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In cancer, extrachromosomal circular DNA (ecDNA), or megabase-pair amplified circular DNA, plays an essential role in intercellular
heterogeneity and tumor cell revolution because of its non-Mendelian inheritance. We developed circlehunter (https://github.com/
suda-huanglab/circlehunter), a tool for identifying ecDNA from ATAC-Seq data using the enhanced chromatin accessibility of
ecDNA. Using simulated data, we showed that circlehunter has an F1 score of 0.93 at 30× local depth and read lengths as short as
35 bp. Based on 1312 ecDNAs predicted from 94 publicly available datasets of ATAC-Seq assays, we found 37 oncogenes contained
in these ecDNAs with amplification characteristics. In small cell lung cancer cell lines, ecDNA containing MYC leads to amplification
of MYC and cis-regulates the expression of NEUROD1, resulting in an expression pattern consistent with the NEUROD1 high
expression subtype and sensitive to Aurora kinase inhibitors. This showcases that circlehunter could serve as a valuable pipeline for
the investigation of tumorigenesis.
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INTRODUCTION
Extrachromosomal circular DNA (ecDNA) is circular DNA molecules
outside the chromosome [1, 2]. In contrast to microDNA, the
common, seemingly small, and gene-free, consisting primarily of
200–500 bp repetitive DNA fragments found in eukaryotes. ecDNA
is typically found only in cancer samples, typically has a size over 1
million base pairs, and contains both genes and noncoding DNA,
including regulatory regions [2–7]. Since it was first reported in
1965 [8], an increasing number of ecDNAs have been found to
carry important oncogenes in different types of cancer [9],
including MYC, MYCN, and EGFR [10–12]. Since ecDNA lacks
centromeres, they may segregate randomly during mitosis, and
the resulting amplification of oncogenes enables cancer cells to
rapidly acquire evolutionary fitness and drug resistance [1, 3, 13].
In addition to the high copy number due to gene amplification,
the increased accessibility due to reduced nucleosome wrapping,
and the proximity of cis-regulatory elements due to circularization,
increased the expression level of oncogenes on ecDNA to the top
1% in the whole transcriptome and contributed to the pathogen-
esis of tumors [4–6]. Currently, there are several strategies for
identifying ecDNA on a whole-genome scale based on sequencing
technologies. AmpliconArchitect is an ecDNA identification frame-
work based on whole-genome sequencing (WGS) technology that
constructs ecDNA by analyzing the junction relationships between
amplified fragments [14]. This approach recommends 5–10× WGS
data [14], which involves many computational resources. An
alternative approach is constructing sequencing libraries by
digesting linear DNA using exonucleases and enriching circular
DNA using a rolling circle amplification (RCA) technique to
generate sequencing libraries [15]. However, the technical
challenges of this approach remain, especially for ecDNA of

several megabase pairs long, where the avoidance of circular DNA
damage and high-fidelity amplification are critical for success [1].
Recently, the Circle_finder method, which uses assay for
transposase-accessible chromatin using sequencing (ATAC-Seq)
data to discover junctions by collecting supplementary alignment
reads, which has been reported to identify small circular DNAs or
even ecDNAs [16]. However, given the stringent conditions of the
supplementary alignment, which limited the number of reads to
prove a junction (Supplementary Fig. S1B), particularly the lack of
consideration for continuity between fragments and complex
rearrangements, the method cannot detect the complex ecDNA
(Supplementary Fig. S1A). ATAC-Seq is a well-established
technique for assessing chromosomal accessibility, using the
Tn5 transposase to insert sequencing adapters into open regions
of chromosomes to construct a sequencing library [17]. It has
been shown that ecDNA has less higher-order chromatin
compaction compared to DNA on chromosomes and offers
significantly enhanced chromatin accessibility, distinguishing
them from linear duplication [6, 9]. Analysis of known ecDNA
shows that the ATAC-Seq signals reach a minimum local depth of
80× for ecDNA at an overall sequencing depth of 1–3×
(Supplementary Table S2). Therefore, we developed circlehunter
to reconstruct ecDNA by taking full advantage of the increased
ATAC-Seq signals arising from the high accessibility of ecDNA
itself. By taking advantage of this feature of ecDNA, we can avoid
the RCA step and still enrich for ecDNA sequence. Using
simulated data, we demonstrate that circlehunter still has high
accuracy for short read lengths and low depth. Using circlehunter,
1312 ecDNA were identified in 94 publicly available historical data
of tumor samples, providing a new perspective for studying the
oncogenicity of ecDNA.
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RESULTS
Principle of identification method
Extensive research has shown that ecDNA has a chromosomal
origin [1, 18]. DNA damage, such as chromothripsis, breaks
chromosomes into small pieces. These linear DNA fragments can
be relegated to head-to-tail orientation due to the DNA repair
mechanism to form an ecDNA [19–22]. It has been shown that
ecDNA has much more open chromatin and shows significantly
enhanced chromatin accessibility [6, 9]. These results imply that
the source regions of ecDNA would exhibit consecutive reads
enrichment in ATAC-Seq sequencing results. Thus, the identifica-
tion method can be processed in the following steps. First, the
large number of reads from ecDNA segments generated due to
the lack of nucleosome packing can be aligned to their
chromosomal origin (Fig. 1A, B). Segments that may form an
ecDNA can be identified as consecutive reads enrichment (Fig.
1C). Discordant reads pair enrich region may link with another
segment (Fig. 1C) and indicate a candidate region contain a
breakpoint. So, we can construct a breakpoints graph linked by

