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Cortical interneuron function in autism spectrum condition
Jason W. Lunden1, Madel Durens1, Andre W. Phillips1 and Michael W. Nestor1

Cortical interneurons (INs) are a diverse group of neurons that project locally and shape the function of neural networks throughout
the brain. Multiple lines of evidence suggest that a proper balance of glutamate and GABA signaling is essential for both the proper
function and development of the brain. Dysregulation of this system may lead to neurodevelopmental disorders, including autism
spectrum condition (ASC). We evaluate the development and function of INs in rodent and human models and examine how
neurodevelopmental dysfunction may produce core symptoms of ASC. Finding common physiological mechanisms that underlie
neurodevelopmental disorders may lead to novel pharmacological targets and candidates that could improve the cognitive and
emotional symptoms associated with ASC.
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INTRODUCTION
The modulation of cortical excitatory and inhibitory synapses
within local circuits is driven by a delicate balance between
excitatory glutamatergic pyramidal neurons (PNs) and GABAergic
cortical interneurons (INs).1 PNs specialize in transmitting informa-
tion within and between cortical regions, and non-cortical
structures. INs contribute to network coordination by inhibiting
the activity of target cells by hyperpolarizing the postsynaptic
membrane, and consequently decreasing the probability that the
target neuron will fire.1–4 Dysfunction in this system can lead to
regional and global loss of information within the brain from
embryonic development to adulthood. A number of neurodeve-
lopmental disorders, including autism spectrum condition (ASC)
may be driven in part by IN dysfunction.5–7

Altered balance of excitatory and inhibitory inputs onto neurons
(known as E/I imbalance) has emerged as a potential hypothesis
for many of the difficulties associated with ASC.8–10 Altered E/I
balance may induce language delays and communication
challenges11 and disrupt sensory processing, problems frequently
observed in ASC.12,13 Impairment or loss of parvalbumin (PV) INs
may contribute to E/I balance disruption and consequently
desynchronize neuronal oscillations that coordinate the activity
of distant brain regions.14–17 Changes in neuronal activity and
oscillations in individuals with ASC are associated with, or even
predict, sensory and cognitive symptoms of autism.11,16 Gamma
deficits in the first 3 years of life predict difficulties in language
development, cognition, and switching attention, which are
implicated in ASC.18,19 Altered IN function is also linked to
epileptic seizures,20 as INs are essential for preventing hyperexcit-
ability in the brain,21 and epilepsy is commonly comorbid with
ASC.20

The first part of this review provides an overview of how INs
develop in the medial and caudal ganglionic eminences of the
developing cortex. This includes a discussion on the mechanisms
of cell fate, neuronal migration, and challenges observed in ASC. In
the second part of the review, the structure and function of
cortical INs is discussed, along with changes in ASC. Changes in

synaptic communication and neural oscillations associated with
specific social deficits in rodent models are reviewed. The
generation of cortical neurons derived from induced pluripotent
stem cells (iPSCs) from individuals with ASC is discussed. Models
using three-dimensional (3D) cortical human tissue reproducing
and confirming neurophysiological mechanisms associated with
ASC from rodent and clinical studies may improve the prospect for
translational interventions. Throughout, we demonstrate the
importance of INs in neurodevelopmental disorders with an
emphasis on autism in general.

CLASSIFICATION OF CORTICAL INS
Cortical INs are highly diverse and differ broadly in terms of
morphology, physiology, and molecular characteristics.22 Nearly all
neocortical INs can be classified into three categories based on
expression of the calcium (Ca2+)-binding protein, parvalbumin
(PV), the neuropeptide somatostatin (SST), or the ionotropic
serotonin receptor (5HT3aR23). PV INs are fast spiking and non-
accommodating24 and can be further subdivided into basket and
chandelier cells. Basket cells target the soma and proximal
dendrites of PNs and other INs, while chandelier cells target the
axon and initial segment of PNs.23,25 SST-positive INs fire action
potentials (AP) in bursts, in response to depolarizing current. The
largest subset of SST-positive INs are Martinotti cells; bitufted cells
that project axons into layer I of the cortex where they target tuft
dendrites of PNs.26 These axons can project horizontally across
layer I to multiple columns and provide cross-columnar inhibition.
5HT3aR INs are a diverse group of INs expressing neither PV nor
SST (~30% of INs in the somatosensory cortex).27 These INs
express molecular markers, including vasoactive intestinal peptide
(VIP), and reelin, and exhibit differing electrophysiological and
morphological characteristics. VIP-expressing cells include double-
bouquet cells and bipolar cells, both of which target dendrites. VIP
(+) bipolar neurons co-express calretinin (CR), and have low input
resistance and an irregular firing pattern.28 Double-bouquet cells
exhibit bitufted morphology along with descending axonal arbors.
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Neurogliaform cells express reelin and have a distinct morphology
characterized by numerous short dendrites that form a spherical
dendritic field. These neurons are late spiking and also target
dendrites29 (Table 1, Fig. 1).
In contrast with PNs that migrate radially from the ventricular

