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Integrated analysis of single-cell and bulk RNA sequencing data
reveals an immunostimulatory microenvironment in tumor
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Tumor thrombus of bone sarcomas represents a unique reservoir for various types of cancer and immune cells, however, the
investigation of tumor thrombus at a single-cell level is very limited. And it is still an open question to identify the thrombus-specific
tumor microenvironment that is associated with the tumor-adaptive immune response. Here, by analyzing bulk tissue and single-
cell level transcriptome from the paired thrombus and primary tumor samples of osteosarcoma (OS) patients, we define the
immunostimulatory microenvironment in tumor thrombus of OS with a higher proportion of tumor-associated macrophages with
M1-like states (TAM-M1) and TAM-M1 with high expression of CCL4. OS tumor thrombus is found to have upregulated IFN-γ and
TGF-β signalings that are related to immune surveillance of circulating tumor cells in blood circulation. Further multiplexed
immunofluorescence staining of the CD3/CD4/CD8A/CD68/CCL4 markers validates the immune-activated state in the tumor
thrombus samples. Our study first reports the transcriptome differences at a single-cell level between tumor thrombus and primary
tumor in sarcoma.
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INTRODUCTION
Osteosarcoma (OS) is the most common primary bone malignancy
that frequently occurs in children, adolescents, and young adults
[1, 2]. OS usually arises in the metaphysis of lone bones (such as
the femur, the tibia, and the humerus) that have extensive
longitudinal bone growth [3]. Multimodal treatment incorporating
surgical resection and combination chemotherapy notably
improves patients’ prognosis and has become the standard
treatment of OS [4, 5]. However, nearly 20% of OS patients are
found to have metastasis at diagnosis, with a poor prognosis due
to insensitivity to standard therapy [2, 5, 6]. One aggressive
characteristic of primary OS is its tendency to intravasate into the
adjacent veins and generate a metastatic tumor thrombus (almost
23% patients of with primary pelvic OS were found to have tumor
thrombus), which could be exploited as a special study model for
the early stage of tumor metastasis [7]. The occurrence of tumor
thrombus substantially increases the rate of metastasis in many
tumor types including osteosarcoma, renal cell carcinoma, and
hepatocellular carcinoma [7–9]. Patients with tumor thrombus in
OS generally had a worse prognosis due to early distant
metastasis and high local recurrence risk since scraps of tumor
thrombus could skip across the reactive zone encapsulating the
tumor and metastasize to distant organs early in the disease
process [7].

Current studies about metastatic tumor thrombus mainly focus
on carcinoma (including renal cell carcinoma and hepatocellular
carcinoma) and analyze tumor genomic progression mostly on the
tissue level [10, 11]. Through whole-exome sequencing (WES) and
bulk RNA-sequencing (RNA-seq), tumor thrombus in carcinoma
was found to have higher genomic instability and distinct tumor
microenvironment compared to the primary tumor. Recently, Ma
et al. revealed that tumor thrombus in clear cell renal cell
carcinoma had more tissue-resident CD8+T cells and a relatively
immunostimulatory state compared to primary tumor [12].
However, studies analyzing the single-cell level of transcriptome
discrepancy between tumor thrombus and primary tumor are
scarce and all limited to carcinoma, leading to the vacancy for the
field of transcriptome difference between tumor thrombus and
primary tumor in osteosarcoma.
In recent years, immunotherapy has been deemed a monu-

mental breakthrough in oncology and become a promising
therapeutic strategy for many tumor types [13, 14]. Prior studies
focusing on the immune landscape of OS have shown that the
tumor microenvironment (TME) of primary and metastatic OS
lesions are both immunosuppressive, which is in favor of the
application of immunotherapy in OS [15–17]. With heterogeneous
tumor microenvironment and highly variable immune inhibitory
molecule expression, however, the efficacy of immunotherapy is
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currently not encouraging in OS treatment [15, 18, 19]. Therefore,
there is an urgent need to unveil the TME and the paradigm of
immune infiltration in OS, especially the metastatic phenotype. In
this study, we conducted WES, bulk RNA-seq, and scRNA-seq of
paired thrombus and primary tumor samples of the OS to identify
the unique features of the thrombus microenvironment, aiming at
revealing the dynamic change of TME during tumor metastasis in
the early stage and the transcriptome differences between tumor
thrombus and primary tumor in OS.

RESULTS
Molecular signature and transcriptome differences between
primary tumor and tumor thrombus of human osteosarcoma
To gain insights into the molecular difference underlying
tumorigenic action of primary tumor and thrombus of human
osteosarcoma, we analyzed differential gene expression patterns
between paired primary tumor and thrombus samples of
osteosarcoma (N= 5) based on the RNA-seq approaches (Fig.
S1). In total, 72 genes were identified as significantly up-regulated
(Fig. 1A), which include many genes (including OLR1, ICOS, and
SERPINE1) that previous reports have demonstrated their correla-
tion with tumor cell migration and metastasis. More interesting,
we found many immune-related genes (including CCL3, CCL4,
CCL4L2, and CXCL5) enriched in the thrombus samples of
osteosarcoma (Fig. 1B), which indicates that multiple genes
involved in immunological pathways may be activated concor-
dantly. Thus, we performed GSEA by using the MSigDB hallmark
gene sets (Fig. S2) to check whether specific gene sets were
correlated with the thrombus of human osteosarcoma, the GSEA
enrichment results revealed that a large number of immune-
related gene sets were positively enriched in samples of tumor
thrombus when compare with primary tumor samples, such as the
get set of “HALLMARK_INFLAMMATORY_RESPONSE”, whose
expression is connected to genes defining comprehensive
inflammatory response. Notably, genes involved in the “HALL-
MARK_TGF_BETA_SIGNALING” (genes up-regulated in response to
the ligand of the TGF-beta superfamily of proteins) and
“HALLMARK_INTERFERON_GAMMA_RESPONSE” (genes up-
regulated in response to Interferon-gamma) were also highly
positively enriched in samples of tumor thrombus (Fig. 1C).
Furthermore, we employed the IPA approach to determine
whether the identified differentially expressed genes could be
mapped to specific canonical pathways and signal networks. As
shown in Fig. 1D, “Granulocyte/Aranulocyte Adhesion and
Diapedesis”, “Glucocorticoid Receptor Signaling”, “B Cell Develop-
ment” and other 6 pathways consist of the most significant 10
canonical pathways of up-regulated genes in tumor thrombus. On
the other hand, down-regulated genes are enriched in “Axonal
Guidance Signaling”, “Alanine Degradation/Biosynthesis”, “Hepatic
Fibrosis / Hepatic Stellate Cell Activation” and other 6 pathways. In
summary, our IPA-based analysis generated complex functional
networks and identified the possible transcription regulators that
mediated inflammatory response, tissue morphology and orga-
nismal injury.

Cell typing of the microenvironment in tumor thrombus of
human osteosarcoma based on single-cell transcriptomes
To investigate the specific immune phenotypes difference
between the tumor thrombus and primary tumor samples at a
higher resolution, we performed the scRNA-seq of the paired
primary tumor and thrombus samples of osteosarcoma (N= 2)
with comprehensive infiltrated immune cell profiling (Fig. S1).
Fresh biopsies, which were collected during surgery, were rapidly
digested into single-cell suspensions, and a droplet-based scRNA-
seq approach (Chromium Single-Cell Gene Expression Kit) was
employed. After quality control filtering to remove cells with a
small number of detected genes and high mitochondrial gene

coverage, we compiled a unified cell-by-gene expression matrix of
~20,000 cells from 4 primary tumor and thrombus samples of
osteosarcoma. As shown in Fig. 2A, 16 major cell clusters were
identified by unsupervised dimensionality reduction and graph-
based clustering analysis. Then, we annotated the cell clusters
based on their top 5 marker genes to identify infiltrating immune
cells, which include B cells, CD4Tcm, CD4Tem, CD8Tmem,
CD8T_prolifer, CLP, Endo, MEP, Monocyte, Neutrophils, NK cells,
NKT cells, TAM_M1, TAM_M1_CCL4, TAM_M2 and Treg (Fig. 2B).
To identify the thrombus-specific cell-level differences compared
with the primary tumor, clustering results based on UMAP
renderings were split into subgroups of thrombus and primary
tumor (Fig. 2C).

