Human milk as “chrononutrition”: implications for child health and development


Human biology follows recurring daily rhythms that are governed by circadian cues in the environment. Here we show that human milk is a powerful form of “chrononutrition,” formulated to communicate time-of-day information to infants. However, 85% of breastfed infants in the US consume some milk that does not come directly from the breast but is pumped and stored in advance of feeding. Expressed milk is not necessarily circadian-matched (e.g., an infant might drink breastmilk pumped in the evening on the following morning). Ingesting mistimed milk may disrupt infants’ developing circadian rhythms, potentially contributing to sleep problems and decreased physiological attunement with their mothers and environments. Dysregulated circadian biology may compromise infant health and development. Despite wide-ranging public health implications, the timing of milk delivery has received little empirical study, and no major pediatric or public health organization has issued recommendations regarding the circadian-matching of milk. However, potential adverse developmental and health consequences could be ameliorated by simple, low-cost interventions to label and circadian-match stored milk. The current paper reviews evidence for human milk as chrononutrition and makes recommendations for future research, practice, and policy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    Spatz, D. L. & Edwards, T. M. The use of human milk and breastfeeding in the neonatal intensive care unit: position statement 3065. Adv. Neonatal Care 16, 254 (2016).

  2. 2.

    WHO. The Optimal Duration of Exclusive Breastfeeding. Document ref. WHO/NHD/0109. (WHO, Geneva, Switzerland, 2001).

  3. 3.

    Eidelman, A. I. et al. Breastfeeding and the use of human milk. Pediatrics 129, e827–e841 (2012).

  4. 4.

    American Academy of Pediatrics Section on Breastfeeding. Sample Hospital Breastfeeding Policy for Newborns, 2009. American Academy of Pediatrics, Itasca, IL (2012).

  5. 5.

    Chantry, C. J., Eglash, A. & Labbok, M. ABM position on breastfeeding—revised 2015. Breastfeed. Med. 10, 407–411 (2015).

  6. 6.

    Marinelli, K. A., Moren, K., Taylor, J. S. & The Academy of Breastfeeding Medicine. Breastfeeding support for mothers in workplace employment or educational settings: summary statement. Breastfeed. Med. 8, 137–142 (2013).

  7. 7.

    WHO. Optimal Feeding of Low Birth-Weight Infants in Low-and Middle-Income Countries (WHO, Geneva, 2011).

  8. 8.

    Engler, A. C., Hadash, A., Shehadeh, N. & Pillar, G. Breastfeeding may improve nocturnal sleep and reduce infantile colic: potential role of breast milk melatonin. Eur. J. Pediatr. 171, 729–732 (2012).

  9. 9.

    Aparicio, S. et al. Chrononutrition: use of dissociated day/night infant milk formulas to improve the development of the wake–sleep rhythms. Effects of tryptophan. Nutr. Neurosci. 10, 137–143 (2007).

  10. 10.

    Pundir, S. et al. Variation of human milk glucocorticoids over 24 hour period. J. Mammary Gland Biol. Neoplasia 22, 85–92 (2017).

  11. 11.

    Sánchez, C. L. et al. Evolution of the circadian profile of human milk amino acids during breastfeeding. J. Appl. Biomed. 11, 59–70 (2013).

  12. 12.

    Illnerova, H., Buresova, M. & Presl, J. Melatonin rhythm in human milk. J. Clin. Endocrinol. Metab. 77, 838–841 (1993).

  13. 13.

    Fein, S. B., Grummer-Strawn, L. M. & Raju, T. N. Infant feeding and care practices in the United States: results from the Infant Feeding Practices Study II. Pediatrics 122(Supplement 2), S25–S27 (2008).

  14. 14.

    Ip, S. et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid. Rep. Technol. Assess. (Full Rep.) 18, 1–186 (2007).

  15. 15.

    White, R. D. Circadian variation of breast milk components and implications for care. Breastfeed. Med. 12, 398–400 (2017).

