Basic Science Article | Published:

Repurposing azithromycin for neonatal neuroprotection



Inflammation contributes to neonatal hypoxic–ischemic brain injury pathogenesis. We evaluated the neuroprotective efficacy of azithromycin, a safe, widely available antibiotic with anti-inflammatory properties, in a neonatal rodent hypoxic–ischemic brain injury model.


Seven-day-old rats underwent right carotid artery ligation followed by 90-min 8% oxygen exposure; this procedure elicits quantifiable left forepaw functional impairment and right cerebral hemisphere damage. Sensorimotor function (vibrissae-stimulated forepaw placing, grip strength) and brain damage were compared in azithromycin- and saline-treated littermates 2–4 weeks later. Multiple treatment protocols were evaluated (variables included doses ranging from 15 to 45 mg/kg; treatment onset 15 min to 4 h post-hypoxia, and comparison of 1 vs. 3 injections).


All azithromycin doses improved function and reduced brain damage; efficacy was dose dependent, and declined with increasing treatment delay. Three azithromycin injections, administered over 48 h, improved performance on both function measures and reduced brain damage more than a single dose.


In this neonatal rodent model, azithromycin improved functional and neuropathology outcomes. If supported by confirmatory studies in complementary neonatal brain injury models, azithromycin could be an attractive candidate drug for repurposing and evaluation for neonatal neuroprotection in clinical trials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Amantea, D. et al. Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Exp. Neurol. 275(Pt 1), 116–125 (2016).

  2. 2.

    Gensel, J. C., Kopper, T. J., Zhang, B., Orr, M. B. & Bailey, W. M. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci. Rep. 7, 40144 (2017).

  3. 3.

    Sutton, A. L. et al. Perinatal pharmacokinetics of azithromycin for cesarean prophylaxis. Am. J. Obstet. Gynecol. 212, e811–e816 (2015).

  4. 4.

    Kemp, M. W. et al. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. Antimicrob. Agents Chemother. 58, 6581–6591 (2014). 

  5. 5.

    Tita, A. T. et al. Adjunctive azithromycin prophylaxis for cesarean delivery. N. Engl. J. Med. 375, 1231–1241 (2016).

  6. 6.

    Oluwalana, C. et al. Azithromycin in labor lowers clinical infections in mothers and newborns: a double-blind trial. Pediatrics 139, e20162281 (2017).

  7. 7.

    Viscardi, R. M. et al. Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose. Antimicrob. Agents Chemother. 57, 2127–2133 (2013).

  8. 8.

    Merchan, L. M. et al. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for ureaplasma respiratory colonization. Antimicrob. Agents Chemother. 59, 570–578 (2015).

  9. 9.

    Smith, A. L., Alexander, M., Rosenkrantz, T. S., Sadek, M. L. & Fitch, R. H. Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp. Neurol. 254, 54–67 (2014).

  10. 10.

    Chavez-Valdez, R., Martin, L. J., Razdan, S., Gauda, E. B. & Northington, F. J. Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1. Neuroscience 260, 106–119 (2014).

  11. 11.

    Andine, P. et al. Evaluation of brain damage in a rat model of neonatal hypoxic-ischemia. J. Neurosci. Methods 35, 253–260 (1990).

  12. 12.

    Barks, J. D. et al. Maternal high-fat diet influences outcomes after neonatal hypoxic-ischemic brain injury in rodents. J. Cereb. Blood Flow Metab. 37, 307–318 (2017).

  13. 13.

    Patel, S. D. et al. Therapeutic hypothermia and hypoxia-ischemia in the term-equivalent neonatal rat: characterization of a translational preclinical model. Pediatr. Res. 78, 264–271 (2015).

  14. 14.

    Krishna, S., Hutton, A., Aronowitz, E., Moore, H. & Vannucci, S. J. The effects of adding prophylactic phenobarbital to therapeutic hypothermia in the term-equivalent hypoxic-ischemic rat. Pediatr. Res. 83, 506–513 (2018).

  15. 15.

    Felt, B. T. et al. Early appearance of functional deficits after neonatal excitotoxic and hypoxic-ischemic injury: fragile recovery after development and role of the NMDA receptor. Dev. Neurosci. 24, 418–425 (2002).

  16. 16.

    Neely, M. N., van Guilder, M. G., Yamada, W. M., Schumitzky, A. & Jelliffe, R. W. Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther. Drug Monit. 34, 467–476 (2012).

  17. 17.

    Ramsey, P. S., Vaules, M. B., Vasdev, G. M., Andrews, W. W. & Ramin, K. D. Maternal and transplacental pharmacokinetics of azithromycin. Am. J. Obstet. Gynecol. 188, 714–718 (2003).

