapy in Patients with Severe Cerebral Palsy: A Retrospective Study. Stem Cells Int 2015, 325652 (2015).

  97. 97.

    Liu, X. et al. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J. Transl. Med 15, 48 (2017).

  98. 98.

    Kang, M. et al. Involvement of Immune Responses in the Efficacy of Cord Blood Cell Therapy for Cerebral Palsy. Stem Cells Dev. 24, 1658–1671 (2015). Available from:

  99. 99.

    Romanov, Y. A. et al. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy 17, 969–978 (2015).

  100. 100.

    Huang, L. et al. A Randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transpl. 27, 325–334 (2018).

  101. 101.

    Wang, X. et al. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy 17, 224–231 (2015).

  102. 102.

    Neu, J. & Walker, W. A. Necrotizing Enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).

  103. 103.

    Herrmann, K. & Carroll, K. An exclusively human milk diet reduces necrotizing enterocolitis. Breast. Med. 9, 184–190 (2014).

  104. 104.

    Warner, B. B. et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet 387, 1928–1936 (2016).

  105. 105.

    Cuna, A., George, L. & Sampath, V. Genetic predisposition to necrotizing enterocolitis in premature infants: Current knowledge, challenges, and future directions. Semin Fetal Neonatal Med. 23, 387–393 (2018).

  106. 106.

    Sampath, V. et al. SIGIRR genetic variants in premature infants with necrotizing enterocolitis. Pediatrics 135, e1530–e1534 (2015).

  107. 107.

    Hackam, D. J. & Sodhi, C. P. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell Mol. Gastroenterol. Hepatol. 6, 229–238.e1 (2018).

  108. 108.

    Galindo, L. T. et al. Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol. Res Int. 2011, 564089 (2011).

  109. 109.

    Rowart, P. et al. Mesenchymal stromal cell therapy in ischemia/reperfusion injury. J. Immunol. Res. 2015, 1–8 (2015).

  110. 110.

    Diaco, N., Diamandis, Z. & Borlongan, C. Amniotic fluid-derived stem cells as an effective cell source for transplantation therapy in stroke. Brain Circ. 1, 119 (2015).

  111. 111.

    McCulloh, C. J., Olson, J. K., Zhou, Y., Wang, Y. & Besner, G. E. Stem cells and necrotizing enterocolitis: a direct comparison of the efficacy of multiple types of stem cells. J. Pediatr. Surg. 52, 999–1005 (2017).

  112. 112.

    McCulloh, C. J. et al. Evaluating the efficacy of different types of stem cells in preserving gut barrier function in necrotizing enterocolitis. J. Surg. Res. 214, 278–285 (2017).

  113. 113.

    Ghionzoli, M. et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr. Surg. Int. 26, 79–84 (2010).

  114. 114.

    Zani, A. et al. Amniotic fluid stem cells prevent development of ascites in a neonatal rat model of necrotizing enterocolitis. Eur. J. Pedia. Surg. 24, 057–060 (2013).

  115. 115.

    Drucker, N. A. et al. Stem cell therapy in necrotizing enterocolitis: current state and future directions. Semin Pediatr. Surg. 27, 57–64 (2018).

  116. 116.

    Li, B. et al. Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLoS ONE 14, e0211431 (2019).

  117. 117.

    Liu, X. et al. Rescue of neonatal cardiac dysfunction in mice by administration of cardiac progenitor cells in utero. Nat. Commun. 6, 8825 (2015).

  118. 118.

    Zhang, Z. et al. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc. 5, e002856 (2016).

  119. 119.

    Tarui, S. et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients with Single-Ventricle Physiology (TICAP) trial. J. Thorac. Cardiovasc Surg. 150, 1198–1207 (2015).

  120. 120.

    Kaushal, S. et al. Study design and rationale for ELPIS: A phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome. Am. Heart J. 192, 48–56 (2017).

  121. 121.

    Yuniartha, R. et al. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model. Pedia. Surg. Int. 30, 907–914 (2014).

  122. 122.

    Wang, J.-D. et al. Human bone marrow mesenchymal stem cells for retinal vascular injury. Acta Ophthalmol. 95, e453–e461 (2017).

  123. 123.

    Wei, Z. Z. et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transpl. 24, 391–402 (2015).

  124. 124.

    van Velthoven, C. T. et al. Mesenchymal stem cells attenuate MRI-identifiable injury, protect white matter, and improve long-term functional outcomes after neonatal focal stroke in rats. J. Neurosci. Res. 95, 1225–1236 (2017).

  125. 125.

    Van Velthoven, C. T. J. et al. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44, 1426–1432 (2013).

  126. 126.