  16. 16.

    Thomas, K. A., Burr, R. L., Spieker, S., Lee, J. & Chen, J. Mother–infant circadian rhythm: development of individual patterns and dyadic synchrony. Early Hum. Dev. 90, 885–890 (2014).

  17. 17.

    Ivars, K. et al. Development of salivary cortisol circadian rhythm and reference intervals in full-term infants. PLoS ONE 10, e0129502 (2015).

  18. 18.

    Custodio, R. J. et al. The emergence of the cortisol circadian rhythm in monozygotic and dizygotic twin infants: the twin‐pair synchrony. Clin. Endocrinol. 66, 192–197 (2007).

  19. 19.

    de Weerth, C., Zijl, R. H. & Buitelaar, J. K. Development of cortisol circadian rhythm in infancy. Early Hum. Dev. 73, 39–52 (2003).

  20. 20.

    Price, D., Close, G. & Fielding, B. Age of appearance of circadian rhythm in salivary cortisol values in infancy. Arch. Dis. Child. 58, 454–456 (1983).

  21. 21.

    Sánchez, C. L. et al. The possible role of human milk nucleotides as sleep inducers. Nutr. Neurosci. 12, 2–8 (2009).

  22. 22.

    Jackson, D. A. et al. Circadian variation in fat concentration of breast-milk in a rural northern Thai population. Br. J. Nutr. 59, 349–363 (1988).

  23. 23.

    Daly, S. E., Di Rosso, A., Owens, R. A. & Hartmann, P. E. Degree of breast emptying explains changes in the fat content, but not fatty acid composition, of human milk. Exp. Physiol. 78, 741 (1993).

  24. 24.

    Lammi-Keefe, C. J., Ferris, A. M. & Jensen, R. G. Changes in human milk at 0600, 1000, 1400, 1800, and 2200 h. J. Pediatr. Gastroenterol. Nutr. 11, 83–88 (1990).

  25. 25.

    Moran-Lev, H. et al. Circadian macronutrients variations over the first 7 weeks of human milk feeding of preterm infants. Breastfeed. Med. 10, 366–370 (2015).

  26. 26.

    Lubetzky, R., Mimouni, F. B., Dollberg, S., Salomon, M. & Mandel, D. Consistent circadian variations in creamatocrit over the first 7 weeks of lactation: a longitudinal study. Breastfeed. Med. 2, 15–18 (2007).

  27. 27.

    Barkova, E., Nazarenko, E. & Zhdanova, E. Diurnal variations in qualitative composition of breast milk in women with iron deficiency. Bull. Exp. Biol. Med. 140, 394–396 (2005).

  28. 28.

    Karra, M. V. & Kirksey, A. Variation in zinc, calcium, and magnesium concentrations of human milk within a 24-hour period from 1 to 6 months of lactation. J. Pediatr. Gastroenterol. Nutr. 7, 100–106 (1988).

  29. 29.

    Keenan, B. S., Buzek, S. W., Garza, C., Potts, E. & Nichols, B. L. Diurnal and longitudinal variations in human milk sodium and potassium: implication for nutrition and physiology. Am. J. Clin. Nutr. 35, 527–534 (1982).

  30. 30.

    Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

  31. 31.

    Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190 (2013).

  32. 32.

    Hamosh, M. Bioactive factors in human milk. Pediatr. Clin. North Am. 48, 69–86 (2001).

  33. 33.

    Houseknecht, K. L., McGuire, M. K., Portocarrero, C. P., McGuire, M. A. & Beerman, K. Leptin is present in human milk and is related to maternal plasma leptin concentration and adiposity. Biochem. Biophys. Res. Commun. 240, 742–747 (1997).

  34. 34.

    Weyermann, M., Beermann, C., Brenner, H. & Rothenbacher, D. Adiponectin and leptin in maternal serum, cord blood, and breast milk. Clin. Chem. 52, 2095–2102 (2006).