discordant reads pairs and consecutive enrichment (Fig. 1D). All
possible circular DNA can be searched from the breakpoint graph
(Fig. 1F). To determine the exact breakpoint from the discordant
reads pair enriched region but avoid time-consuming realign-
ment, an integrated Bayesian model is used to estimate the
precise breakpoints of fragments (Fig. 1E). The detailed workflow
is described in “Materials and methods”. In contrast to the existing
circle_finder method, the reads used by circlehunter as evidence
cover the entire length of the predicted ecDNA, enabling
circlehunter to identify segments that are ligated circularly and
discover genetic variants resulting from the ligation (Supplemen-
tary Fig. S1A).

Accuracy of circlehunter
To examine the ability of circlehunter to identify circular DNA from
the linear genome reference, we tested it using 500 simulated
ecDNA randomly selecting chromosomal regions of the human
genome. These mock ecDNAs’ length ranges from 5 kb to 10 Mb,
and the number of segments ranges from 1 to 50, covering

Fig. 1 Principle of identification method. A Lack of nucleosome-packed ecDNA generates a large number of reads in ATAC-Seq. B Reads
mapped to genome reference. C Identify consecutive enrich regions and discordant read pair enrich regions. D Breakpoints graph linked by
discordant read pair enrichment and consecutive read enrichment. E Bayesian models estimate breakpoints according to discordant read
pairs (left) and clipped reads (middle). F Reconstruct ecDNA from the breakpoint graph.
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various conditions of ecDNA (Supplementary Fig. S1C, D). For short
reads sequencing, analysis of long structural variants is usually
limited by the coverage and read length. We simulated different
ecDNA local depth and read-length datasets to check the
detection performance of circlehunter under different conditions.
We also compared it with the existing tool Circle_finder, which can
analyze ecDNA from ATAC-Seq [16]. The test result showed that
circlehunter could reconstruct the most mock ecDNA in different
local depth datasets. Since circlehunter only considers segments
linked with significant number of reads, it has higher precision and

recall than circle_finder when local depth is less than 10×
(Supplementary Fig. S1E–H and Supplementary Table S1). For
comparison purposes, we introduce the F1 score to evaluate the
detection performance of each tool. The results shown that
circlehunter outperforms circle_finder at different local depth
levels except with local depth less than 10× (Fig. 2A, left), with an
F1 score of 0.93 at local depth greater than 30×. On this basis, we
test the effect of varying read length on the detection
performance at the local depth of 30×. The results showed that
circlehunter was barely affected by read length, but circle_finder

Fig. 2 Accuracy of circlehunter. A F1 score of multi segments ecDNA detection with varying mock ecDNA local depth at 100 bp read length
and varying read length at 30× local depth. B F1 score of single-segment ecDNA detection with varying mock ecDNA local depth at 100 bp
read length and varying read length at 30× local depth. Circlehunter-s: A true-positive result is considered when the circlehunter result covers
95% of the simulated ecDNA and has the same ligation structure; Circlehunter-b: A true-positive result is considered when the circlehunter
result breakpoint confidential intervals cover simulated ecDNA breakpoint and have the same ligation structure; Circlefinder-s: A true-positive
result is considered when the Circle_finder result covers 95% of the simulated ecDNA. C Distribution of 95% confidential interval length with
varying read length at 30× local depth. D–F Identify results of GBM39, PC3, and COLO320DM cell lines. Blue is the validated result, and orange
and green are the individual results of two biological replicates. The color of the numbers indicating the genomic position corresponds to the
circles. The numbers outside the circles are the absolute positions of the validated ecDNA fragments on the genome. The numbers inside
the circles are the errors of the ecDNA fragments identified by circlehunter relative to the validated positions.

