Clinical Research Article | Published:

In vivo textural and morphometric analysis of placental development in healthy & growth-restricted pregnancies using magnetic resonance imaging

Abstract

Background

The objective of this study was to characterize structural changes in the healthy in vivo placenta by applying morphometric and textural analysis using magnetic resonance imaging (MRI), and to explore features that may be able to distinguish placental insufficiency in fetal growth restriction (FGR).

Methods

Women with healthy pregnancies or pregnancies complicated by FGR underwent MRI between 20 and 40 weeks gestation. Measures of placental morphometry (volume, elongation, depth) and digital texture (voxel-wise geometric and signal-intensity analysis) were calculated from T2W MR images.

Results

We studied 66 pregnant women (32 healthy controls, 34 FGR); during the study period, placentas undergo significant increases in size; signal intensity remains relatively constant, however there is increasing variation in spatial arrangements, suggestive of progressive microstructural heterogeneity. In FGR, placental size is smaller, with great homogeneity of signal intensity and spatial arrangements.

Conclusion

We report quantitative textural and morphometric changes in the in vivo placenta in healthy controls over the second half of pregnancy. These MRI features demonstrate important differences in placental development in the setting of placental insufficiency that relate to onset and severity of FGR, as well as neonatal outcome

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Kim, C. J., Romero, R., Chaemsaithong, P. & Kim, J. S. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol. 213(4 Suppl), S53–S69 (2015).

  2. 2.

    Gagnon, R. Placental insufficiency and its consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 110(Suppl 1), S99–S107 (2003).

  3. 3.

    Morgan, T. K. Role of the placenta in preterm birth: a review. Am. J. Perinatol. 33, 258–266 (2016).

  4. 4.

    Wu, Y. W. & Colford, J. M. Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284, 1417–1424 (2000).

  5. 5.

    Mifsud, W. & Sebire, N. J. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn. Ther. 36, 117–128 (2014).

  6. 6.

    Perrone, S., Tataranno, M. L., Negro, S., Longini, M., Toti, M. S. & Alagna, M. G. et al. Placental histological examination and the relationship with oxidative stress in preterm infants. Placenta 46, 72–78 (2016).

  7. 7.

    Di Cataldo, S. & Ficarra, E. Mining textural knowledge in biological images: applications, methods and trends. Comput. Struct. Biotechnol. J. 15, 56–67 (2017).

  8. 8.

    Sorensen, L., Igel, C., Liv Hansen, N., Osler, M., Lauritzen, M. & Rostrup, E. et al. Early detection of Alzheimer’s disease using MRI hippocampal texture. Hum. Brain Mapp. 37, 1148–1161 (2016).

  9. 9.

    Suoranta, S., Holli-Helenius, K., Koskenkorva, P., Niskanen, E., Kononen, M. & Aikia, M. et al. 3D texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS ONE 8, e69905 (2013).

  10. 10.

    Chen, C. Y., Su, H. W., Pai, S. H., Hsieh, C. W., Jong, T. L. & Hsu, C. S. et al. Evaluation of placental maturity by the sonographic textures. Arch. Gynecol. Obstet. 284, 13–18 (2011).

  11. 11.

    Hadlock, F. P., Deter, R. L., Harrist, R. B. & Park, S. K. Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters. Radiology 152, 497–501 (1984).

  12. 12.

    Acharya, G., Wilsgaard, T., Berntsen, G. K., Maltau, J. M. & Kiserud, T. Reference ranges for serial measurements of blood velocity and pulsatility index at the intra-abdominal portion, and fetal and placental ends of the umbilical artery. Ultrasound Obstet. Gynecol. 26, 162–169 (2005).

  13. 13.

    Acharya, G., Wilsgaard, T., Berntsen, G. K., Maltau, J. M. & Kiserud, T. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. Am. J. Obstet. Gynecol. 192, 937–944 (2005).

  14. 14.

    Andescavage, N., duPlessis, A., Metzler, M., Bulas, D., Vezina, G. & Jacobs, M. et al. In vivo assessment of placental and brain volumes in growth-restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI. J. Perinatol. 37, 1278–1284 (2017).

  15. 15.

    Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S. & Gee, J. C. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006).

  16. 16.

    Zou, K. H., Wells, W. M. 3rd, Kikinis, R. & Warfield, S. K. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat. Med. 23, 1259–1282 (2004).

  17. 17.

    Alliez Pea. Point set processing. (eds Board C. E.). CGAL User and Reference Manual 2016. https://doc.cgal.org/latest/Manual/how_to_cite_cgal.html.

  18. 18.

    Kazhdan M., Bolitho, M. & Hoppe, H. Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. p. 61-70(Eurographics Association Aire-la-Ville, Switzerland, Switzerland 2006).

  19. 19.

    Dahdouh, S. & Andescavage, N. & Yewale, S. & Yarish, A. & Lanham, D. & Bulas, D. et al. In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome. J Magn Reson Imaging 47, 449–458 (2018).

  20. 20.

    Ebbing, C., Rasmussen, S. & Kiserud, T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet. Gynecol. 30, 287–296 (2007).

  21. 21.

    Baschat, A. A. & Gembruch, U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet. Gynecol. 21, 124–127 (2003).