  35. 35.

    Cannon, A. M. et al. The effects of leptin on breastfeeding behaviour. Int. J. Environ. Res. Public Health 12, 12340–12355 (2015).

  36. 36.

    Langendonk, J. G. et al. Circadian rhythm of plasma leptin levels in upper and lower body obese women: influence of body fat distribution and weight loss. J. Clin. Endocrinol. Metab. 83, 1706–1712 (1998).

  37. 37.

    Nozhenko, Y., Asnani-Kishnani, M., Rodríguez, A. M. & Palou, A. Milk leptin surge and biological rhythms of leptin and other regulatory proteins in breastmilk. PLoS ONE 10, e0145376 (2015).

  38. 38.

    Pinsky, M. et al. Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge. PLoS ONE 12, e0188658 (2017).

  39. 39.

    Gala, R. R., Singhakowinta, A. & Brennan, M. J. Studies on prolactin in human serum, urine and milk. Horm. Res Paediatr. 6, 310–320 (1975).

  40. 40.

    Yuen, B. H. Prolactin in human milk: the influence of nursing and the duration of postpartum lactation. Am. J. Obstet. Gynecol. 158, 583–586 (1988).

  41. 41.

    Martin, L. J. et al. Adiponectin is present in human milk and is associated with maternal factors–. Am. J. Clin. Nutr. 83, 1106–1111 (2006).

  42. 42.

    Whitmore, T., Trengove, N., Graham, D. & Hartmann, P. Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. Int. J. Endocrinol. 2012, 296368 (2012).

  43. 43.

    Aydin, S., Aydin, S., Ozkan, Y. & Kumru, S. Ghrelin is present in human colostrum, transitional and mature milk. Peptides 27, 878–882 (2006).

  44. 44.

    Kierson, J. A., Dimatteo, D. M., Locke, R. G., MacKley, A. B. & Spear, M. L. Ghrelin and cholecystokinin in term and preterm human breast milk. Acta Paediatr. 95, 991–995 (2006).

  45. 45.

    Rodriguez-Palmero, M., Koletzko, B., Kunz, C. & Jensen, R. Nutritional and biochemical properties of human milk: II. Lipids, micronutrients, and bioactive factors. Clin. Perinatol. 26, 335–359 (1999).

  46. 46.

    Franca et al. Time-dependent alterations of soluble and cellular components in human milk. Biol. Rhythm Res. 41, 333–347 (2010).

  47. 47.

    Silva, N. A. et al. Bioactive factors of colostrum and human milk exhibits a day-night variation. Am. J. Immunol. 9, 68 (2013).

  48. 48.

    Morais, T. C. et al. Temporal fluctuations of cytokine concentrations in human milk. Biol. Rhythm Res. 46, 811–821 (2015).

  49. 49.

    Sephton, S. E. et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav. Immun. 30, S163–S170 (2013).

  50. 50.

    Schrepf, A. et al. Diurnal cortisol and survival in epithelial ovarian cancer. Psychoneuroendocrinology 53, 256–267 (2015).

  51. 51.

    Riemann, D. et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med. Rev. 14, 19–31 (2010).

  52. 52.

    Saridjan, N. S. et al. The prospective association of the diurnal cortisol rhythm with sleep duration and perceived sleeping problems in pre-schoolers: the Generation R study. Psychosom. Med. 79, 557–564 (2017).

  53. 53.

    Van Lenten, S. A. & Doane, L. D. Examining multiple sleep behaviors and diurnal salivary cortisol and alpha-amylase: within- and between-person associations. Psychoneuroendocrinology 68, 100–110 (2016).

  54. 54.

    Keller, J. et al. Cortisol circadian rhythm alterations in psychotic major depression. Biol. Psychiatry 60, 275–281 (2006).

  55. 55.