zone of the dorsal forebrain, cortical INs originate from the
subpallium or ventral forebrain, particularly the medial and caudal
ganglionic eminences (MGE and CGE) and the preoptic area (POA),
and migrate tangentially to the cortex30–32 (Fig. 2). In utero fate
mapping and transplant studies show that a majority of PV and
SST INs derive from the MGE in a defined spatiotemporal
manner.33,34 SST INs are generated from the dorsal MGE, while
PV INs are generated from both the dorsal and ventral MGE.
Temporal dynamics also play a role in the type of IN produced.
Production of SST INs peaks earlier compared to PV INs, and a

higher percentage of SST INs are produced earlier in develop-
ment.33 Interestingly, MGE-derived INs migrate to the cortex in an
inside-out configuration, similar to that of PNs, with older cells
occupying lower layers.35 The CGE, formed by the fusion of the
posterior aspects of the MGE and lateral ganglionic eminence
(LGE), generates 5HT3aR INs expressing VIP, reelin, or neuropep-
tide Y (NPY). Generation of neurons from the CGE starts and peaks
later in development compared to the MGE, and in contrast does
not exhibit the same inside-out cortical integration.36 A small but
diverse population of INs originates from the POA, located ventral
to the MGE. These INs mainly occupy superficial cortical layers, and
include neurons expressing NPY, PV, and SST.37

Fate determination of INs is regulated by several factors
(reviewed in refs.38,39). First, the ganglionic eminences are
specified by transcription factors Ascl1 and Dlx1 and 2. Mice

Table 1 List of IN categories discussed in the article and their characteristics

Type Subtype Morphology Staining Characteris�cs References

Parvalbumin

General PV Fast Spiking (4)

Basket Cells PV Very fast spiking (4)

Chandelier Cells PV Regulate excitatory ac�vity (21,65)

Somatosta�n

General SST

Fire APs in bursts, 

an�epilep�c, released during 

high frequency firing

(133)

Mar�no� Cells SST Regular spiking pa�ern (133)

5-HT3A

General 5-HT3A (24)

Vasoac�ve 

Intes�nal Pep�de 

(VIP)

Bipolar Cell

5-HT3A

Weakly inhibit PV networks, 

but strongly inhibit SST 

networks

(133)Double bouquet 

cells

Reelin 5-HT3A

Polarizes neurons towards 

cor�cal plate in 

development.

(28,134,135)

Neuropep�de Y 5-HT3A

May regulate monoamine 

ac�vity, eg: serotonin, 

norepinephrine, dopamine 

(24,136–138)

Pyramidal Cells PN Excitatory, Glutamatergic

Bipolar Cell

Double bouquet 

cells

-

(101,139–141)
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lacking Ascl1 or Dlx1/2 lose 50–80% of cortical INs. Dlx1 and Dlx2
also promote the expression of glutamic acid decarboxylase
Gad67, vesicular GABA transporter VGAT, and the differentiation
and migration transcription factor Arx,40 making them essential for
IN differentiation and migration.
In the MGE and POA, the transcription factor Nkx2.1 acts as a

master regulator that drives differentiation of PV and SST INs. The
expression of Nkx2.1 is induced by sonic hedgehog (SHH). Within
the MGE, higher levels of SHH in the dorsal region induce
development of SST INs, while lower levels in the ventromedial
region preferentially give rise to PV INs.41 Loss of Nkx2.1 results in
reduction of INs—possibly associated with ventral to dorsal
transformation of the basal telencephalon.42 Evidence also
suggests that loss of Nkx2.1 at E12.5 in mice induces a switch in
cell fate from PV and SST INs of an MGE transcriptional identity to
a CGE-like identity.43 Nkx2.1 induces the expression of Lhx6, which
is expressed in MGE-derived INs beginning from when the cells
exit the cell cycle44 and functions in tangential migration.45