  22. 22.

    Lane, P. W. Generalized linear models in soil science. Eur. J. Soil Sci. 53, 241–251 (2002).

  23. 23.

    SAS. SAS system. 9.3 edn. (SAS Institute Inc., Cary, NC, July 2011).

  24. 24.

    Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).

  25. 25.

    Srinivasan GNaS, G. Statistical texture analysis proceedings of world academy of science. Eng. Technol. 36, 1264–1269 (2008).

  26. 26.

    Heinonen, S., Taipale, P. & Saarikoski, S. Weights of placentae from small-for-gestational age infants revisited. Placenta 22, 399–404 (2001).

  27. 27.

    Sanin, L. H., Lopez, S. R., Olivares, E. T., Terrazas, M. C., Silva, M. A. & Carrillo, M. L. Relation between birth weight and placenta weight. Biol. Neonate. 80, 113–117 (2001).

  28. 28.

    Veerbeek, J. H., Nikkels, P. G., Torrance, H. L., Gravesteijn, J., Post Uiterweer, E. D. & Derks, J. B. et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta 35, 696–701 (2014).

  29. 29.

    Parra-Saavedra, M., Crovetto, F., Triunfo, S., Savchev, S., Peguero, A. & Nadal, A. et al. Placental findings in late-onset SGA births without Doppler signs of placental insufficiency. Placenta 34, 1136–1141 (2013).

  30. 30.

    Burton, G. J., Woods, A. W., Jauniaux, E. & Kingdom, J. C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30, 473–482 (2009).

  31. 31.

    Howe, D., Wheeler, T. & Perring, S. Measurement of placental volume with real-time ultrasound in mid-pregnancy. J. Clin. Ultrasound 22, 77–83 (1994).

  32. 32.

    Hafner, E., Philipp, T., Schuchter, K., Dillinger-Paller, B., Philipp, K. & Bauer, P. Second-trimester measurements of placental volume by three-dimensional ultrasound to predict small-for-gestational-age infants. Ultrasound Obstet. Gynecol. 12, 97–102 (1998).

  33. 33.

    Farina, A. Systematic review on first trimester three-dimensional placental volumetry predicting small for gestational age infants. Prenat. Diagn. 36, 135–141 (2016).

  34. 34.

    Schwartz, N., Mandel, D., Shlakhter, O., Coletta, J., Pessel, C. & Timor-Tritsch, I. E. et al. Placental morphologic features and chorionic surface vasculature at term are highly correlated with 3-dimensional sonographic measurements at 11 to 14 weeks. J. Ultrasound Med. 30, 1171–1178 (2011).

  35. 35.

    Schwartz, N., Coletta, J., Pessel, C., Feng, R., Timor-Tritsch, I. E. & Parry, S. et al. Novel 3-dimensional placental measurements in early pregnancy as predictors of adverse pregnancy outcomes. J. Ultrasound Med. 29, 1203–1212 (2010).

  36. 36.

    Schwartz, N., Wang, E. & Parry, S. Two-dimensional sonographic placental measurements in the prediction of small-for-gestational-age infants. Ultrasound Obstet. Gynecol. 40, 674–679 (2012).

  37. 37.

    Radulescu, E., Ganeshan, B., Minati, L., Beacher, F. D., Gray, M. A. & Chatwin, C. et al. Gray matter textural heterogeneity as a potential in-vivo biomarker of fine structural abnormalities in Asperger syndrome. Pharm. J. 13, 70–79 (2013).

  38. 38.

    Radulescu, E., Ganeshan, B., Shergill, S. S., Medford, N., Chatwin, C. & Young, R. C. et al. Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia. Psychiatry Res. 223, 179–186 (2014).

  39. 39.

    Makanyanga, J., Ganeshan, B., Rodriguez-Justo, M., Bhatnagar, G., Groves, A. & Halligan, S. et al. MRI texture analysis (MRTA) of T2-weighted images in Crohn’s disease may provide information on histological and MRI disease activity in patients undergoing ileal resection. Eur. Radiol. 27, 589–597 (2017).

  40. 40.

    Brown, A. M., Nagala, S., McLean, M. A., Lu, Y., Scoffings, D. & Apte, A. et al. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn. Reson Med. 75, 1708–1716 (2016).

  41. 41.

    Holli, K. K., Waljas, M., Harrison, L., Liimatainen, S., Luukkaala, T. & Ryymin, P. et al. Mild traumatic brain injury: tissue texture analysis correlated to neuropsychological and DTI findings. Acad. Radiol. 17, 1096–1102 (2010).

  42. 42.

    Walker, M. G., Hindmarsh, P. C., Geary, M. & Kingdom, J. C. Sonographic maturation of the placenta at 30 to 34 weeks is not associated with second trimester markers of placental insufficiency in low-risk pregnancies. J. Obstet. Gynaecol. Can. 32, 1134–1139 (2010).

Download references

Funding

This was supported by the National Institutes of Health (1U54HD090257, R01-HL116585, UL1TR000075, and KL2TR000076, Clinical-Translational Science Institute-Children’s National).

Author information

Correspondence to Catherine Limperopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary table1

Supplementary table2

Supplementary figure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1