    Bhattacharyya, M. R., Molloy, G. J. & Steptoe, A. Depression is associated with flatter cortisol rhythms in patients with coronary artery disease. J. Psychosom. Res. 65, 107–113 (2008).

  56. 56.

    White, B. P., Gunnar, M. R., Larson, M. C., Donzella, B. & Barr, R. G. Behavioral and physiological responsivity, sleep, and patterns of daily cortisol production in infants with and without colic. Child Dev. 71, 862–877 (2000).

  57. 57.

    Vásquez-Ruiz, S. et al. A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum. Dev. 90, 535–540 (2014).

  58. 58.

    Mann, N., Haddow, R., Stokes, L., Goodley, S. & Rutter, N. Effect of night and day on preterm infants in a newborn nursery: randomised trial. Br. Med. J. (Clin. Res. Ed.) 293, 1265–1267 (1986).

  59. 59.

    Miller, C. L., White, R., Whitman, T. L., O’Callaghan, M. F. & Maxwell, S. E. The effects of cycled versus noncycled lighting on growth and development in preterm infants. Infant Behav. Dev. 18, 87–95 (1995).

  60. 60.

    Brandon, D. H., Holditch-Davis, D. & Belyea, M. Preterm infants born at less than 31 weeks’ gestation have improved growth in cycled light compared with continuous near darkness. J. Pediatr. 140, 192–199 (2002).

  61. 61.

    Challet, E. Keeping circadian time with hormones. Diabetes Obes. Metab. 17(S1), 76–83 (2015).

  62. 62.

    Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383 (2006).

  63. 63.

    Flierl, M. A., Rittirsch, D., Huber-Lang, M., Sarma, J. V. & Ward, P. A. Catecholamines—crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box? Mol. Med. 14, 195–204 (2008).

  64. 64.

    Cajochen, C., Kräuchi, K. & Wirz‐Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 15, 432–437 (2003).

  65. 65.

    Pévet, P. Melatonin: from seasonal to circadian signal. J. Neuroendocrinol. 15, 422–426 (2003).

  66. 66.

    Grosbellet, E., Gourmelen, S., Pévet, P., Criscuolo, F. & Challet, E. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology 156, 1080–1090 (2015).

  67. 67.

    Kalsbeek, A. et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142, 2677–2685 (2001).

  68. 68.

    Rivkees, S. A. Developing circadian rhythmicity in infants. Pediatrics 112, 373–381 (2003).

  69. 69.

    Guyer, C. et al. Cycled light exposure reduces fussing and crying in very preterm infants. Pediatrics 130, e145–e151 (2012).

  70. 70.

    Wachman, E. M. & Lahav, A. The effects of noise on preterm infants in the NICU. Arch. Dis. Child. Fetal Neonatal Ed. 96, F305–F309 (2011).

  71. 71.

    Santiago, L. B., Jorge, S. M. & Moreira, A. C. Longitudinal evaluation of the development of salivary cortisol circadian rhythm in infancy. Clin. Endocrinol. 44, 157–161 (1996).

  72. 72.

    Spangler, G. The emergence of adrenocortical circadian function in newborns and infants and its relationship to sleep, feeding and maternal adrenocortical activity. Early Hum. Dev. 25, 197–208 (1991).

  73. 73.

    Kiess, W. et al. Salivary cortisol levels throughout childhood and adolescence: relation with age, pubertal stage, and weight. Pediatr. Res. 37, 502–506 (1995).

  74. 74.

    Lewis, M. & Ramsay, D. S. Developmental change in infants’ responses to stress. Child Dev. 66, 657–670 (1995).

  75. 75.

    Hastings, M. H., Reddy, A. B. & Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661 (2003).

  76. 76.

    Schlarb, A. A., Lollies, F. & Claßen, M. Cortisol and sleep in infancy and early childhood. Somnologie 20, 199–211 (2016).

  77. 77.

    Angelucci, L. A model for later-life effects of perinatal drug exposure: maternal hormone mediation. Neurobehav. Toxicol. Teratol. 7, 511–517 (1985).

  78. 78.

    Hahn‐Holbrook, J., Le, T. B., Chung, A., Davis, E. P. & Glynn, L. M. Cortisol in human milk predicts child BMI. Obesity 24, 2471–2474 (2016).

  79. 79.

    Grey, K. R., Davis, E. P., Sandman, C. A. & Glynn, L. M. Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology 38, 1178–1185 (2013).

  80. 80.

    Catalani, A. et al. Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Res. 624, 209–215 (1993).

  81. 81.

    Casolini, P. et al. Effect of increased maternal corticosterone during lactation on hippocampal corticosteroid receptors, stress response and learning in offspring in the early stages of life. Neuroscience 79, 1005–1012 (1997).

  82. 82.

    Catalani, A. et al. Maternal corticosterone during lactation permanently affects brain corticosteroid receptors, stress response and behaviour in rat progeny. Neuroscience 100, 319–325 (2000).

  83. 83.

    Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

  84. 84.

    Reppert, S. M. & Klein, D. C. Transport of maternal [3H] melatonin to suckling rats and the fate of [3H] melatonin in the neonatal rat. Endocrinology 102, 582–588 (1978).

  85. 85.

    Cubero, J. et al. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn. Neuroendocrinol. Lett. 26, 657–662 (2005).

  86. 86.

    Cubero, J. et al. Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuro Endocrinol. Lett. 28, 360–366 (2007).

  87. 87.

    Kennaway, D. J., Goble, F. C. & Stamp, G. E. Factors influencing the development of melatonin rhythmicity in humans. J. Clin. Endocrinol. Metab. 81, 1525–1532 (1996).

  88. 88.

    Glynn, L. M. et al. Measuring novel antecedents of mental illness: the Questionnaire of Unpredictability in Childhood. Neuropsychopharmacology (2018).

  89. 89.

    Evans, G. W., Gonnella, C., Marcynyszyn, L. A., Gentile, L. & Salpekar, N. The role of chaos in poverty and children’s socioemotional adjustment. Psychol. Sci. 16, 560–565 (2005).

  90. 90.

    Doom, J. R., Vanzomeren-Dohm, A. A. & Simpson, J. A. Early unpredictability predicts increased adolescent externalizing behaviors and substance use: a life history perspective. Dev. Psychopathol. 28(4pt2), 1505–1516 (2016).

  91. 91.

    Glynn, L. M. et al. Prenatal maternal mood patterns predict child temperament and adolescent mental health. J. Affect Disord. 228, 83–90 (2018).

  92. 92.

    Baram, T. Z. et al. Fragmentation and unpredictability of early-life experience in mental disorders. Am. J. Psychiatry 169, 907–915 (2012).

  93. 93.

    Freide, E. & Weinstock, M. The effects of prenatal exposure to predictable or unpredictable stress on early development in the rat. Dev. Psychobiol. 17, 651–660 (1984).

  94. 94.

    Bremmer, P., Byers, J. F. & Kiehl, E. Noise and the premature infant: physiological effects and practice implications. J. Obstet. Gynecol. Neonatal Nurs. 32, 447–454 (2003).

  95. 95.

    Tyler, K., Moriceau, S., Sullivan, R. M. & Greenwood‐van Meerveld, B. Long‐term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs predictable shock. Neurogastroenterol. Motil. 19, 761–768 (2007).

  96. 96.

    Sarro, E. C., Sullivan, R. M. & Barr, G. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA. Neuroscience 258, 147–161 (2014).

  97. 97.

    Davis, E. P. et al. Exposure to unpredictable maternal sensory signals influences cognitive development across species. Proc. Natl. Acad. Sci. 114, 10390–10395 (2017).

  98. 98.