  18. 18.

    Salman, S. et al. Pharmacokinetics of transfer of azithromycin into the breast milk of African mothers. Antimicrob. Agents Chemother. 60, 1592–1599 (2015).

  19. 19.

    Roca, A. et al. Oral azithromycin given during labour decreases bacterial carriage in the mothers and their offspring: a double-blind randomized trial. Clin. Microbiol. Infect. 22, e561–e569 (2016).

  20. 20.

    Dumas, J. L. et al. Evaluation of the efficacy of prolonged administration of azithromycin in a murine model of chronic toxoplasmosis. J. Antimicrob. Chemother. 34, 111–118 (1994).

  21. 21.

    Foulds, G., Shepard, R. M. & Johnson, R. B. The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother. 25(Suppl A), 73–82 (1990).

  22. 22.

    Jaruratanasirikul, S., Hortiwakul, R., Tantisarasart, T., Phuenpathom, N. & Tussanasunthornwong, S. Distribution of azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob. Agents Chemother. 40, 825–826 (1996).

  23. 23.

    Shepard, R. M. & Falkner, F. C. Pharmacokinetics of azithromycin in rats and dogs. J. Antimicrob. Chemother. 25(Suppl A), 49–60 (1990).

  24. 24.

    Davila, D., Kolacny-Babic, L. & Plavsic, F. Pharmacokinetics of azithromycin after single oral dosing of experimental animals. Biopharm. Drug Dispos. 12, 505–514 (1991).

  25. 25.

    Ivacko, J. A., Sun, R. & Silverstein, F. S. Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr. Res. 39, 39–47 (1996).

  26. 26.

    Giulian, D., Li, J., Leara, B. & Keenen, C. Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem. Int. 25, 227–233 (1994).

  27. 27.

    Faustino, J. V. et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J. Neurosci. 31, 12992–13001 (2011).

  28. 28.

    Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

  29. 29.

    Szalay, G. et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat. Commun. 7, 11499 (2016).

  30. 30.

    Jin, W. N. et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow Metab. 37, 2224–2236 (2017).

  31. 31.

    Hellstrom Erkenstam, N. et al. Temporal characterization of microglia/macrophage phenotypes in a mouse model of neonatal hypoxic-ischemic brain injury. Front. Cell Neurosci. 10, 286 (2016).

  32. 32.

    Murphy, B. S. et al. Azithromycin alters macrophage phenotype. J. Antimicrob. Chemother. 61, 554–560 (2008).

  33. 33.

    Zhang, B. et al. Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. J. Neuroinflamm. 12, 218 (2015).

  34. 34.

    Tann, C. J. et al. Perinatal risk factors for neonatal encephalopathy: an unmatched case-control study. Arch. Dis. Child Fetal Neonatal Ed. 103, F250–F256 (2018).

  35. 35.

    Parker, S. J., Kuzniewicz, M., Niki, H. & Wu, Y. W. Antenatal and intrapartum risk factors for hypoxic-ischemic encephalopathy in a US birth cohort. J. Pediatr. 203, 163–169 (2018).

  36. 36.

    2013 FDA Drug Safety Communication: Azithromycin (Zithromax or Zmax) and the risk of potentially fatal heart rhythms. U.S. Food & Drug Administration,

  37. 37.

    Battin, M. R., Penrice, J., Gunn, T. R. & Gunn, A. J. Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees C and 34.5 degrees C) after perinatal asphyxia. Pediatrics 111, 244–251 (2003).

  38. 38.

    Zhang, W. et al. Therapeutic hypothermia increases the risk of cardiac arrhythmia for perinatal hypoxic ischaemic encephalopathy: a meta-analysis. PLoS ONE 12, e0173006 (2017).

  39. 39.

    Arvin, K. L. et al. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol. 52, 54–61 (2002).

  40. 40.

    Tsuji, M., Wilson, M. A., Lange, M. S. & Johnston, M. V. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp. Neurol. 189, 58–65 (2004).

Download references


Research reported in this publication was supported by the Michigan Institute for Clinical & Health Research (MICHR) that is supported by the National Institutes of Health under award number UL1TR002240. Research was also supported by the National Institutes of Health under award number R21 HD096251 (to J.D.E.B. and F.S.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This research was also supported by the Neonatal Therapeutic Hypothermia Gift Fund, and The Reiter HIE Research Fund.

Author information

Competing interests

The authors declare no competing interests.

Correspondence to John D. E. Barks.

Supplementary information

  1. Supplementary Data Table S1

  2. Supplementary Data Table S2

  3. Supplementary Data Table S3

  4. Supplementary Data Figure S1

  5. Supplementary Video

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5