Less is known about fate determination in the CGE, but studies
suggest the involvement of Prox1, CoupTF2, and Gsx2.
Prox1 serves as a molecular marker for INs derived from the
CGE and LGE,46 and is required for the acquisition of properties of
CGE-derived INs.47 CoupTF2 is an orphan nuclear receptor that is
enriched in the CGE and is involved in tangential migration.39

Gsx2 acts upstream of Ascl1 and is required for the specification of
the CGE and LGE (Fig. 3).48,49

Recent studies by Ma et al.50 and Hansen et al.31 show that the
molecular mechanisms and developmental programs involved in
IN fate determination are well conserved between rodents and
primates, and that the majority of cortical INs are generated in the
ganglionic eminences. However, their observations indicate that
MGE-derived PV and SST INs only account for 20% and 25%,
respectively, of the total INs in the primate cortex. This is
accompanied by a relative increase in the proportion of CGE-
derived INs,31 particularly CR+INs.50

CORTICAL INTERNEURON MIGRATION
From the subpallium, IN precursors migrate tangentially to the
pallium and then migrate radially to populate different cortical
layers. This process is controlled by interaction with guidance
factors and motogens (reviewed in ref. 51). Initial migration away
from the subpallial proliferative zone is mediated by chemor-
epulsive cues expressed in this region. Chemorepulsion from the
MGE and the POA is facilitated by Eph/ephrin signaling.52,53 The
chemorepulsive ligand Slit is also expressed in the VZ, where it
interacts with Robo receptors in INs, and facilitates exiting from
the proliferative zone.54 Repulsion from the striatum during
tangential migration is also facilitated by Robo,54 as well as
semaphorin and its receptor neuropilin in INs.55 Several key
motogens stimulate migration to the pallium, including hepato-
cyte growth factor/scatter factor (HGF/SF), brain-derived neuro-
trophic factor (BDNF), neurotrophin 4 (NT4), and glial cell line-
derived neurotrophic factor (GDNF).35,51 Migration into and within
the cortex is also facilitated by chemoattractant pathways such as
neuregulin-1/ErbB4, stromal-derived factor 1 (SDF-1)/CXC chemo-
kine receptor 4 (CxCR4), and netrin. Different isoforms of
neuregulin-1 are expressed in the developing cortex and serve
as a short- and long-range attractant for a subpopulation of INs
expressing the receptor ErbB4. Consequently, the loss of this
signaling reduces the number of cortical INs.2 In contrast, loss of
SDF-1/CxCR4 seems to selectively affect later-born neurons, and
induces the reduction of INs in superficial cortical layers and
ectopic migration to deep layers.56 The diffusible factor netrin also
plays a role in chemoattraction during migration—especially in
the upper cortical plate.57 Finally, evidence suggests that the
switch of the Na–K–Cl cotransporters NKCC1 to KCC2 during early
postnatal development is an important stop signal for IN
migration. During early development, both GABA and glutamate
facilitate neuronal migration by depolarizing the membrane and
generating Ca2+ currents. The switch to KCC2 makes GABA
hyperpolarizing, which restricts cellular motility.51,58

FUNCTION OF CORTICAL INTERNEURONS
Microcircuits are critical for the function of the cortex. Glutama-
tergic PNs specialize in transmitting information both within and
between cortical areas, as well as to other parts of the brain.
Inhibitory GABAergic INs regulate the activity of these PNs. They
are involved in the regulation of gating in spiking, temporal, and
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Fig. 1 Cellular connections within the cortex. PV BCs are PV INs
found in layers II–VI where they regulate PN activity through synaptic
connections with PN dendrites.25,29 CCs are another class of PV INs,
and range from the border of layers I to III, and layer V.25,29 CCs
regulate PN activity by synapses on axons.25,29 Martinotti cells are
SST INs found in layers II–VI, and inhibit the tuft dendrites of PNs.25,29

Bipolar cells are 5-HT3A that can be inhibitory through GABA release,
or excitatory through VIP release.25,29 Bipolar cells can be found in
layers II–VI, but their axons extend through all layers, because they
mainly synapse basal dendrites of PNs.25,29 Double-bouquet cells are
also 5-HT3A and VIP positive, target dendrites, and are found in layers
II–V.25,29 NPY neurons also express 5-HT3A (although some may
express SST as well) and can be found throughout the cortex, but are
most often found in II–III.25,29,133 Reelin cells are developmentally
involved in radial layer formation, but in mature tissues regulate
synaptic plasticity in PN dendrites25,29,134,135

Rostral telencephalon

Pallium

Subpalium

PV+

SST+
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5HT3aR
+
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Fig. 2 Migration of cortical neurons in the rodent cortex. Excitatory
neurons migrate radially from the ventricular zone and populate the
cortical layers (green arrows). GABAergic INs originate from the
subpallium from the ganglionic eminences and the preoptic area
and migrate tangentially toward the cortex (orange), adapted
from48,49
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spatial network dynamics,59,60 as well as aspects of the waking
brain state including attention, arousal, and the regulation of pupil
diameter in response to brain-state changes (see ref. 61 for a
review). In particular, INs regulate the E/I balance which has been
suggested to be dysregulated in ASC.6

PV-expressing basket cells (BCs), a subtype of cortical IN, have
multiple unique properties allowing them to quickly fire APs and
release GABA at a lower threshold than other neurons.62 The
resting membrane potential of BCs is generally lower than in other
neurons with a reduced dendrite diameter and an extensive
axonal arborization that acts as a current sink accelerating the
decay of somatic excitatory postsynaptic potentials (EPSPs).
Together, these physiological attributes contribute to fast EPSP
propagation.63 The BCs axons have a unique sodium (Na+)-
channel density gradient, with a nearly 18-fold increase in the
number of channels per micron in the distal axon compared to the
soma, leading to a 2.4-fold faster Na+ inactivation time compared
to the soma.64 The axon terminals of BCs require fewer open Ca2+

channels to release GABA compared to other IN cell types.65 These
differences contribute to the BC fast-spiking phenotype. The
increased speed of BC synaptic and spike properties allows them
to be superb integrators of information coming from distal PN
glutamatergic inputs. This fast integration is required for adequate
local E/I balance in micronetworks in the cortex.
Chandelier cells (CC) form axon terminals in vertically oriented

clusters, giving them a chandelier-like appearance. They target the
axon initial segments of PNs, which receive multiple synaptic
boutons each from multiple chandelier neurons.66 CC synapses
express high levels of GAT1 and the GABAAα2 subunit.67,68

Although CCs are not as well characterized as BCs, it is known
that seizures can lead to decreases in nerve terminals,69,70 and loss
of CC.71 This has led to the hypothesis that chandelier neurons
play a role in regulating excess excitatory activity and E/I
balance.21 Other interneuron types are found through the six
layers of the neocortex (Fig. 1).

DYSREGULATION OF INTERNEURONS IN
NEURODEVELOPMENTAL DISORDERS
Altered IN function has been documented in several develop-
mental disorders including schizophrenia, intellectual disability,
and autism. Existing studies have focused on synaptic deficits in

cortical INs. However, disruption of genes involved in IN
neurogenesis and migration may also play a significant role.
Genetic variants of IN developmental genes have been linked to
neurodevelopmental disorders. Polymorphisms in Dlx1/2 have
been linked to autism susceptibility.72,73 The Dlx target Arx is one
of the most frequently mutated genes in X-linked intellectual
disability. Mutations of Arx both in rodents and humans also result
in infantile spasms, possibly due to reduced inhibition.74 Lastly,
mutations in ErbB4 are linked to schizophrenia.1 These highlight
the importance of early developmental events in phenotypes
associated with neurodevelopmental disorders, and suggest that
the tight balance of E/I is important for normal brain function.
The consequences of disrupted IN function during development

have been difficult to study due to embryonic lethality conferred
by mutations in genes linked to these phenotypes. Several
conditional knockout (KO) models have been successful in
demonstrating that specific deletions in INs can mimic behaviors
associated with neurodevelopmental disorders. For example,
deletion of HGF/SF in mice causes embryonic lethality, but
deletion of the urokinase plasminogen activator receptor which
activates HGF/SF reduces HGF/SF activity and results in viable
mice with selective reduction of calbindin (+) INs in the frontal
and parietal cortex. These mice exhibit behavioral abnormalities
including seizure susceptibility, anxiety-like behavior, and reduced
sociability.75,76

IN dysfunction has also been demonstrated in schizophrenia.77

Several studies have shown that targeted deletion of ErbB4 using
MGE-derived INs (Lhx6-Cre78) or in PV INs (PV-Cre79) results in
hyperactivity, impaired working memory and fear conditioning,
and decreased pre-pulse inhibition. Mutation of schizophrenia-
associated genes (DSC1) or loci (22q11.2) in mice also results in
the alteration of PV IN number or distribution.1,35

Mouse models of ASC also display disruption of IN function and
development. Mutation of MeCP2 is implicated in about 90% of
cases of Rett syndrome. In mice, targeted deletion of MeCP2 in
GABAergic neurons results in autism-related phenotypes, including
repetitive behaviors, as well as decreased GABA transmission.80

CNTNAP2, a member of the neurexin family, is also linked to autism.
CNTNAP2-KO mice exhibit autism-related behaviors, hyperactivity,
and epileptic seizures. Immunolabeling shows abnormal cortical
neuron distribution, indicating migration deficits, and a marked
reduction in IN numbers, particularly in PV INs.81
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Fig. 3 Gene expression patterns that drive differentiation and maturation of INs in the subpallium. The three major areas in the developing
cortex that generate INs are the MGE, the CGE, and the POA.48,49 The expression of regulatory transcription factors combined with
spatiotemporal gradients of growth factors drives the expression of IN subtypes48,49
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INTERNEURONS, E/I BALANCE IN THE CORTEX, AND AUTISM
ASC encompasses challenges in processing social and emotional
information, and executive function, which are governed in part by
connections between sensory, motor, and dopaminergic pathways
to the prefrontal cortex (PFC). These pathways are highly implicated
in autism. Multiple studies implicate the PFC in psychological
resilience and coping.14,82,83 The physiological reduction of the stress
response based on the subjective sense of control of the stressor is
governed by the neuronal connection between the medial PFC
(mPFC) and the serotonergic dorsal raphe nucleus.84 PFC deficits in
ASC may affect executive function, particularly executive function
deficits from dopaminergic basal ganglia circuits.85–89 Thus, the PFC
and the cortex in general may be key physiological substrates
contributing to ASC psychological challenges.
Neuronal oscillations support inter-regional communication,

and require INs for proper regulation.16,17 It has been hypothe-
sized that environmental stimuli, field potentials, and spiking
activity may be best detected in the postsynaptic neuron at an
optimum time window between 10 and 30ms, corresponding
approximately to a gamma cycle.16 The emergence of gamma
oscillations in the cortex has been hypothesized to require
mutually connected INs, a time constant provided by the GABAA

receptor, and sufficient activity to induce spikes in the INs (see
ref. 16 for a review). Oscillations (including other frequencies in
addition to gamma) have been proposed to provide the frame-
work for straightforward communication between neurons and
brain areas, as opposed to stochastic patterns of spikes, and are
involved in the regulation of E/I balance.17,90 Sleep-dependent
oscillations may assist with linking memory and judgment
between the PFC and hippocampus, respectively.90 Aberrant
gamma activity in early life may predict difficulties in the
development of language, cognition, and attention; all of which
have been implicated in ASC.18,19 This collectively highlights
multiple roles that INs play in neural oscillations and E/I balance.
Rodent studies suggest that dysfunction of the E/I balance in