    Jeong, C. H. et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed. Res. Int. 2014, 1–10 (2014).

  127. 127.

    Zhu, Y. et al. Human umbilical cord mesenchymal stromal cells improve survival and bacterial clearance in neonatal sepsis in rats. Stem Cells Dev. 26, 1054–1064 (2017).

  128. 128.

    Hamidian, Jahromi, S., Li, Y., Davies, J. E. Effect of tumor necrosis factor alpha dose and exposure time on tumor necrosis factor induced gene-6 activation by neonatal and adult mesenchymal stromal cells. Stem Cells Dev. 27, 44–54 (2018). Available from:

  129. 129.

    Panfoli, I. et al. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB J. 30, 1416–1424 (2016).

  130. 130.

    Montanucci, P. et al. Functional profiles of human umbilical cord-derived adult mesenchymal stem cells in obese/diabetic versus healthy women. Curr. Diabetes Rev. 12, 1–12 (2016).

  131. 131.

    Turner, L. US stem cell clinics, patient safety, and the FDA. Trends Mol. Med. 21, 271–273 (2015).

  132. 132.

    Hodges, R. J., Bardien, N. & Wallace, E. Acceptability of stem cell therapy by pregnant women. Birth 39, 91–97 (2012).

  133. 133.

    Park, W. S., Ahn, S. Y., Sung, S. I., Ahn, J.-Y. & Chang, Y. S. Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr. Res. 83, 214–222 (2018).

  134. 134.

    Honn, K. V., Singley, J. A. & Chavin, W. Fetal bovine serum: a multivariate standard. Exp. Biol. Med. 149, 344–347 (1975).

  135. 135.

    Oikonomopoulos, A. et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep. 2015;5:16570.

  136. 136.

    Swamynathan, P. et al. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton’s jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res. Ther. 5, 88 (2014).

  137. 137.

    Boregowda, S. V., Phinney, D. G. Quantifiable Metrics for Predicting MSC Therapeutic Efficacy. J Stem Cell Res Ther. 6, pii: 365 (2016). Available from:

  138. 138.

    Volarevic, V. et al. Ethical and safety issues of stem cell-based therapy. Int J. Med. Sci. 15, 36–45 (2018).

  139. 139.

    Borghesi, A. et al. Genomic alterations in human umbilical cord-derived mesenchymal stromal cells call for stringent quality control before any possible therapeutic approach. Cytotherapy 15, 1362–1373 (2013).

  140. 140.

    Ferreira, J. R. et al. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 9, 2837 (2018).

  141. 141.

    Kilpinen, L. et al. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell vesicles 2013;2. Available from:

  142. 142.

    Hoch, A. I. & Leach, J. K. Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl. Med. 3, 643–652 (2014).

  143. 143.

    Krzyżaniak, N., Pawłowska, I. & Bajorek, B. Review of drug utilization patterns in NICUs worldwide. J. Clin. Pharm. Ther. 41, (612–620 (2016).

  144. 144.

    Herz, J. et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury. Brain Behav. Immun. 70, 118–130 (2018).

  145. 145.

    Perlee D., et al. Intravenous infusion of human adipose mesenchymal stem cells modifies the host response to lipopolysaccharide in humans: a randomized, single-blind, parallel group, placebo controlled trial. Stem Cells 2018.

  146. 146.

    Ahn, S. Y. et al. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS ONE 10, 1–14 (2015).

  147. 147.

    Cameron, S. H. et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol. Cell Neurosci. 68, 56–72 (2015).

  148. 148.

    Park, W. S. et al. Optimal timing of mesenchymal stem cell therapy for neonatal intraventricular hemorrhage. Cell Transpl. 25, 1131–1144 (2016).

  149. 149.

    Araújo, A. B. et al. Isolation of human mesenchymal stem cells from amnion, chorion, placental decidua and umbilical cord: comparison of four enzymatic protocols. Biotechnol. Lett. 40, 989–998 (2018).

Download references


This study was supported by the National Institutes of Health (R01 HL128374 [VS]; R01 DK117296-01 [VS]; R01 GM113236 [GB]; R01 HL141345 [JR]), Canadian Institutes of Health Research (BT), Ontario Institute for Regenerative Medicine (BT), Canadian Stem Cell Network (BT), and Children’s Mercy Research Institute (VS, CN).

Author information

All authors made substantial contributions to conception and design, drafting the article, revising it critically for important intellectual content, and gave final approval of the version to be published.

Correspondence to Venkatesh Sampath.

Ethics declarations

Competing interests

GB is a scientific founder and stock option holder in Scioto Biosciences. CN, RJ, BT, and VS have no financial or other conflicts.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading