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Deep learning identifies a T-cell exhaustion-dependent
transcriptional signature for predicting clinical outcomes and
response to immune checkpoint blockade
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Immune checkpoint blockade (ICB) therapies have brought unprecedented advances in cancer treatment, but responses are limited
to a fraction of patients. Therefore, sustained and substantial efforts are required to advance clinical and translational investigation
on managing patients receiving ICB. In this study, we investigated the dynamic changes in molecular profiles of T-cell exhaustion
(TEX) during ICB treatment using single-cell and bulk transcriptome analysis, and demonstrated distinct exhaustion molecular
profiles associated with ICB response. By applying an ensemble deep-learning computational framework, we identified an ICB-
associated transcriptional signature consisting of 16 TEX-related genes, termed ITGs. Incorporating 16 ITGs into a machine-learning
model called MLTIP achieved reliable predictive power for clinical ICB response with an average AUC of 0.778, and overall survival
(pooled HR= 0.093, 95% CI, 0.031–0.28, P < 0.001) across multiple ICB-treated cohorts. Furthermore, the MLTIP consistently
demonstrated superior predictive performance compared to other well-established markers and signatures, with an average
increase in AUC of 21.5%. In summary, our results highlight the potential of this TEX-dependent transcriptional signature as a tool
for precise patient stratification and personalized immunotherapy, with clinical translation in precision medicine.
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INTRODUCTION
Immune checkpoint blockade (ICB) therapy has revolutionized
cancer therapy by disrupting co-inhibitory T-cell signaling
unprecedentedly, leading to a stupendous response and
improved survival for certain patients with various cancers [1].
However, monoclonal antibodies for immune checkpoints, such
as targeting programmed cell death protein 1 (PD-1), pro-
grammed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), have displayed heterogeneous
and variable response rates and clinical outcomes in a large
proportion of cancers [2–4]. Therefore, it is critical to identify
predictive biomarkers of individual ICB responses and therapeu-
tic targets to improve tailored clinical decisions and treatment
procedures. Although potential biomarkers of ICB response have
been reported and investigated over the past years, such as
immune checkpoint inhibitor gene expression [5], IFN-γ pathway
[6], tumor-infiltrating lymphocytes [7], tumor mutation burden
[8], T-cell receptor [9], CTLA-4 promoter hypomethylation [10],
DNA repair machinery [11], microsatellite instability [12],
neoantigen presentation [13], sex differences [14, 15], the gut
microbiome [16], and immune-related adverse events [17], these
previously markers are insufficient and limited by moderate
accuracy, cancer heterogeneity and tissue specificity. Therefore,
sustained and substantial efforts are yet required to advance
clinical and translational investigation on managing patients
receiving ICB.

There is mounting evidence to suggest that the reversion of the
T-cell exhaustion (TEX) state and progressive characteristics from
"stem cell-like progenitor" to "terminally differentiated exhausted
cell" are critical factors involved in response resistance to ICB
therapy [18, 19]. In the tumor microenvironment (TME), the
complex networks of immunosuppressive and escaping cancer
cells, inflammatory cells, suppressive cytokines, and chemotactic
factors induce differentiation from effector T cells into exhausted
T cells [20]. The intrinsic mechanism of evolution for T-cell
exhaustion within TME can be attributed to multiple factors,
including evolutionary conservative adaptation of chronic tumor
antigen stimulation [21], chronic T-cell receptor (TCR) stimulation
[22], and epigenetic and transcriptional reprogramming [23, 24].
Although increased expression of various inhibitory receptors is
the hallmark of exhausted CD8+ T cells, the pool of exhausted
CD8+ T cells is composed of functionally and phenotypically
heterogeneous subsets [25, 26]. The heterogeneity of TEX within
the TME has been reported to be associated with clinical
outcomes and immunotherapy responsiveness [25]. For example,
a recently discovered precursor exhausted T-cell subset, a
specialized population of exhausted CD8+ T cells with dual
characteristics of both exhausted and memory cells, is closely
linked to increased ICB response and patient survival [27, 28].
Another TEX subpopulation marked by CD62L expression
(CD62L+ TEX cells) also plays a critical role in long-term antiviral
immunity and responsiveness to immunotherapy [25].
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In this study, we focused on the close relationship between
transcriptional alterations in TEX and ICB response. Using deep-
learning algorithms on transcriptome data and ICB response data,
we aimed to identify a TEX-dependent transcriptional signature
that could predict clinical outcomes and response to ICB. Our
analysis resulted in the discovery of a TEX-dependent transcrip-
tional signature, which we named MLTIP. We found that the MLTIP
could effectively predict clinical outcomes and ICB responses. We
then validated the predictive capacity of the MLTIP using a
comprehensive dataset of 465 samples sourced from five multi-
center ICB immunotherapy cohorts. Furthermore, we found that
the MLTIP had superior performance and outperformed other
established signatures.

MATERIALS AND METHODS
Acquisition and analysis of ICB bulk RNA-seq datasets
The raw bulk RNA-seq data was obtained using the HiSeq Illumina platform
from six ICB cohorts, which were collected from the NCBI Sequence Read
Archive (SRA) repository and other online sources, including 41 patients
treated with anti-PD-1 from Gide’s study (Accession PRJEB23709) (Gide
cohort) [29], 49 patients treated with anti-PD-1 and 42 paired pre- and
post- anti-PD-1 treatment patients from Riaz’s study (Accession
PRJNA356761) (Riaz cohort) [30], 26 patients treated with anti-PD-1 from
HugoW’s study (HugoW cohort) (Accession PRJNA312948) [31], nine
patients with anti-CTLA-4 immunotherapy from Nathanson’s study
(http://www.hammerlab.org/melanoma-reanalysis) (Nathanson cohort)
[32], and 298 patients with anti-PD-L1 immunotherapy from Maria’s study
(http://research-pub.gene.com/IMvigor210CoreBiologies) (Maria cohort)
[33]. After batch correction using the Combat method from “sva”
R package, Gide cohort, Riaz cohort, and HugoW cohort were integrated
to form a larger cohort (referred to as GHR cohort) for discovery, and other
cohorts were used for validation. Clinical benefit was defined as patients
with a RECIST complete response (CR), and stable disease (SD), while non-
responders were defined as those with progressive disease (PD).
Raw bulk RNA-seq data of ICB cohorts was converted into FASTQ data

from SRA using “sratoolkit” (v2.8.2). Quality control was performed on the
FASTQ files using “Trim Galore”. Gene expression quantification was
performed using “kallisto”. Raw count data was transformed by each gene
length in kilobases of transcripts per million (TPM). The TPM expression
was normalized using the log2(TPM) quantification approach suggested by
the center of the University of North Carolina TCGA genome characteriza-
tion. After gene expression normalized by log2x, RNA-seq data were
subjected to R packages “tsne” (v0.1–3), “stats” (v4.1.1) and “Consensu-
sClusterPlus” (v1.56.0) using the Euclidean distance, ward.D, and k-means
method of TEX genes.

Pan-cancer transcriptomic data
The TCGA pan-cancer RNA-seq FPKM-UQ (log2 FPKM+ 1 transformed)
along with curated clinical information for 9564 patients among 30
cancer types (adrenocortical carcinoma (ACC), bladder urothelial carci-
noma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC), cholangiocarci-
noma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma
(MESO), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarci-
noma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach
adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid
carcinoma (THCA), thymoma (THYM), uterine corpus endometrial
carcinoma (UCEC), uterine carcinosarcoma (UCS), uveal melanoma
(UVM) was obtained from the UCSC Xena atlas (https://
xenabrowser.net/datapages/ (GDC Pan-cancer)). The 9564 samples were
only filtered with primary and metastatic bulk solid tumors.

Single-cell RNA-seq data and analysis
10x Genomics’ single-cell RNA-seq (scRNA-seq) data of triple-negative
breast cancer (TNBC) receiving anti-PD-L1 immunotherapy was obtained

from the Zhang cohort [34], including 52,960 T cells from 14 pre-treatment
patients and 43,401 T cells from 12 post-treatment patients. The quantified
normalized T-cell scRNA-seq subtype data from the Zhang cohort was
processed using the “Scanpy” (v2.3.4) [35] and “Scrublet” [36] methods to
reserve the high-quality cells. The R package “Seurat” (v4.1.0) [37] was
utilized to perform the reasonable clustering of the 52,960 T cells in pre-
treatment and 43,401 T cells in post-treatment with their top highly
variable genes (HVGs). The HVGs were detected with the “selection.-
method=vst” in the Seurat package, where the normalized dispersion
using the observed mean and expected variance revealed the gene
dispersions. For downstream analysis, the principal component analysis
(PCA) was carried out for dimensionality reduction and noise reduction.
The cell clustering used non-linear dimension reduction to the same
principal components with the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) in the two-dimensional space [37]. The “FindAllMarkers”
function in the Seurat package was performed to identify the differentially
expressed genes (DEGs) between each cell cluster and all other cell clusters
with the threshold of 0.25 logFC and P value < 0.05. The overlap between
these DEGs and candidate cellular biomarkers was displayed in the
heatmap with the scaled average gene expression.

TEX-dependent predictor with the deep-learning ensemble
structure
A total of 683 genes involved in TEX were obtained from previous
studies by manual collection (Supplementary Table 1). A deep-learning
ensemble structure was established to construct a TEX-based predictor
by integrating deep-autoencoder [38], Kruskal–Wallis test method, and
recursive feature elimination (RFE) as follows: (i) The deep-autoencoder
was used for the noise reduction and feature-selection with “hid-
den=41” by the encoder to decoder. For each node in the layer of the
deep-autoencoder neural network, the “Tanh” was used as the
activation function, and the “Automatic” was performed as the loss
function from the encoder to the decoder. The importance threshold of
the candidate feature was 10%. (ii) The built-in Kruskal–Wallis test in R
package “stats” (v4.1.1) was utilized to identify DEGs among four RECIST
states (CR, PR, SD, and PD) of patients. The significant differential
threshold was P < 0.05. (iii) The machine-learning model was built using
the built-in RFE in R package “caret” (v6.0-90, https://github.com/
topepo/caret/) to filter out the poor feature in each iteration. External
resampling analysis of RFE was conducted using the threefold cross-
validation. The candidate features were determined by the threshold of
overall importance >0 among four RECIST states.
Finally, a crucial informative gene list was designed for calculating the

TEX predictor score using the machine-learning model eXtreme Gradient
Boosting (XGBoost, R package v1.5.2.1) with the kernel function of “binary-
logistic"'. The evaluation metrics of XGBoost were built using “error” (error
for classification), and the threshold of “subsample” and “colsample_by-
tree” were both 0.5 to avoid overfitting. The maximum number of boosting
iterations was ten and the maximum tree depth was 5. The alpha L1 and L2
regularization terms were 0 and 1 on weight, respectively.

Pathway analysis and functional annotation
The single-sample Gene Set Enrichment Analysis (ssGSEA) of R package
“GSVA” (v1.40.1) [39] was applied to the log2-transformed normalized
TPM expression to infer the absolute enrichment score for four major
TEX-related pathways [interferon-gamma (IFN-γ), tumor necrosis factor
(TNF), interleukin-2 (IL-2), cytotoxic T lymphocytes (CTL)], 24 immune
response pathways and 28 immune cell types from Molecular
Signatures Database (MSigDB, v7.2) [40], and previous Pornpimol’s
genotype-immunophenotype study [41] on multi-center cohorts and
TCGA pan-cancer cohort. The functional annotation of the KEGG
pathway, GO-biological process (BP), GO-molecular function (MF) and
GO-cellular component (CC) were performed by “clusterProfiler” (v4.0.5)
[42] with genome-wide annotation for Human “org.Hs.eg.db” (v3.13.0,
https://www.bioconductor.org/packages/release/data/annotation/html/
org.Hs.eg.db.html).

Survival analysis
For the clinical information of patients, including overall survival time (OS)
and progression-free survival time (PFS), the univariable Cox analysis was
performed to identify the prognostic risk factor, which emerged with a
hazard ratio (HR), 95% confidence interval (95% CI) and P-values. The
Kaplan–Meier survival curves were used to reveal the difference among
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subgroups using the log-rank test, and the significance was presented with
P value. All methods were implemented using the R package “survival”
(v3.3-0) and the P value < 0.05 was delimited as statistically significant.