the mPFC may represent a physiological bottleneck for informa-
tion processing in ASC, potentially driving social deficits.
Optogenetic stimulation of PNs has been shown to saturate AP
propagation in the postsynaptic neuron, leading to synaptic data
loss.6 Saturation in the mPFC (but not in other cortical areas), is
associated with decreased social preference, social exploration,
and inhibited fear conditioning, which are rescued by optogenetic
activation of INs.6 Knock-in (KI) mice overexpressing neuroligin 3
(an ASC-associated mutation) exhibit reduced coupling between
low gamma amplitude and the theta phase, but a stronger and
wider coupling between high gamma and theta rhythms during
social interaction, indicating a dysfunction of temporal informa-
tion integration in the local circuits.15 The KI mice also recruit
fewer mPFC neurons to lock gamma and theta oscillations during
social interactions and have a lower probability of locking in the
social state, while exhibiting a higher probability of locking during
the quiet state.15 Using optogenetic techniques, INs stimulated at
40 Hz nested at 8 Hz, show enhanced power and coupling
strength of gamma and theta bands.15 This stimulation enhances
social preference within both wild-type (WT) and KI mice, while
constant 40 Hz and 8 Hz nested in 20 Hz, has no effect, and a
higher frequency of 80 Hz inhibits social preference in both WT
and KI mice.15 Collectively, these studies support the hypothesis
that GABAergic INs in the PFC play a crucial role in the regulation
of behavior and information processing that are hindered in ASC.

ELECTRICAL ACTIVITY IN INDIVIDUALS WITH ASC
Electroencephalography (EEG) and magnetoencephalography
(MEG) allows non-invasive measurements of neural activity in
human subjects and has been used to measure gamma
oscillations in individuals with ASC. A decrease in gamma power
in the left hemisphere following an audio tone was found in

children with ASC,12 and a similar reduction within both parents
and children with ASC.13 Another group showed elevated pre-
stimulus activity associated with decreased language scores, and a
decreased post-stimulus activity in children with ASC.11 Only
gamma oscillations were related to reduced language scores, with
a positive pre-stimulus association between gamma and language
deficits in the right hemisphere, along with a negative post-
stimulus association between gamma activity and difficulty with
language.11 The authors hypothesized that an inability of
GABAergic INs to maintain a neutral tone, or ability to rapidly
return to a baseline state before the next stimulus may have
contributed to an increased signal to noise deficit in individuals
with ASC, leading to audio processing challenges.11

Evidence suggests that social and or psychotherapeutic
interventions may potentially ameliorate gamma activity deficits.
Relative left hemisphere dominance is associated with both
positive affect and increased social motivation, while relative right
hemisphere dominance is characterized by social withdrawal,
negative emotions, a poorer outcome, and spherical dominance is
present from infancy to adulthood.91 ASC teens taking a 5-month
Program for the Education and Enrichment of Relational Skills
(PEERS) class showed a significant shift from right to left
hemisphere dominant gamma activity when measured before
and after.91 Furthermore the students with the most social
contacts, increased understanding of PEERS concepts, and
decrease in ASC symptoms as rated by their parents showed the
greatest shift in gamma activity.91 Given that PV neurons are
needed to initiate and regulate gamma oscillations,16,17,90 these
studies show the importance of cortical INs in ASC and suggest
plasticity in gamma and INs related to social learning.

ASC, INTERNEURONS, AND IPSCS
iPSCs are stem cells derived from the mature tissue of individuals
with genetic susceptibility to disease, and can be used for in vitro
disease modelling.92 Through treatment with the four Yamanaka
factors: OCT3/4, SOX2, c-Myc, and KLF4,93 fibroblasts,94 peripheral
blood mononuclear cells (PBMCs),95,96 or dental pulp cells97 from
individuals with ASC can be reprogrammed into iPSCs, retaining
the original genetics of the individual from which they were
derived.98 Dual SMAD inhibition can differentiate iPSCs into neural
precursor cells (NPCs, Fig. 4).95,99 Additional protocols allow
development toward anterior or posterior fate, deep or superficial
neuronal subtypes, glutamate, pyramidal, GABA, PV, and soma-
tostatin neurons.100–109 iPSCs can be used to generate a 2D
monolayer, 3D embryoid bodies (EBs,110), or organoids to model
cortical development.111–115 EBs can form rosettes, a 3D model of
cortical development (Fig. 5,109). Serum-free EBs110,116 can acquire
CGE-like characteristics with CR (+) neurons showing structural
and electrophysiological properties similar to GABAergic INs.109 It
is important to note that iPSC organoids develop into neurons at a
rate similar to the human embryo, thus these models potentially
correspond to first trimester human neurons.117

Recent iPSC studies have selected idiopathic cohorts from ASC
individuals with macrocephaly,118,119 as it is associated with poorer
clinical outcomes.120,121 Other studies used EB rosettes to model
cortical development finding increases in the GABA IN cell fate
marker DLX2,118,119 Marchetto et al. found increased proliferation
measured by increased percentage of Ki67+ cells within the ASC
group with decreased cell cycle length.119 The percentage Ki67+
cells from both ASC and control were significantly correlated with
brain volume of the individual from which they were derived.119