M. Yang et al.

3

Oncogenesis           (2023) 12:28 



could not obtain any results when the read length was less than
75 bp (Fig. 2A, right). This is mainly because read length will
significantly affect the appearance of supplementary alignment,
but not the number of discordant reads pair. This enables
circlehunter, which works on discordant read pairs, to be almost
independent of read length. Still, the read length affects
circlehunter’s estimate of the exact breakpoint, and a shorter
read length will result in a larger confidence interval (Fig. 2C).
Since circle_finder reports only those circular DNAs that are
generated by end-to-end ligation of one linear fragment, we also
generated a test set consisting only single-segment ecDNAs. The
results show that circlehunter still outperforms circle_finder for
single-segment ecDNA when the coverage is greater than 10×
(Fig. 2B), although circle_finder has better detection performance
for single-segment ecDNA test sets than for multi-segment ecDNA
test sets (Fig. 2B). These results suggest that circlehunter can
accurately detect ecDNA in samples when the local depth of
ecDNA is sufficient (>30×). In comparison, the local depth of 11
ecDNAs segments from 6 replicates of 3 known samples was
greater than 80× (Supplementary Table S2). At this point, the
overall depth of the entire genome is between 1–3×, and the
overall sequencing depth of most historical samples is also in this
interval (Supplementary Fig. S2C) (Supplementary Table S3). In our
collection of historical samples, the sequencing length is usually
between 35 and 75 bp (Supplementary Fig. S2D) (Supplementary
Table S3). All can be used as input data for circlehunter. As a
negative control, we analyzed 14 ATAC-Seq datasets obtained
from normal muscle tissue (Supplementary Table S1). Circlehunter
only reported 1 ecDNA, demonstrating that it is unlikely to report
non-amplified false positives. Also, circlehunter outperforms
circle_finder in terms of runtime, memory usage, and IO
throughput (Supplementary Fig. S1I–K) (Supplementary Table
S1). These results indicated that circlehunter had high-
performance detecting ecDNA and can be applied to most
ATAC-Seq data.
Having observed that we can detect ecDNA from linear

genomes in simulation samples, we tried to apply circlehunter
to actual samples. Analysis of ATAC-Seq data from three samples
with known ecDNA showed that circlehunter could identify
ecDNA identified by WGS data and validated by fluorescence in
situ hybridization (FISH) [6] (Fig. 2D–F) (Supplementary Table S2).
The ecDNA in cell line GBM39 has a simple composition,
consisting of a long contiguous fragment joined end-to-end with
certain deletions in between. Besides minor deletions, circlehunter
can accurately identify all breakpoints and their linkage relation-
ships (Fig. 2D). In contrast, the known ecDNA in the PC3 cell line
consists of six fragments joined in multiple ligation directions.
However, circlehunter still accurately identifies all ligation relation-
ships and predicts most breakpoints (Fig. 2E). The most
challenging trial was identifying the ecDNA present in
COLO320DM, a typical highly chromosomal rearrangement cell
line where the ecDNA present may have complex linkage
relationships with multiple possible ecDNA. Circlehunter did not
identify the known ecDNA identically but identified ecDNA with a
similar structure to the known ecDNA in two biological replicates
(Fig. 2F). Based on the priority setting when searching for paths
(see “Materials and methods”), we presume the result is an
alternative ecDNA present in this sample or computational sub-
structure. Overall, test results on both simulated and actual
samples show that circlehunter has high accuracy and sensitivity
in identifying ecDNA and is generally applicable to regular ATAC-
Seq data.

Application to public data
Based on the high accuracy obtained from simulated and real data
testing, we apply circlehunter to publicly available historical data.
We curated ATAC-Seq for 547 tumor samples from patient tissues,
patient-derived xenografts, and cancer cell lines (Supplementary

Fig. S2A and Supplementary Table S3) from the Gene Expression
Omnibus (GEO) database [23]. In total, 1312 candidate ecDNA (or
microDNA) circular structures were predicted in 94 (17.18%)
samples of 17 cancers (Supplementary Table S3) by circlehunter.
These ecDNAs are sourced from all chromosomes except the Y
chromosome (Fig. 3A) and range in size from 654 to 5,515,037 bp
(Fig. 3B). Half of these ecDNAs are larger than 1 Mb in size (Fig. 3B),
and 97.86% of these ecDNAs are larger than 10 kb, suggesting that
these circles are mostly ecDNA-like. The median number of
segments that constitute an ecDNA is 6, with a maximum of
18 segments (Fig. 3C). In terms of cancer types, the most ecDNA
was identified in colorectal cancer, prostate cancer, and lung
cancer (Fig. 3D), which have been shown to have recurrent circular
amplification [9, 14, 24]. ecDNA was present in both primary and
metastasis tumor samples, and there was no significant difference
in the proportion of both (Supplementary Fig. S2E). Therefore,
ecDNA may not be inevitably associated with tumor metastasis,
but the amplification of genes within ecDNA may still impact
tumor metastasis [25].
There is variation in the number of genes contained within each