Identification of immunostimulatory phenotypes in tumor
thrombus of osteosarcoma
Then, we compared the cell number and immune cell fraction to
gain insights into the immune phenotypes difference underlying
the functional diversity of the tumor microenvironment between
the tumor thrombus and primary tumor samples. As shown in
Fig. 2D and Fig. S3, the paired comparison of cell numbers
revealed the microenvironment of tumor thrombus had a
generally higher cell count of the myeloid cell populations
(including the Neutrophils, Tumor-associated macrophage M1,
Tumor-associated macrophage M1 with high expression of CCL4).
Furthermore, the cell fraction of Tumor-associated macrophage
M1 and Tumor-associated macrophage M1 with high expression
of CCL4 in the tumor thrombus showed about 5 fold (and 8 fold,
respectively) more abundance than that in the tumor microenvir-
onment of the primary tumor (Fig. 2E). Several pieces of evidence
had pointed to an important role for the myeloid cell in the
metastasis process of osteosarcoma. It is now well established that
tumor-infiltrating myeloid cells are highly malleable based on the
surrounding microenvironment, and an altered myeloid compart-
ment likely contributes to the exclusion and suppression of
lymphocytes. Previous reports discovered that the T cell and M1
macrophage signatures present at the pulmonary metastases
interface of osteosarcoma were dwarfed by the overwhelming
accumulation of immunosuppressive myeloid cells throughout the
entire tumor. In conclusion, these results indicate distinct tumor
microenvironment patterns between the tumor thrombus and
primary tumor samples of human osteosarcoma, reflecting the
tumor thrombus had a more immunostimulatory microenviron-
ment when compared with primary tumor samples of
osteosarcoma.

Experimental validation of immunostimulatory
microenvironment in tumor thrombus of osteosarcoma
We further confirmed the immunostimulatory microenvironment
in tumor thrombus of OS using multiplexed immunofluorescent
staining (Fig. 3A). As shown in Fig. 3B, the tumor thrombus of OS
had more CD68+ macrophages expression while CD3+ T cells
were more abundant in the primary tumor lesions. Although the
absolute cell counts of CD4+ and CD8+ T cells were approximative
in tumor thrombus and primary tumor, the primary tumor had
relatively higher proportions of CD4+ and CD8+ T cells. Immuno-
histochemistry (IHC) staining further confirmed that tumor
thrombus had higher level of TGF-β and IFN-γ (Fig. 4A). Flow
cytometry was performed to explore the polarization state of
macrophages and the result showed an increased polarization to
M1+ macrophages in tumor thrombus (Fig. 4B). Collectively, these
results verified our scRNA-seq findings and elaborated the TME in
tumor thrombus of OS in a visualized manner.

DISCUSSION
OS is a highly heterogenic bone malignancy with a hematogenous
metastasis tendency [2]. Although combinational therapy
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comprising surgical resection and chemotherapy has dramatically
ameliorated the prognosis of patients with localized disease, the
therapeutic progress of OS has stagnated in the past thirty years
[18, 20]. Immunotherapies represented by immune checkpoint
blockade have acquired considerable interest for their potency in
advanced tumor treatment, including OS [20, 21]. However, OS

presented limited responses to immunotherapies due to its
intricate TME [22–24]. Hence, revealing the cellular landscape of
immune infiltration in OS may pave the way for novel therapeutic
strategies on the horizon. In this current study, we first analyzed
the transcriptome differences between paired primary tumor and
tumor thrombus samples of OS through bulk RNA-seq.

Fig. 1 Transcriptome difference based on bulk RNA-seq data between tumor thrombus and primary tumor region of human
osteosarcoma. A Volcano plot of differentially expressed genes in tumor thrombus compared with primary tumor. B Heatmap of top 30 up-
regulated genes and down-regulated genes in tumor thrombus, respectively. C Hallmark gene sets were analyzed by GSEA. Gene sets related
to immune response are shown in bold. D Top 10 most significant IPA canonical pathways enriched by up-regulated and down-regulated
genes in tumor thrombus, respectively.
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72 significantly up-regulated genes that are involved in tumor
progression and immune response were identified. GSEA analysis
suggested that compared with primary tumor samples, IFN-γ and
TGF-β signalings were significantly augmented in tumor throm-
bus. Next, we performed scRNA-seq to depict the preliminary
cellular atlas for immune cell infiltration in both primary tumor
and tumor thrombus samples of OS. 16 major cell phenotypes
were characterized among ~20,000 cells and the cell clusters were
identified as well. Analysis of immune cell number and fraction
demonstrated that tumor thrombus had higher myeloid cell

infiltration (including neutrophils, TAM-M1, and TAM-M1 with high
expression of CCL4), which suggested a relatively immunostimu-
latory TME in OS tumor thrombus [25, 26]. Based on scRNA-seq
results, we conducted mIF staining of T cells (CD3, CD4 and CD8),
macrophages (CD68) and CCL4, which further indicated the
differential distribution of immune cells between tumor thrombus
and primary tumor.
Previous studies about OS metastasis mainly focused on the

outset and endpoint of metastasis and suggested that both primary
and lung metastatic OS lesions had an immunosuppressive

The single-cell transcriptome was performed on purified immune cells 

A B 

UMAP_1 

U
M

AP
_2

 

C 

UMAP_1 

U
M

AP
_2

 

Primary tumor Tumor thrombus 

D 

UMAP_1 

U
M

AP
_2

 

E 

1.23% Bcell
13.53% CD4Tcm
7.00% CD4Tem
4.75% CD8Tmem
1.14% CD8T_prolifer
0.37% CLP
1.60% Endo
0.57% MEP
5.17% Monocyte
24.24% Neu
2.85% NK
5.96% NKT
21.26% TAM_M1
6.11% TAM_M1_CCL4
3.99% TAM_M2
0.22% Treg

2.89% Bcell
17.88% CD4Tcm
6.14% CD4Tem
9.95% CD8Tmem
1.12% CD8T_prolifer
0.62% CLP
1.73% Endo
0.41% MEP
9.14% Monocyte
28.20% Neu
5.03% NK
6.53% NKT
4.51% TAM_M1
0.75% TAM_M1_CCL4
4.15% TAM_M2
0.95% Treg

Immune Cell Fraction Difference 

Total Immune Cells in Thrombus = 10960 

Total Immune Cells in Primary Tumor = 6813 

Scaled expression by SCT 
Max Min 

Ce
ll 

co
un

t 

Fig. 2 Single-cell transcriptome profile of the microenvironment in tumor thrombus of human osteosarcoma. The single-cell
transcriptome was performed on purified immune cells. A UMAP plots of single-cell transcriptomes showing major cell types that are
distinguished by different colors. B Heatmap of the expression value of canonical marker genes for each cell type. C UMAP plots of single-cell
transcriptomes split by the tumor thrombus and primary tumor region. D Count of different clusters of cells identified by the scRNA-seq
method. E Pie charts of the immune cell’s proportion in tumor thrombus and primary tumor. Cell types whose number or proportion is
remarkably higher in tumor thrombus compared with primary tumor are signed by dotted boxes. CD4Tcm: CD4+ T central memory cells,
CD4Tem: CD4+ T effector memory cells, CD8Tmem: CD8+ T memory cells, CD8T_prolifer: CD8+ T proliferating cells, CLP Common lymphoid
progenitor, Endo Endothelial cells, MEP Megakaryocyte–erythroid progenitors, Neu Neutrophils, TAM_M1 Tumor-associated macrophage M1,
TAM_M1_CCL4 Tumor-associated macrophage M1 with high expression of CCL4, TAM_M2 Tumor-associated macrophage M2, Treg CD4+ T
regulatory cells.
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microenvironment accompanied by anergic anti-tumor responses
[16, 17, 27, 28]. As a hallmark of hematogenous metastasis, the
process of tumor cell intravasation into the bloodstream and
escape from immune surveillance raised little attention in OS, and
tumor thrombus could be a suitable model for analyzing this
process. Therefore, we attempted to find out the unique
characteristics of OS tumor thrombus TME via analysis of bulk
tissue and single-cell level transcriptome from matched tumor
thrombus and primary tumor samples of OS. The elevated IFN-γ
signalling indicates the anti-tumor immune response in metastatic
tumor thrombus. Activation of IFN-γ signaling leads to induction of
the polarization of TAM to a TAM-M1 phenotype that has pro-
inflammatory and tumoricidal effects [29–31]. Enriched TAM-M1 in
OS tumor thrombus lesions was found based on our scRNA-seq
results, which supported the bulk RNA-seq findings. Besides, IFN-γ
has been reported to augment anti-tumor immune response via
impeding Treg function as well as facilitating CD8+ T cells motility
and killing capacity [32–34]. Conventionally, TGF-β signaling mainly
functions as an oncogenic contributor in advanced tumors [35–37].
As a major component of tumor thrombus, platelets are the main
source of TGF-β in blood circulation and TME [38]. Therefore, up-
regulated TGF-β signaling in tumor thrombus may indicate the
activation of platelets to counteract the local immunostimulatory
TME in tumor thrombus (Fig. 5). Similar to our results, up-regulated
IFN-γ signaling and antigen-presenting pathways as well as
increased genes involved in immune evasion were found in renal
cell carcinoma [12].
In this study, we identified an immunostimulatory TME in OS

tumor thrombus with enriched TAM-M1 overexpressing CCL4 as

well as elevated IFN-γ and TGF-β signalings. Our data suggested
that although primary OS lesions had a highly immunosuppressive
TME, anti-tumor immune response still dominates in the micro-
environment of metastatic tumor thrombus. Zhou et al. has
demonstrated that even in lung metastasis sites metastatic OS
cells could still activate tissue-resident macrophages with a high
expression level of M1 marker [17]. Being a crucial component of
tumor thrombus, platelets could be activated and aggregated to
assist tumor cells in evading anti-tumor immune response [39–41].
Activated platelets secreted a plethora of TGF-β to neutralize the
immunostimulatory effects of IFN-γ signaling [40, 42]. The scRNA-
seq and the mIF staining identified a higher amount and
proportion of TAM-M1, which indicated a temporary immunosti-
mulatory TME and represented the early stage of OS metastasis.
Our results highlight the necessity of tracking the dynamic

alterations of TME during metastasis in OS. Future studies focusing
on OS metastasis should (1) prospectively recruit OS patients who are
complicated with both tumor thrombus and lung metastasis to
collect matched primary tumor, tumor thrombus, and lung
metastasis samples to investigate the TME alterations, and (2) classify
immune cells with more specific markers to depict a more detailed
immune microenvironment, (3) construct patient-derived xenograft
mice from OS patients who are resistant to immune checkpoint
therapy to explore the therapeutic effects of antiplatelet agents or
TGF-β antagonists combined with immune checkpoint therapy.
In conclusion, we first reported the transcriptome differences

between tumor thrombus and primary tumor in sarcoma. The
current bulk tissue and single-cell level transcriptome analyses
suggested an immunostimulatory microenvironment in the tumor

Fig. 3 Multiplexed immunofluorescence (mIF) staining verified the immunostimulatory state in the tumor thrombus of OS. AmIF staining
of CD3/CD4/CD8A/CD68/CCL4 markers revealed that tumor thrombus had more CD68+ macrophages expression while primary tumor had
more CD3+ T cells. B Statistical analysis of each marker expression in primary tumor and tumor thrombus.
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thrombus of OS This study depicted the immune microenviron-
ment in the early stages of OS metastasis and primed for novel
therapeutic strategies for advanced OS treatment.

MATERIALS AND METHODS
Clinical specimens and patient features
Clinical specimens collected and analyzed in this study were harvested
through informed consent. The study protocol was approved by the ethics
committees of Peking University People’s Hospital and Beijing Children’s
Hospital of Capital Medical University. The clinical characteristics of
enrolled patients are listed in Table 1.

Bulk RNA-seq data analysis
We obtained clean data with the adapter removed and low-quality reads
filtered. The paired-end reads were mapped to the human genome (UCSC

hg38) by Hisat2 (version 2.1.0). Gene annotation and gene expression reads-
count were performed by HTSeq (version 0.11.2). Then we selected the
protein-coding genes and calculated the normalized expression value using
the DESeq2 package (version 1.32.0) on the R platform (version 4.1.0).

Gene-set enrichment analysis (GSEA)
The normalized expression matrix was uploaded to the gene set
enrichment analysis (GSEA) software (version 4.1.0). The hallmark gene
sets provided by the Molecular Signatures Database (MSigDB) were
selected as a reference database. The GSEA program was run with 1000
permutations for statistical significance estimation, and the default signal-
to-noise metric between the two phenotypes was used to rank all genes.

Ingenuity pathway analysis (IPA)
Differentially expressed genes (DEGs) were analyzed by the DESeq2
package. DEGs were judged with the threshold adjusted p-value less than

Fig. 4 Verification of the distinct tumor microenvironment of tumor thrombus in comparison to primary tumor. A Immunohistochemistry
(IHC) revealed upregulated expressions of TGF-β and IFN-γ in tumor thrombus tissue. B Flow cytometry showed increased polarization of THP-
1 derived macrophages towards M1+ macrophage (CD86) following co-culture with tumor cells and platelets.
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0.05 and absolute log2 fold-change greater than 1. Then these DEGs were
uploaded to the Ingenuity Pathway Analysis (IPA) software. Canonical
pathways, causal networks, and upstream regulators were enriched with
default parameters in this software.

Cell proportion estimation
CIBERSORT package (version 0.1.0) in R was used to deconvolve the bulk
RNAseq data. A widely used leukocyte signature matrix LM22 were used as
the reference to estimate the proportion of 22 immune cell types in each
sample. Then we merged some cell types based on our single-cell RNA
sequencing results: “B cells naive”, “B cells memory” and “Plasma cells”
were combined as “B cells”; “T cells CD4 memory resting” and “T cells CD4
memory activated” were combined as “CD4Tm”; “NK cells activated” and
“NK cells resting” were combined as “NK”. Cell types which were not
detected in scRNAseq and cell types estimated in less than 3 samples were
removed.

Sample collection and preparation of single-cell suspensions
Obtained during surgery, fresh tumor and thrombus tissues were stored in
Dulbecco’s modified Eagle’s medium (DMEM, Gibco) with 10% fetal bovine
serum (FBS, Gibco) and processed on ice. Subsequently, the tissues were
rinsed with cold phosphate buffer saline (PBS, Gibco) three times and
minced into ~1mm3 pieces. The tissue pieces were digested into single-cell
suspensions using collagenase-2 (1 mg/mL) at 37 °C for 45min and filtered
through a 70-μm cell strainer. Upon digestion, the single-cell suspensions
were centrifugated at 400 g for 5 min and the supernatant was discarded.
Adding red blood cell lysis buffer (Solarbio) to remove red blood cells, the
suspensions were then passed through a 40-μm filter and centrifugated at
500 g for 5 min, and resuspended in PBS. Cell viability was validated under
the phase-contrast light microscope (Leica) after staining with trypan blue
(ACMEC).

Single-cell transcriptome library preparation and sequencing
After resection, tissue specimens were rapidly processed for single-cell RNA
sequencing. Single-cell suspensions were prepared according to the
protocol of Chromium™ Single Cell 3’ Solution (V2 chemistry). All
specimens were washed twice with cold 1 × PBS. A hemocytometer
(Thermo) was used to evaluate cell viability rates. Then, we used Countess
(Thermo) to determine the concentration of the single-cell suspension and

adjust the concentration to 1000 cells/μl. Samples with a cell concentration
lower than that defined in the user guide (i.e., <400 cells/µl) were pelleted
and resuspended in a reduced volume, and the concentration of the new
solution was determined again. Finally, the cells in each sample were
loaded, and libraries were constructed using a Chromium single-cell kit.
Single-cell libraries were subjected to 150-bp paired-end sequencing on
the Illumina NavoSeq6000 platform.

Single-cell RNA-seq data preprocessing and quality control
After obtaining the paired-end raw reads, we used CellRanger (10x
Genomics, v3.1.0) to preprocess the single-cell RNA-seq data. The cell
barcodes and unique molecular identifiers (UMIs) of the library were
extracted from read1. Then, the reads were split according to their cell
(barcode) IDs, and the UMI sequences from read2 were simultaneously
recorded for each cell. Quality control of these raw readings was
subsequently performed to eliminate adapter contamination, duplicates,
and low-quality bases. After filtering barcodes and low-quality readings
that were not related to cells, we used STAR (version 2.5.1b) to map the
clean reads to the human genome (hg19), and we retained the uniquely
mapped reads for UMI counts. Next, we estimated the molecular counts
and generated a UMI count matrix for each cell by counting the UMIs for
each sample. Finally, we generated a gene-barcode matrix that showed the
barcoded cells and gene expression counts. Based on the number of
total reads, the number of detected gene features, and the percentage
of mitochondrial genes, we performed quality control filtering through
Seurat to discard low-quality cells (v3.1.5). Briefly, the proportion of
mitochondrial genes inside one cell was calculated to be lower than
10%, and the number of total reads in one cell was below 50000.
Additionally, the cells were further filtered according to the following
criteria: each sample with no more than 5000 genes detected,
respectively, and at least 200 genes detected per cell in any sample.
Low-quality cells and outliers were discarded, and the single cells that
passed the QC criteria were used for downstream analyses. Doublets
were predicted by DoubletFinder (v2.0).

Clustering analysis and cell phenotype recognition
The Seurat software package was used to perform cell clustering analysis
to identify major cell types. All Seurat objects constructed from the filtered
UMI-based gene expression matrixes of given samples were merged. We

Fig. 5 Graphic diagrams of the interplay among tumor cells, immune cells, and platelets during metastasis. Tumor cells from primary
lesions invade the extracellular matrix (ECM) of primary sites and intravasate into the bloodstream, becoming circulating tumor cells (CTCs).
CTCs in circulation are recognized by NK cells and initiate immune surveillance with up-regulated IFN-γ signaling. Through activating platelets
to secret TGF-β, CTCs achieve immune escape and survive in the bloodstream. Meanwhile, direct contact of CTCs and platelets leads to tumor
thrombus formation, which is in favor of tumor metastasis. Macrophage 1, tumor-associated macrophages with M1-like states (TAM-M1);
Macrophage 2, tumor-associated macrophages with M2-like states (TAM-M2).
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first applied the “SCTransform” function to implement normalization,
variance stabilization, and feature selection through a regularized negative
binomial model. Then, we reduced dimensionality through principal
component analysis (PCA). According to standard steps implemented in
Seurat, highly variable numbers of principal components (PCs) 1 to 20 were
selected and used for clustering using the Uniform Manifold Approxima-
tion and Projection (UMAP). We identified the cell types of these groups
based on the expression of canonical cell type markers. Finally, the 5
groups of T cells and 2 groups of ADSCs were respectively clustered for
downstream analysis.

DEG analysis
The cell-type-specific genes were identified by running Seurat with the
‘FindAllMarkers’ function on a log-transformed expression matrix with the
following parameter settings: min.pct= 0.25, logfc.threshold= 0.25 (that
is, there is at least a 0.25 log-scale fold change between the cells inside and
outside a cluster), and only.pos= TRUE (that is, only positive markers are
returned). For heatmap and violin plots, the SCT-transformed data from the
Seurat pipeline were used. Using the Seurat ‘FindMarkers’ function, we
found differentially expressed genes (DEGs) between the two cell types.
We also used the R package clusterProfiler with the default parameters to
identify gene sets that exhibited significant and consistent differences
between two given biological states.

Multiplexed immunofluorescence (mIF) staining
To validate the immunostimulatory microenvironment in the tumor
thrombus of OS, mIF staining was performed using PANO 7-plex IHC kit
(Cat# 0004100100, Panovue). CD3 (Cat# ab135372, Abcam), CD4 (Cat#
ZM0418, ZSGB-BIO), CD8A (Cat# CST70306, CST), CD68 (Cat# CST76437,
CST), CCL4 (Cat# ab235961, Abcam) and DAPI (Cat# D9542, Sigma-Aldrich)
antibodies were sequentially applied, followed by horseradish peroxidase-
conjugated secondary antibody incubation and tyramide signal amplifica-
tion. Next, the slides were microwave heat-treated after each tyramide
signal amplification operation. Nuclei were stained with DAPI after all of
the antigens above had been labeled. To obtain multispectral images, the
stained slides were scanned using the Mantra System (PerkinElmer), which
captures the fluorescent spectra at 20-nm wavelength intervals from 420
to 720 nm with identical exposure time. 5 fields of immune cell enriched
tumoral area for each slide were selected for image capture. The selected
field were scanned to obtain multispectral images using the Mantra
System, which captures the fluorescent spectra at 20-nm wavelength
intervals from 420 to 720 nm with identical exposure time.

Immunohistochemistry (IHC) staining
Paraffin sections of paired tumor thrombus and primary tumor underwent
incubation with anti-IFN-γ (abcam, ab231036) and TGF-β (abcam,
ab215715) antibodies at 4 °C overnight. Following this, the sections were
visualized under a Leica microscope (Germany). Two independent
pathologists, who were blinded to the clinical information of the
specimens, assessed the staining scores. The staining intensity and
percentage of positive cells were quantified and recorded as follows:
staining intensity was graded on a scale of 0 to 3 (negative, low, moderate,
and strong staining, respectively), while the percentage of positive cells
was graded on a scale of 0 to 4 (0–5%, 5–25%, 25–50%, 50–75%, and >75%
of total cell numbers). The weighted score for each area was calculated by
multiplying the staining intensity by the percentage of positive cells. The
final staining score for each case was determined by calculating the
average score of 5 random areas. The grading system was based on the
average scores, with grades assigned as follows: 0–1 (negative); 1–4
(positive); 4–8 (positive+ ); and >8 (positive++).

Flow cytometry
Following two washes with phosphate-buffered saline (PBS), cells were
stained with CD206 (Biolegend, 321109) and CD86 (Biolegend, 374202)
antibodies in PBS containing 0.1% BSA for 30min at 4 °C. Subsequently,
the cells were subjected to flow cytometry analysis, and data were
acquired and analyzed using FlowJo V10 (BD Biosciences) software.

Quantification and statistical analysis
The specific tests used to analyze each set of experiments are indicated in
the figure legends. Comparisons between two groups after IHC staining
were performed using a two-tailed Student’s t-test, and comparisons
among three or more groups were performed using one-way ANOVA. TheTa
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significance of numerical values of clinical features was determined using
unpaired multiple T-test (discovery determined using the two-stage linear
step-up procedure of Benjamini, Krieger, and Yekutieli, with Q= 1%). Each
row was analysed individually, without assuming a consistent SD.
Numerical values were corrected for multiple comparisons using the
Holm-Sidak method (alpha= 0.05, presented with padj). All statistical
calculations were performed using GraphPad Prism software (ver. 7.0,
GraphPad, USA) or R software (https://www.r-project.org/).

AVAILABILITY OF DATA AND MATERIALS
The single-cell sequencing and bulk RNA-seq data could be
obtained from the GSA-human database (https://ngdc.cncb.ac.cn/
gsa-human/) with accession number: HRA001023. The processed
data and analysis codes are available upon reasonable request
from the corresponding author.
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