Mariani et al., also found a decrease in cell cycle length, but no
change in proliferation or Ki67+.118 Other differences were either no
change PN with a reduction in GABA markers119 or decreased
markers for PN development and synaptic activity.118

Monogenic ASC iPSC studies have also found evidence of E/I
balance disruption. Rett syndrome-derived EBs showed reduced
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glutamate synapse number, and decreased frequency and
amplitude of excitatory postsynaptic currents (EPSCs), but no
change in frequency or amplitude of inhibitory postsynaptic
currents (iPSCs).122 The insertion of a stop codon into MeCP2 was
found to prevent expression of KCC2 which drives GABA to switch
from excitation to inhibition.123 Another monogenic iPSC line is
based on a de novomutation in TRPC6 a Ca2+-permeable dendritic
ion channel involved in excitatory synapse formation, and not
previously linked to ASC.97 Surprisingly MeCP2 was found to act
upstream of TRPC6, effecting glutamate activity and synaptic
density similarly to Rett syndrome.97 Other monogenic gene
disorders are associated with ASC including 15q, 16p11.2, and
22q.124–126 Not all of these monogenic autism subtypes have been
turned into iPSC lines and have yet to be sufficiently characterized
or modeled with respect to iPSC-derived interneuron function.

ASC THERAPEUTIC TARGETS IN IPSC-DERIVED NEURONAL
CULTURES
Evidence suggests the growth factor IGF-1 may be ameliorate
physiological deficits associated with ASC. In iPSC models, IGF-I
increased KCC2 expression in neurons derived from MeCP2
individuals.123 IGF-I also restored spiking behavior to idiopathic
ASC cells119 and glutamatergic synapse number in Rett syn-
drome122 and following TRPC6 loss.97 Restoration of gamma
oscillations represents a target that may improve information

processing, particularly social information processing in the PFC.
Optogenetic stimulation of INs in mice enhanced power and
coupling strength of gamma and theta bands as well as social
preference.6,15,127 Pharmacological compounds capable of pro-
moting gamma synchronization through the stimulation or
changing gene expression for receptors involved in this process
would represent a novel and useful treatment strategy.
Although the iPSC field is in early development, the potential to

model aspects of ASC using human neurons is promising.128 The
ability to develop human cortical tissue in vitro presents scientists
with multiple new options to design experiments that integrate
results from both rodent and clinical studies that will result in
greater clinical translatability.

CONCLUSION
Cortical networks are necessary to transmit information across the
brain, and dysfunction of this network is associated with many
ASC phenotypes. GABAergic INs regulate the E/I balance, including
temporal and spatial network dynamics that may govern the
processing of sensory, social/emotional, and cognitive informa-
tion. Deficits in gamma and theta activity, which are controlled by
interneurons, result in perceptual and social deficits in both
individuals with ASC and animal models.6,12,13,15,91 This suggests
that cortical IN dysfunction may contribute to many phenotypes
associated with ASC (Fig. 6).

Fig. 5 Examples of EBs made from human iPSCs. a EB created on a cell-culture insert in bright-field and b stained for the excitatory neuronal
marker VGLUT (orange). c An example of the ultrastructure of an EB revealed by staining for beta-tubulin III (violet)
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Given the complexity and dynamic nature of the brain micro-
circuitry and the many unknowns, caution must be exercised to
avoid overly simplifying the E/I relationship with disease
phenotype. As different regions have different microcircuit
profiles,129,130 conclusions gleaned from measurements in one
region may not be applicable to others. This is underscored by
work showing that despite high variation in evoked excitatory and
inhibitory inputs to visual PNs, the overall E/I input ratio is
constant.131 Nevertheless, the potential of using E/I balance as a
readout for conditions such as autism or as a guide for developing
effective therapy remains powerful, particularly as such tools as
high-content assays become more mainstream. In addition, E/I
balance could provide insight into the presence and severity of
comorbidities such as epilepsy in autism.74,132 The role of
interneurons in the regulation of E/I balance should be regarded
as a contributing factor to observed phenotypes in neurodevelop-
mental conditions, and deserves further intensive study.
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