Statistical analysis
Apart from the bioinformatics mentioned above methods, all statistical
analyses in this study were conducted using R (v4.1.1) on the RStudio
platform (v1.4.1717), along with associated packages. Except some of

Fisher’s exact tests were one-sided alternatives, other statistical tests were
two-sided. Differences among subgroups were examined using Fisher’s
exact tests, chi-squared tests, Wilcoxon tests, paired-samples t tests, and
Kruskal–Wallis tests. The performance of the predictor as a classifier for ICB
immunotherapy response was assessed with receiver operating character-
istic curves (ROC) with the area under the ROC curve (AUC), 95%
confidence interval (95% CI), specificity and sensitivity in “pROC” (v1.18.0) R
package. When a P value reported by R (v4.1.1) was smaller than 0.001, it
was portrayed as “P < 0.001”.
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Fig. 1 Distinct exhaustion profiles of CD8+ T cell during ICB treatment. A T-distributed stochastic neighbor embedding (t-SNE)
visualization of T-cell clusters (52,960 cells for 14 pre-treated patients and 43,401 cells for 12 post-treated patients) with specific markers,
showing the annotation and color nodes for T-cell subtypes in the tumor ecosystem. B The proportion of exhausted T cells and other
CD8+ T cells between pre-treated and post-treated BC patients (Chi-square test). C Box plots showing computationally estimated activities of
TEX signature and pathways in paired ICB-treated melanoma patients (Two-sided paired t test). D Box plots showing changes in the
computationally estimated activity of TEX signature and pathways before and after ICB treatment for responders and non-responders,
respectively (two-sided paired t test). E Box plots showing the difference in computationally estimated activities of TEX signature and
pathways between responders and non-responders before and after ICB treatment (Wilcoxon test).
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RESULTS
Association of transcriptional changes in TEX with ICB
response
To delineate the transcriptional changes of TEX during ICB therapy at
single-cell resolution, we analyzed single-cell transcriptomic profiles

of 52,960 and 43,401 high-quality T cells between pre- and post-ICB
TNBC patients from the Zhang cohort [34], and grouped T cells into
12 subsets using the t-SNE (Fig. 1A and Supplementary Fig. 1). After
ICB treatment, a significant difference was observed in the
relative abundance of exhausted T cells versus other CD8+ T cells
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(Chi-square test P< 0.001). Specifically, we observed 6546 exhausted
T cells (TEX CXCL13 and TEX IFI16) and 2177 CD8+ T cells in pre-ICB
patients, and 1733 exhausted T cells (TEX CXCL13, TEX GZMM, and
TEX GZMB) and 11,802 CD8+ T cells in post-ICB patients (Fig. 1B).
Upon analyzing bulk-tissue transcriptomic profiles of paired ICB-
treated melanoma patients from the Riaz cohort, we detected a
significant increase in enrichment scores of TEX-related signatures
and pathways after ICB treatment (Fig. 1C). However, further
investigation of transcriptional changes of TEX with ICB response
illustrated a significant increase in enrichment scores of TEX-related
signatures and pathways solely in responders, but not in non-
responders after ICB treatment (Fig. 1D). Remarkably, there were no
significant differences in the enrichment of TEX-related signature and
pathways before ICB treatment between responders and non-
responders. However, after ICB treatment, responders exhibited
higher enrichment scores of TEX-related signature and pathways
compared to non-responders (Fig. 1E). These findings substantiate
the link between transcriptional changes of TEX and response to ICB
immunotherapy.

Deep-learning identification of a TEX-dependent
transcriptional signature associated with ICB response
We developed an ensemble deep-learning computational frame-
work, DeepAKR, to identify transcriptional program underlying TEX
and ICB response through imbedding the transfer-learning design
with supervised pre-training using the RESTIC labeled tumor
samples to learn TEX characterizations in melanoma cohort (GHR
cohort), followed by parameters fine-tuning on metastatic
urothelial carcinoma (mUC) cohort (Maria cohort) to capture the
association between ICB response and TEX-related genes (Fig. 2A).
Finally, the DeepAKR identified 16 ICB response-associated TEX
genes, referred to as ITGs, including SLAMF7, TBX21, IL2RB, IRF1,
CCL25, IDO1, GBP4, SLAMF6, CTLA-4, ICOS, SAMD3, ISG20, TIGIT,
PDCD1, TOX, and PSMB9 (Fig. 2B). Based on the expression pattern
of these genes, unsupervised hierarchical clustering classified 116
melanoma tumors into four clusters (ITG-C1 to ITG-C4) with
decreasing expression trend of 16 ITGs from ITG-C1 to ITG-C4
(Fig. 2C). We observed significant differences in T and B
lymphocytes composition of the TIME between the four clusters
(Kruskal–Wallis test, P < 0.001) (Fig. 2D). Tumors of ITG-C1 and ITG-
C2 had high infiltration abundance of lymphocytes, whereas ITG-
C3 and ITG-C4 had low infiltration abundance. Furthermore, we
scored five TEX-related gene signatures (Cytotoxic, IFN-γ, TNF, IL-2,
and CTL) using ssGSEA and found decreasing tendency from ITG-
C1 to ITG-C4 (Kruskal–Wallis test, P < 0.001) (Fig. 2E).
The GHR melanoma solid tumors displayed four major

phenotypes using equipartition based on the expression levels
of PD-1, and the remaining new subgroups were assigned to these
four categories (Fig. 2F). The quantitative analysis of RECIST scores
for melanomas revealed that the PD-1 high subgroup had the
lowest proportion of progressive disease (PD) state (31.03%), while
the PD-1 low cluster exhibited the highest rate of PD state
(58.62%). However, there were no significant differences in RECIST
scores among the four subtypes of PD-1 expression (Fig. 2F, Chi-
squared test P= 0.297). As for the association of the response
percentage with ITG clusters, we observed a significant difference

in RECIST distribution among four ITG clusters (Fig. 2G, Chi-
squared test P= 0.010). The lowest proportion of PD states was
found in the ITG-C1 cluster (22.22%), even lower than that in the
PD-1 high subtype (31.03%). Meanwhile, the highest proportion of
PD states was observed in the ITG-C4 subgroup (73.33%), which
was higher than that in the PD-1 low subgroup (58.62%) (Fig. 2H).
Moreover, survival analyses revealed that tumors from different
ITG clusters in the GHR cohort exhibited significantly different
overall survival (OS) and progression-free survival (PFS) (log-rank
P < 0.001), with ITG-C1 showing improved considerably survival
and ITG-C4 indicating the poorest survival (Fig. 2I).

TEX-dependent machine-learning predictor of response to ICB
immunotherapy
Given the observed association of ITGs with ICB response, we
developed a TEX-dependent predictor (MLTIP) of response to
ICB immunotherapy by utilizing the XGBoost machine-learning
method to integrate the 16 ITGs. We trained the MLTIP using
the Riaz cohort and then validated the MLTIP in six independent
ICB-treated cohorts. We calculated the MLTIP score for each
sample and performed a ROC curves analysis using the MLTIP
score to assess the predictive power. As shown in Fig. 3A, the
MLTIP exhibited superior performance in predicting response to
ICB immunotherapy across different cohorts, with AUCs of
0.901, 0.768, 0.762, 0.822, 0.873, 0.750, and 0.573 for the cohorts
of Riaz, Gide, HugoW, GHR, Riaz-paired, Nathanson and Maria,
respectively. Moreover, the MLTIP scores significantly differed
between responders and non-responders, with responders
showing higher scores than non-responders. (Fig. 3B). When
dichotomizing MLTIP score predictions into either predicted
responder-like or predicted non-responder-like groups, the
MLTIP showed superior discriminatory power in distinguishing
responders from non-responders, with the accuracy of 87.8%,
73.2%, 76.9%, 79.3%, 81%, 88.9%, and 60.7% for the cohorts of
Riaz, Gide, HugoW, GHR, Riaz-paired, Nathanson, and Maria,
respectively (Fig. 3C). Furthermore, significant differences in OS
between predicted responder-like or non-responder-like
groups. Tumors in the responder-like group predicted by the
MLTIP had significantly better OS compared to tumors classified
as non-responders with HR of 0.090, 0.003, 0.868, 0.042, 0.210,
0.010, and 0.267 for the cohorts of Riaz, Gide, HugoW, GHR,
Riaz-paired, Nathanson, and Maria, respectively (Fig. 3D).

Comparisons to other well-established markers and
signatures
We compared the predictive performance of the MLTIP with
immune checkpoints (PD-1, PD-L1, and CTLA-4), TMB burden, and
six recently proposed signatures in predicting ICB response. The
results of ROC analysis demonstrated that the MLTIP consistently
achieved superior predictive performance (average AUC= 0.778)
compared to other well-established markers and signatures across
different cohorts (Fig. 4A, B and Supplementary Fig. S2).
We further compared the prognostic value of the MLTIP with

that of six recently proposed signatures in multiple patient
cohorts. We first used the univariate Cox regression analysis to
evaluate the association of these signatures and the MLTIP with

Fig. 2 Deep-learning identification of transcriptional program associated with TEX heterogeneity and ICB response. A Workflow of an
ensemble deep-learning computational framework. B Bar plots showing the transcriptional programs with deep learning in the GHR and
Maria cohorts. Venn diagram showing the overleaping transcriptional programs between the GHR and Maria cohorts. C Unsupervised
hierarchical clustering heatmap of 116 melanoma tumors using expression pattern of 16 ICB response-associated TEX genes (ITGs). D Box
plots showing the monotonic association between the computationally estimated abundance of tumor-infiltrating immune cells and ITG
subtypes (Kruskal–Wallis test). E Box plots showing the monotonic association between the computationally estimated activity of immune-
related biometrics and ITG subtypes (Kruskal–Wallis test). F, G Histograms showing the percentage of each RECIST archetype (CR/PR/SD/PD)
among four PD-1 subgroups (F) and ITG subtypes (G) (Chi-squared test). H Pie charts showing the distribution of each RECIST (CR/PR/SD/PD)
archetype in four ITG subtypes from the GHR cohort. I Kaplan–Meier curves comparing OS and PFS among four ITG subtypes (log-rank test).
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Fig. 3 Performance of TEX-derived machine-learning predictor of response to ICB immunotherapy. A ROC curves and corresponding AUC
values of MLTIP score. B Box plots showing the distribution of MLTIP scores between responders and non-responders (Wilcoxon test).
C Waterfall plot of MLTIP scores and confusion matrices indicating predicted outcomes generated by MLTIP (Chi-square test). D Kaplan–Meier
curves comparing OS between responder-like or non-responder-like groups predicted by the MLTIP.
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OS for each cohort. Then, we used a meta-analysis to leverage
the multiple cohorts for an overall prognostic evaluation of
each signature. As shown in Fig. 4C, although the MLTIP and
other three signatures (ICB genes, IFN-γ signature, and CTL
signature) showed a significant correlation with OS, the MLTIP

(HR= 0.093, 95% CI, 0.031–0.280, P < 0.001) demonstrated
better predictive performance in OS when compared with ICB
genes (HR= 0.832, 95% CI, 0.740–0.935, P= 0.002), IFN-γ
signature (HR= 0.329, 95% CI, 0.144-0.751, P= 0.008) and CTL
signature (HR= 0.516, 95% CI, 0.320–0.832, P= 0.007).
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Association of the MLTIP with immune milieu and prognosis
in pan-cancer
We assessed the infiltration of different immune cell subpopulations
using the deconvolution methods and enrichment of immune
response-related pathways using the ssGSEA across 30 TCGA cancer
types, and found that the MLTIP scores highly positively correlated
with immune cell infiltration and immune response pathway
activation. More specifically, samples with high MLTIP showed
increased expression of immune gene signatures (Fig. 5A). This
implies that high MLTIP scores could capture active immune tumor
microenvironments across various cancer types. In addition, the
MLTIP scores vary among patients with the same tumor and
between cancer types (Fig. 5B, C), implying general differences in TEX
and tumor immunogenicity between different cases of the same
tumor and between different tumor types. We further examined the
clinical relevance of the MLTIP in pan-cancer, and found that the
MLTIP scores decreased significantly for tumors with advanced
stages compared with the early stages (Kruskal–Wallis test, P < 0.001)
(Fig. 5D). There was a significant difference in the MLTIP scores across
gender (Wilcoxon test, P= 0.024), but no difference for different age
groups (Kruskal–Wallis test, P= 0.280) (Fig. 5D). The univariate Cox
analysis showed that the MLTIP was significantly associated with OS
in nine types of cancers (Fig. 5E). However, the prognostic impact of
the MLTIP is dissimilar between cancer types. Tumors with high
MLTIP phenotype show a significant survival benefit compared with
the low MLTIP phenotype in KICH (HR= 0.122, 95% CI, 0.015–0.976,
P= 0.018), ESCA (HR= 0.545, 95% CI, 0.315–0.941, P= 0.027), SKCM
(HR= 0.484, 95% CI, 0.352–0.665, P< 0.001), BRCA (HR= 0.577, 95%
CI, 0.380–0.876, P= 0.009), and BLCA (HR= 0.550, 95% CI, 0.312-
0.967, P= 0.035), while the high MLTIP phenotype is mostly
associated with reduced OS in LGG (HR= 1.608, 95% CI,
1.137–2.275, P= 0.007), COAD (HR= 2.331, 95% CI, 1.488–3.653,
P< 0.001), READ (HR= 3.268, 95% CI, 1.465–7.292, P= 0.002) and
UVM (HR= 6.486, 95% CI, 2.603–16.160, P< 0.001) (Fig. 5F).

DISCUSSION
Immunotherapies have become one of the most promising and
critical cancer treatment strategies and have transformed the clinical
outcomes for multiple solid tumors [43]. Emerging evidence has
highlighted the essential roles of TEX in durable clinical responses to
ICB therapy [18, 27]. For example, responders to ICB therapy show
amplification of precursor or progenitor exhausted T cells, which is
not observed in non-responders [28]. In this study, integrative
analysis of ICB-treated bulk and single-cell RNA-seq datasets reveals
that transcriptional changes of TEX are associated with the response
to ICB immunotherapy. Inspired by these observations, using an
ensemble deep-learning computational framework and larger ICB-
treated cohorts, we identified 16 essential TEX-related genes (ITGs)
associated with ICB efficacy. Some of the 16 ITGs are consistent with
previous knowledge that TCF-1, TOX, PD-1, and TIM-3, known key
factors for regulating T-cell exhaustion [38, 44–47], are potential
predictors for ICB efficacy.
Despite recent efforts and the discovery of potential biomarkers

for ICB response, the predictive performance is far from satisfactory.
Here, we developed a TEX-dependent predictor of response to ICB

immunotherapy (MLTIP) by integrating 16 ITGs via the machine-
learning method. The MLTIP was trained from pre-treatment tumor
profiles in the Riaz cohort, and displayed high sensitivity and
specificity in predicting clinical response to ICB and OS across
different cohorts and cancer types. Compared with other state-of-
the-art signatures, the MLTIP outperformed them with superior
discriminatory power in distinguishing responders from non-
responders and achieved a better prognostic performance in
different cohorts across multiple cancer types, implying that the
MLTIP is robust and may become a competitive tool for identifying
patients who benefit from ICB immunotherapy.
Our study has a few limitations. First, we focused primarily on the

transcriptional programs of TEX with ICB response due to the
unavailability of a multi-omics immunotherapy dataset. Therefore,
integrating a multi-omics landscape of intratumoral TEX hetero-
geneity will improve prediction performance. Second, although TEX
is mainly responsible for tumor immune escape and resistance to ICB,
it is known that ICB responses were influenced by multi-dimensional
interactions between the tumor, the immune system, and other
systemic factors [17, 48, 49]; therefore, a combination of other
existing biomarkers might be more informative for response
prediction. Finally, our study relied on retrospective ICB cohorts
limited to several cancer types, future prospective studies covering
more cancer types are required to validate our findings.
In conclusion, we developed and validated a TEX-dependent

predictor of response to ICB immunotherapy (MLTIP) by integrat-
ing 16 ITGs via the machine-learning method. The MLTIP
demonstrated superior performance in predicting response to
ICB immunotherapy and clinical outcomes before the administra-
tion. Therefore, the present study suggests that the TEX-
dependent predictor of response to ICB immunotherapy could
be a promising tool to guide personalized immunotherapy for
cancer patients and improve their clinical outcomes.
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