    Clarke, A. & Schneider, M. Prenatal stress has long‐term effects on behavioral responses to stress in juvenile rhesus monkeys. Dev. Psychobiol. 26, 293–304 (1993).

  99. 99.

    Simpson, J. A., Griskevicius, V., Kuo, S. I., Sung, S. & Collins, W. A. Evolution, stress, and sensitive periods: the influence of unpredictability in early versus late childhood on sex and risky behavior. Dev. Psychol. 48, 674 (2012).

  100. 100.

    Brumbach, B. H., Figueredo, A. J. & Ellis, B. J. Effects of harsh and unpredictable environments in adolescence on development of life history strategies. Hum. Nat. 20, 25–51 (2009).

  101. 101.

    Ellis, B. J., Figueredo, A. J., Brumbach, B. H. & Schlomer, G. L. Fundamental dimensions of environmental risk. Hum. Nat. 20, 204–268 (2009).

  102. 102.

    Belsky, J., Schlomer, G. L. & Ellis, B. J. Beyond cumulative risk: distinguishing harshness and unpredictability as determinants of parenting and early life history strategy. Dev. Psychol. 48, 662 (2012).

  103. 103.

    Promislow, D. E. & Harvey, P. H. Living fast and dying young: a comparative analysis of life‐history variation among mammals. J. Zool. 220, 417–437 (1990).

  104. 104.

    Wootton, R. The evolution of life histories: theory and analysis. Rev. Fish. Biol. Fish. 3, 384–385 (1993).

  105. 105.

    Kaplan, H., Hill, K., Lancaster, J. & Hurtado, A. M. A theory of human life history evolution: diet, intelligence, and longevity. Evolut. Anthropol. 9, 156–185 (2000).

  106. 106.

    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

  107. 107.

    Koyanagi, S. et al. Chronic treatment with prednisolone represses the circadian oscillation of clock gene expression in mouse peripheral tissues. Mol. Endocrinol. 20, 573–583 (2006).

  108. 108.

    Verduci, E. et al. Epigenetic effects of human breast milk. Nutrients 6, 1711–1724 (2014).

  109. 109.

    Minekawa, R. et al. Human breast milk suppresses the transcriptional regulation of IL-1β-induced NF-κB signaling in human intestinal cells. Am. J. Physiol. Cell Physiol. 287, C1404–C1411 (2004).

  110. 110.

    Sjögren, Y. M. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses: gut microbiota and immune responses. Clin. Exp. Allergy 39, 1842–1851 (2009).

  111. 111.

    Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

  112. 112.

    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392 (2018).

  113. 113.

    Blackburn, S. & Patteson, D. Effects of cycled light on activity state and cardiorespiratory function in preterm infants. J. Perinat. Neonatal Nurs. 4, 47–54 (1991).

  114. 114.

    Rivkees, S. A., Mayes, L., Jacobs, H. & Gross, I. Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics 113, 833–839 (2004).

  115. 115.

    Field, C. J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 135, 1–4 (2005).

  116. 116.

    Tsai, S.-Y. Impact of a breastfeeding-friendly workplace on an employed mother’s intention to continue breastfeeding after returning to work. Breastfeed. Med. 8, 210–216 (2013).

  117. 117.

    US Department of Labor. National Compensation Survey: Employee Benefits in the United States, March 2012 (Department of Labor Statistics USBoL, Washington DC, 2012).

Download references


This work was supported by a grant from the National Institutes of Mental Health (MH-96889).

Author information

J.H.-H. and L.G. conceptualized the research concept and wrote the initial draft of the manuscript. D.S., C.S., and C.B. helped revise the article critically for important intellectual content. All authors gave their final approval of this paper for publication.

Correspondence to Jennifer Hahn-Holbrook.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hahn-Holbrook, J., Saxbe, D., Bixby, C. et al. Human milk as “chrononutrition”: implications for child health and development. Pediatr Res 85, 936–942 (2019).

Download citation