ecDNA (Fig. 4A), with an average of 10 genes per ecDNA and a
total of 251 genes amplified in all ecDNAs. Of these, 37 genes are
known to be oncogenes. Certain oncogenes are commonly found
on ecDNA and are associated with specific cancers. Three myc
family genes, MYC, MYCN, and MYCL, are found in ecDNA in
various cancers (Fig. 4B). However, MYC is usually amplified with
PVT1 (Fig. 4B). While MYCN-containing ecDNA is generally found in
neuroblastoma, MYCL-containing ecDNA is only found in leukemia
(Fig. 4B). EGFR is only amplified in brain cancer (Fig. 4B). Of the
samples that have been analyzed, 109 cell lines have been
characterized by the Cancer Cell Line Encyclopedia (CCLE) [26].
Using data from the CCLE, we confirmed that ecDNAs predicted
by circlehunter have the characteristics of ecDNA, which are
consistent with those observed in previous studies [9]. In ecDNA,
genes typically have higher copy numbers and expression levels
and affect cell survival (Supplementary Fig. S3A–C). At the same
time, the copy number increase of highly expressed genes on
ecDNA is correlated with the expression level increase, which is
significantly different (P= 1.025 × 10−3, Fisher transformation z
test) from the gene expression level increase driven by other
means such as expression regulation (Supplementary Fig. S3D).
These phenomena are more evident for oncogenes. For example,
oncogenes in ecDNA had a significantly high copy number
(P= 8.754 × 10−16, two-sided Wilcoxon rank-sum test) (Fig. 4C).
Similarly, oncogenes contained in ecDNA had significantly higher
expression levels at the transcriptional level (P= 2.047 × 10−8,
two-sided Wilcoxon rank-sum test) (Fig. 4D). Furthermore, knock-
out of these genes identified as being contained within ecDNA
had a significantly greater impact on the growth and survival of
the corresponding cells compared to the other cell lines
(P= 8.408 × 10−5, two-sided Wilcoxon rank-sum test) (Fig. 4E).
These characteristics suggest that ecDNA may be an essential
driver of cancer. This was confirmed in large-scale clinical data
from the PanCancer Analysis of Whole Genomes (PCAWG) project,
which showed that genes predicted to have circular amplification
were also more likely to be coincident with regions of copy
number gain (P= 1.619 × 10−15, Pearson’s chi-square test)
(Fig. 4F). Similarly, these protein-coding genes, which are
predicted to be contained within ecDNA, are also more likely to
have somatic mutations (P= 4.986 × 10−2, Pearson’s chi-square
test) (Fig. 4G). Taken together, these results show that ecDNAs
predicted by circlehunter have the typical characteristics of known
ecDNAs, which proves the detection performance of circlehunter
from the side.

ecDNA in small cell lung cancer (SCLC)
In the results of historical data analysis, we found that in SCLC,
ecDNA containing MYC (ecMYC) was identified in several samples.
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SCLC is a highly aggressive subtype that accounts for about 15%
of lung cancer cases with a dismal 5-year survival rate of about 6%
[27]. Amplification of myc family genes has been shown to be a
characteristic of SCLC [27–31]. A total of 19 ATAC-Seq data from 8
SCLC cell lines is included in the public sample set. We detected
ecDNA in 4 SCLC cell lines (Supplementary Table S4). Specifically,
ecDNA containing MYCN was present in NCI-69 (Supplementary
Fig. S3E). In contrast, ecDNA containing MYC and PVT1 was
identified in NCI-H82 (Fig. 5A), NCI-H2171 (Fig. 5B), NCI-H524
(Fig. 5C), and notably, all these ecDNA fragments containing PVT1,
their breakpoints fall into PVT1 (Fig. 5A–C).
We focused on examining the amplification of MYC on ecDNA.

Copy number data from CCLE (NCI-H2107 not included) showed
that cell lines with ecMYC had significantly higher copy numbers
of the MYC than the rest of the SCLC cell lines (P= 1.425 × 10−4,
ANOVA) (Fig. 5D). At the transcriptional level, MYC expression level
was significantly higher than the rest of the SCLC cell lines
(P= 2.327 × 10−3, ANOVA) (Fig. 5E), too. These cell lines were
differentiated based on their MYC amplification status, with ecMYC

exhibiting higher MYC copy number and expression levels
(Fig. 5F). Gene Set Enrichment Analysis (GSEA) results showed
that target genes of MYC were enriched in samples within ecMYC
(Fig. 6A) (Supplementary Table S5), demonstrating that MYC was
amplified on ecDNA in these samples and regulated the
transcription level of MYC target genes as well. From the results
of differentially expressed gene analysis, we obtained 321 genes
whose expression levels were significantly different between cell
lines with either ecMYC or MYC on the chromosome (chrMYC)
(Supplementary Fig. S4A) (Supplementary Table S5). Gene
Ontology (GO) analysis revealed that these genes were signifi-
cantly enriched in pathways associated with developmental
regulation and regulation of cell differentiation (Fig. 6B) (Supple-
mentary Table S5), in agreement with the cancer hallmark of SCLC
[27], suggesting that ecMYC may drive cells to develop specific
expression patterns and lead to SCLC. Publicly available tran-
scriptome sequencing data from 81 SCLC specimens indicate that
this expression pattern is also observed in patients with high MYC
expression who are enriched for differentially expressed genes

Fig. 3 Statistics of ecDNAs. A Distribution of ecDNA on chromosomes. B Distribution of ecDNA size. X axis is log scaled. C Distribution of
ecDNA segment counts. D Distribution of ecDNA-like structure in cancers.
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obtained from cell lines (Supplementary Fig. S4B). MYC and
NEUROD1 were the most highly expressed genes (Supplementary
Fig. S4A). Despite the paucity of data, we did observe a trend in
which MYC and NEUROD1 both affect the survival of cells with
ecMYC (Supplementary Fig. S4C). Much of the research on SCLC
has been conducted that molecular subtypes of SCLC are usually
distinguished by the expression level of four subtype factors,
including NEUROD1, rather than genomic mutations [32]. We,
therefore, examined the expression of four SCLC subtype factors,
and the high NEUROD1 expression showed that these three cell
lines with ecMYC all belong to the SCLC-N (NEUROD1) subtype
(Fig. 6C). And the correlation between MYC and NEUROD1 in terms
of expression level further suggests a regulatory role of MYC on

NEUROD1 (Fig. 6D and Supplementary Fig. S4D). To examine the
regulatory effects of ecMYC on NEUROD1, we first investigated
the accessibility of the transcription start site (TSS) region of the
NEUROD1, and the data showed that the accessibility of the TSS
region of the NEUROD1 was significantly higher in cell lines with
ecMYC than chrMYC (Fig. 6E). Also, the methylation level of the
NEUROD1 gene was significantly lower on ecMYC cell lines
(Fig. 6F). The presence of enhancers characterized by H3K27ac
and H3K4me3 in the TSS of NEUROD1 was discovered in the
epigenomic landscape of the NCI-H2171 cell line with publicly
available data (Fig. 6G). The MYC bound to the enhancer provides
direct evidence for MYC regulation of NUEROD1 by MYC (Fig. 6G).
MED1 and RNA polymerase II signals show that NEUROD1

Fig. 4 Genes contained in ecDNA. A Distribution of genes in ecDNA. B Distribution of recurrent oncogenes contained in ecDNA. C Kernel
density estimate of copy number ascending rank between samples within ecDNA contained the oncogene, and those without ecDNA
contained the oncogene. D Kernel density estimate of expression level ascending rank between samples within ecDNA contained the
oncogene, and those without ecDNA contained the oncogene. E Kernel density estimate of gene effect rank between samples within ecDNA
contained the oncogene, and those without ecDNA contained the oncogene. F Histogram of mean copy number for ecDNA-contained gene
and gene never contained in any ecDNA. G The fraction of gene mutated in ecDNA-contained gene and gene never contained in any ecDNA.
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transcription is active under the regulation of MYC (Fig. 6G).
Together, these results indicate that ecMYC drives the expression
pattern of the SCLC-N subtype in SCLC cell lines with ecMYC. Thus,
we could relate the expression pattern of SCLC to genomic
variation.
In addition to these few cell lines of SCLC, we tried to extend

the finding to more samples. Hierarchical clustering analysis based
on neuroendocrine markers [30] showed that 51 SCLC cell lines
were separated into 3 clusters, and all 3 ecMYC-containing cell
lines were partitioned into cluster C2 (Fig. 7A) with high
expression of MYC (Fig. 7C) and NEUROD1 (Fig. 7D). We also
observed a similar pattern of classification in patients (Fig. 7B).
Samples with high levels of NEUROD1 expression were partitioned
to the C2 cluster (Fig. 7B, F), but unlike the cell lines, the C2 cluster
had a lower overall expression of MYC. However, they had the
highest MYC expression individual samples (Fig. 7E). This could be
a sampling bias as most of these samples are limited-stage SCLC,
and MYC amplification is relatively rare [30, 33, 34]. Interestingly,
we observed that samples from the C1 cluster in either cell lines or
patients had high MYC and POU2F3 or YAP1 expression (Fig. 7B),
suggesting that there may be an association between them or
MYC drives a greater number of subtypes than just SCLC-N.
However, elevated NEUROD1 expression has been shown to be a
clear marker of poor prognosis. Conversely, increased expression
of POU2F3 is indeed a marker of good prognosis [35], so the two
may have entirely different driving mechanisms. SCLC has been
reported to have unique therapeutic vulnerabilities between
subtypes, and SCLC-N is sensitive to Aurora kinase inhibitors
(AURKi) [30, 34, 36]. AURKi has been shown to induce degradation
of myc in hepatocellular carcinomas mice [37], so it is reasonable
to hypothesize that AURKi is equally effective in SCLC driven by
ecMYC. On the basis of drug screening data obtained from the

Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer
Therapeutics Response Portal (CTRP) databases [38, 39], we
observed similar results for cell lines with ecMYC and ecDNA
containing MYCN that were sensitive to type I AURKi (Fig. 7G and
Supplementary Fig. S3F). This result further demonstrates the
driving role of ecMYC in these three cell lines. On the other hand,
cell lines with amplification of MYCL (Supplementary Fig. S3F),
which is also a member of the myc gene family, are insensitive to
AURKi (Fig. 7G). In addition, we also predicted the patient’s
response to type I AURKi, and the results showed that the C2
cluster samples were the most sensitive (Fig. 7H). These results
suggest that SCLC-N has unique therapeutic vulnerabilities and
may be related to ecMYC.

DISCUSSION
Since its discovery half a century ago, ecDNA has gradually been
recognized as a hallmark of cancer [1]. Non-chromosomal
inheritance, which drives the amplification of oncogenes on
ecDNA, allows tumors to rapidly evolve their genomes, gain a
survival advantage and resist to drug treatment [1, 3, 9]. Existing
ecDNA identification methods typically require complex steps of
circular DNA enrichment library construction steps or the analysis
of large amounts of data. For this reason, circlehunter pipeline,
developed for identifying ecDNA using regular ATAC-Seq data, is a
necessary complement. Analysis of both simulated and known
samples shows that circlehunter has high accuracy in identifying
complex circular structures from linear genomes. Our analysis of
ATAC-Seq data from 547 tumor samples predicted 1312 ecDNAs in
94 samples. Data from CCLE showed that 37 oncogenes were
amplified on ecDNAs, which is consistent with the essential
characteristics of ecDNA. These results demonstrate that we could

Fig. 5 MYC amplified on ecDNA. A–C MYC contained ecDNA from NCI-H82, NCI-H2171, and NCI-H524 cell lines. D Violin plot of MYC copy
number from SCLC cell lines. E MYC expression level from SCLC cell lines. Significant markers are ns for not significant, *P < 0.05, **P < 0.01, and
***P < 0.001. F Relationship between copy number and expression level of MYC. Confidence ellipses of ecMYC group (red) and chrMYC (blue)
are shown, with confidence intervals represented by ellipses based on three times the standard deviation.
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find cancer-associated ecDNA from existing regular ATAC-Seq
data and interpret cancer characteristics from a different
perspective. For example, ecMYCs were identified in three SCLC
cell lines. Genomic and transcriptomic data from publicly available
sources indicate that these three cell lines have essential
characteristics of ecDNA, including oncogene copy number gain
and increased expression levels. Further analysis showed that
ecMYC drives these 3 cell lines to exhibit the same expression
pattern characteristic of the SCLC-N subtype. Of these, epigenomic
data from the NCI-H2171 cell line further supported a regulatory
role of ecMYC on NEUROD1, an essential factor in the expression
pattern of SCLC-N subtypes. Drug screening data showed that
these cell lines were sensitive to AURKi, a potential class of drugs
targeting MYC amplification is a promising drug for treating SCLC
patients with ecMYC.

However, there are also disadvantages to using ATAC-Seq data for
ecDNA identification. As the sequencing depth obtained by ATAC-
Seq is not a direct reflection of the copy number of the original
template, without this information, circlehunter can fail to construct
circles that contain repeated or foldback segments, such as
homogeneously staining region (HSR) and breakage fusion bridge
(BFB) cycle. In addition, other complex structural variants that are
detectable by bioinformatic tools such as JaBbA [40] or LINX [41],
which utilize depth-balanced junction graphs, may not be identified
by circlehunter without this information. Therefore, it is important to
note that the current benchmarking strategy has limitations, and we
cannot guarantee the accuracy of ecDNA calls for all types of focal
amplifications. Future studies should explore the rate at which this
happens and devise strategies to improve the accuracy of ecDNA
detection for other types of focal amplifications. It has been reported

Fig. 6 ecMYC-driven SCLC-N expression pattern. A GSEA result of term HALLMARK_MYC_TARGETS_V2 from MSigDB between SCLC cell lines
with ecMYC and chrMYC. B GO analysis for differentially expressed genes between cell lines with ecMYC and chrMYC. C Heatmap of 4 SCLC
subtype factors expression. D Correlation between MYC and NEUROD1 expression levels in SCLC cell lines. E Accessibility of ecMYC and chrMYC
cell lines at NEUROD1 TSS. F The methylation level of the CpG cluster in the NEUROD1 locus. G The epigenomic landscape of the NCIH-2171 cell
line in NEUROD1 locus.
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Fig. 7 Expression patterns of SCLC subtypes. A Unsupervised hierarchical cluster analysis of neuroendocrine markers from human SCLC cell
lines. B Unsupervised hierarchical cluster analysis of neuroendocrine markers from human SCLC patients. C, D The expression level of MYC and
NEUROD1 between SCLC cell line clusters. E, F The expression level of MYC and NEUROD1 between SCLC patient clusters. G Heatmap of 7 SCLC
cell line response to 11 AURK inhibitors. H AURKi response prediction between patient clusters.
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in the literature that copy number profile can be predicted using
single-cell ATAC-Seq data [42], and the addition of the copy number
profile can allow circlehunter to remove some of the computational
sub-structure by calculating the copy number balance on either side
of the breakpoint. However, the application of circlehunter to single-
cell ATAC-Seq data has yet to be explored. At the same time, short
read-length sequencing has a natural disadvantage for detecting
structural variants, which may lead circlehunter to discover more
computational sub-structures, as in the case of the COLO320DM cell
line. But no single solution is perfect, and in our scenario, if the copy
number of ecDNA has not yet increased to a level at which it can be
identified early in the amplification process, this ecDNA becomes
difficult to identify using regular WGS data, for example, the
AmpliconArchitect software, which requires copy number variation
as input. We believe that the circlehunter should still be valid in this
instance, given that ecDNA lacks nucleosome wrapping and will
yield more library fragments generated by Tn5 cutting, which can be
considered a means of enrichment to some degree. We also note
that most of the samples in the dataset we analyzed were cell lines,
and the proportion of individual cancer types deviated significantly
from each other. Additional data are needed to improve our
understanding of the possible issues with using ATAC-Seq for
ecDNA analysis. As circlehunter is built on the basis that ecDNA has
less higher-order compaction than chromosomes. This finding has
been reported in large-scale and empirical studies [6, 9], but more
data are needed to support whether all ecDNAs share this
characteristic. On the other hand, if other classes of focal
amplification have misregulated chromatin, they may be detected
as false-positive ecDNA by circlehunter. In closing, we provide a tool
to explore cancer-associated ecDNA, utilizing new or existing data,
and offer a unique entry point for oncology research.

MATERIALS AND METHODS
The circlehunter pipeline
The circlehunter pipeline was constructed using snakemake [43]. The main
steps are as follows (Supplementary Fig. S5).

Preprocess
Input FASTQ files were processed by fastp [44] to remove adapter and low-
quality bases. Clean reads were mapped to the genome using bwa-mem
[45]. Duplicated reads were marked by samblaster [46] and then
transformed into coordinate sorted BAM files using samtools [47]. Reads
mapped out of ENCODE blacklist [48] with a MAPQ > 10 and not marked as
duplicates will be kept and used for the next steps.

Enrich region identify
For consecutive enrich regions, all reads were used as input to call peak
using MACS2 [49] with parameters --nomodel --nolambda -p 0.05. This
implies that all reads will be pileup as depth of each base. The P value for
each base will then be determined by a Poisson distribution using each
base’s depth, with the average depth of the genome as λ. Sequential bases
with a P value < 0.05 will be considered as significant peaks. Peaks with
distances less than 12.5 kb will be merged as one consecutive enrich
region using bedtools [50].
For discordant reads pair enrich regions, discordant read pairs (insert

size >1500 bp as default but can be adjusted) were extracted and pileup.
Their ratio to the depth of the same base was then calculated. Using a
Poisson distribution with the mean ratio of the whole genome as λ, the
ratio of each base will be computed as a P value, similar to consecutive
enrich region identification. Consecutive bases with P value < 0.05 will
stitch as discordant enrich regions. These steps were performed by MACS2
bdgcmp with parameter -m ppois and bdgpeakcall with parameter -c
1.301 ð¼ � log10 0:05Þ. Only regions that overlap with consecutive
enriched regions are kept.

Construct the breakpoint graph
The breakpoints graph relies on MultiGraph in NetworkX [51]. All
discordant read pair enrich regions are added as nodes. Two types of
edges are then added according to enriched regions. Two discordant

enrich regions share paired-end reads with the same reads ID, which
means a discordant type edge. The user can specify a minimum number of
reads IDs with the same mapped orientation that must be present for a
discordant edge to be formed. The default setting is the inverse survival of
the Poisson model used for enrichment assessment. When a discordant
type of edge is added to the graph, the orientation of the reads that
support the edge is recorded in both nodes it connects. This direction is
used as the extension direction of this node. All nodes properly oriented to
one another within one consecutive enrich region will be connected by
consecutive type edges.

Breakpoint estimate
Despite the discordant read pair enrichment region suggesting that a
breakpoint is present, it does not provide the precise position of the
breakpoint. Hence, we propose a Bayesian model to estimate a more
precise breakpoint position. The breakpoint position is estimated by
combining two distinct Bayesian models. Circlehunter takes discordant
read pairs mapped in the discordant enrich region, because the reads
stopping before the breakpoint, so it can only be used to estimate the
minimum extended position of the breakpoint. Similar to the German tank
problem [52], with the innermost base of the discordant reads enriched
region as the origin and the distance from each possible breakpoint to the
origin as h. The probability of observing reads with an end position less
than h appearing in L follows a uniform distribution between 1 and h.

PL Ljhð Þ ¼ 0; if L>h

Uniform 1; hð Þ; otherwise

�

The other model is a simple normal distribution, where the reads aligned
to the breakpoints will be clipped during the alignment process. Their
alignment end position S should fall within a small ±e distance from the
actual breakpoint. Thus, the probability of such reads’ alignment end
positions occurring in S is observed to obey a normal distribution with h as
the expectation and e2 as the variance.

PS Sjhð Þ ¼ N h; e2
� �

Assuming that the probabilities of being observed for these two types of
reads are independent, the two model posterior probabilities can be
integrated as

log P hjL1:n; S1:mð Þ ¼ χ þ
Xn
i¼1

logPL Li jhð Þ þ
Xn
i¼1

logPS Si jhð Þ

where χ is the normalized parameters of the model, the maximum-
likelihood estimates bh and 95% confidence interval are then obtained from
the model through a grid search. The breakpoints estimated by the model
will be applied to the breakpoint graph nodes.

Search ecDNA from the breakpoint graph
The proper ecDNA will be reconstructed from the graph by a modified
depth-first search algorithm. Since the breakpoint graph constructed by
circlehunter comprises two types of edges connecting different break-
points, a proper ecDNA circle needs to search along a path with two
distinct types of edges. When searching for the next breakpoint by depth-
first in the graph, the type of the edge connecting the next breakpoint
must not be the same as the type of the edge connecting the prior
breakpoint. Circlehunter will first search for segments with greater size and
higher local depth to include more genes and to find more reliable
ecDNAs. All possible circles and breakpoint confidential intervals will be
output in BED format as distinct candidate ecDNA structures. Typically,
circlehunter will cover all nodes. However, a minimal number of samples
that undergo complex rearrangement will result in many alternative sub-
structures, and the user can opt to restrict the output (default as 1000).

Accuracy of circlehunter
We randomly generated 500 ecDNAs in order to evaluate the accuracy of
circlehunter and to compare it to the existing circle_finder approach that
can analyze ecDNA from ATAC-Seq data. The sizes of fragments vary from
5 kb to 10 Mb, and the number of fragments in a single ecDNA varies from
1 to 50, covering a wide range of ecDNA conditions. All segments were
randomly selected from the GRCh38 not N regions. Each segment is
randomly assigned a ligation direction, and sequences are extracted from
the genome accordingly. All sequences from the same ecDNA were
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sequentially ligated into one large circular sequence. Subsequently, pair-
end sequencing simulation was performed using art employing the
Illumina default profile [53]. The ATAC-Seq data of the GM12878 sample
(GSE170245) from ENCODE is blended as background with the output of
20 ecDNA sequencing simulations for each run. This will create a sample
containing 20 randomly generated ecDNAs, and 25 such samples will be
produced in total, resulting in 500 ecDNAs. The simulation method for one-
segment ecDNA is the same as that for multi-segment ecDNA except for
limiting the number of fragments per ecDNA. ATAC-Seq data for three
samples with known ecDNA were downloaded from GEO (Supplementary
Table S2), with two biological replicates per sample. These samples were
analyzed based on the hg19 references.

Identify ecDNA in historical data
ATAC-Seq data for 547 tumor samples were obtained from the GEO
database (Supplementary Table S3). Manual curation was conducted on
the search results for the term “ATAC-Seq”. Only samples that were
identified as being derived from cancer and had not received any special
treatment, such as drug or gene modifications, were kept. The FASTQ
format raw data were obtained from Sequence Read Archive (SRA) [54]
using SRA Toolkit. And the analysis was conducted with circlehunter with
the hg38 genome as the reference using default settings. Initial results
were filtered according to the following conditions: fold enrich >10,
discordant reads proof a junction >2, less than 5% of length overlap with
RepeatMasker [55] repeat regions. Gene annotations were downloaded
from UCSC refSeq (refGene) [56]. AllOnco (http://www.bushmanlab.org/
links/genelists) cancer gene list curated by Bushman Lab was used as an
oncogene list. Copy number, expression level, and gene effect data for
cancer cell lines sourced from CCLE [26] can be accessed from DepMap
(https://depmap.org/portal/). Clinical copy number and coding driver
mutations from PCAWG were downloaded from Xena [57].

Identify ecDNA in SCLC
Nineteen ATAC-Seq data from 8 SCLC cell lines (Table S4) were
downloaded from the GEO database and analyzed using hg38 as
the reference. Data for copy number and expression level of the gene
were obtained from DepMap Public 22Q1. GSEA and GO analyses were
performed using GSEAPY (https://github.com/zqfang/GSEApy), and
the gene sets were downloaded from MSigDB [58]. Differently expressed
genes were identified using the Student t test. Differentially expressed
genes between the ecMYC group and chrMYC were defined as the
absolute value of log foldchange >2 and P value < 0.05. Transcriptome
sequencing data of human SCLC tumor samples (n= 81) were obtained
from published literature [33], and SCLC cell lines (n= 51) were obtained
from CCLE. The log2-FPKM cut-off to distinguish patients as having MYC
high and MYC low is the upper quartile for all patients. The same cut-off
value is used to classify cell lines. Epigenomic sequencing data for the NCI-
H2171 cell line were downloaded from GEO with accession GSE36354,
aligned to the hg38 reference using bwa-mem, pileup as per million reads
signal and scaling to the smallest sample using MACS2. Drug screening
data were sourced from GDSC [38] and CTRP [39] and downloaded from
DepMap. We used drug response data from oncoPredict’s [59] prediction
given the large number of missing data in the original screening data. The
model was trained using all accessible SCLC screening data and was later
used to predict the response of 51 cell lines to 11 AURKi drugs. The
response of SCLC patients to AURKi was similarly predicted by oncoPredict.

Statistical analysis
The statistical methods are described in the corresponding statements and
figure legends. Statistical analysis is performed by SciPy or Pingouin in
Python.

DATA AVAILABILITY
This study did not generate new data. All publicly available data used are already
listed in “Materials and methods” or Supplementary materials.
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The source code of circlehunter, including the simulation pipeline and configuration,
is available at https://github.com/suda-huanglab/circlehunter.
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