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The pathophysiology and the optimal treatment of breast neuroendocrine tumours (NETs) are unknown. We compared the
mutational profiles of breast NETs (n= 53) with those of 724 publicly available invasive ductal carcinoma (IDC) and 98 pancreatic
NET (PNET) cases. The only significantly different pathogenetic or unknown variant rate between breast NETs and IDCs was
detected in the TP53 (11.3% in breast NETs and 41% in IDCs, adjusted p value 0.027) and ADCK2 (9.4% in breast NETs vs. 0.28% in
IDCs, adjusted p value 0.045) genes. Between breast NETs and PNETs, different pathogenetic or unknown variant frequencies were
detected in 30 genes. For example, MEN1 was mutated in only 6% of breast NETs and 37% in PNETs (adjusted p value 0.00050), and
GATA3 pathogenetic or unknown variants were only found in 17.0% of breast NETs and 0% in PNETs (adjusted p value 0.0010). The
most commonly affected oncogenic pathways in the breast NET cases were PI3K/Akt/mTOR, NOTCH and RTK-RAS pathways. Breast
NETs had typically clock-like mutational signatures and signatures associated with defective DNA mismatch repair in their
mutational landscape. Our results suggest that the breast NET mutational profile more closely resembles that of IDCs than that of
PNETs. These results also revealed several potentially druggable targets, such as MMRd, in breast NETs. In conclusion, breast NETs
are indeed a separate breast cancer entity, but their optimal treatment remains to be elucidated.
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INTRODUCTION
Recently, the International Agency for Research on Cancer and the
World Health Organization (WHO) agreed to adopt the term
‘neuroendocrine neoplasm’ (NEN) to encompass all tumour classes
with predominant neuroendocrine differentiation [1, 2]. Although
NENs most commonly originate from abdominal organs, they may
arise from virtually any anatomical site, including the breast. In the
latest WHO classification, NENs were further divided into
neuroendocrine tumours (NETs) and neuroendocrine carcinomas
(NECs) [1]. The reported incidence of breast NETs in most studies
ranges between 0.1 and 5%, mostly depending on the diagnostic
criteria used and screening of breast tumours with diagnostic
neuroendocrine immunostainings, synaptophysin and chromo-
granin A [1, 3–5]. Breast-originating NECs demonstrate morpho-
logical characteristics of small-cell and large-cell carcinomas of the
lung and are extremely rare [1].
Breast NETs probably result from an early divergent differentia-

tion of breast cancer stem cells into both neuroendocrine and
epithelial lines [1]. The essential criteria for diagnosing breast NETs
are specific histological features and immune-profile character-
istics of neuroendocrine differentiation, while coexisting ductal
carcinomas in situ is a desirable criterion [1]. We and others have
previously reported that breast NETs occur generally in older

women, they are almost solely oestrogen receptor (ER)-positive
and human epidermal growth factor 2 (HER2)-negative, and their
prognosis is slightly poorer than that of invasive ductal carcinomas
(IDCs) of the breast [4–7]. The main clinical problem is the absence
of virtually any trial-based evidence on how breast NETs should be
optimally treated.
Based on previous studies on breast NET pathogenetic or

unknown variants (‘mutations’) [8–10], we performed whole
exome sequencing from a cohort of 53 breast NETs and collected
their comprehensive clinical and pathological data. We compared
the sequencing results with previously published mutational
spectra of IDC and pancreatic NET (PNET) cases from The Cancer
Genomic Atlas (TCGA) [11, 12]. Our results suggest that the
mutational profile of breast NETs is rather similar to that of IDCs.

MATERIALS AND METHODS
Clinical and pathological data
We collected data retrospectively on 53 patients diagnosed with breast
NET from the Oulu University Hospital and Helsinki University Hospital
from January 2006 to December 2018. The diagnoses were re-reviewed to
meet the latest WHO criteria for breast NETs [1]. Only cases showing
extensive (>50% of tumour cells) synaptophysin or chromogranin A
expression were included. Mucinous carcinomas were excluded, even if
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they demonstrated neuroendocrine marker expression. To exclude NECs,
breast NENs with small-cell or large-cell features were not included in the
current dataset. To exclude carcinomas of extramammary origin, the breast
NET cases without [1] abdominal and thoracic imaging at the time of
diagnosis or without [2] histological identification of a coexisting IDC
component were excluded. There was no evidence of extramammary
primary NETs during the follow-up.
The patients were grouped according to the tumour, node and

metastasis classification [13]. ER, progesterone receptor (PR) and Ki-67
expressions were studied by immunohistochemistry as described pre-
viously [14]. HER2 expression was studied by immunohistochemistry, and
when an HER2-positive result was recorded, gene amplification status was
determined using chromogenic in situ hybridisation. Cancers with six or
more gene copies were considered HER2-positive.

DNA isolation, exome capture and sequencing
Genomic DNA was isolated using the QIAamp DNA FFPE Tissue Kit and
automated QIAcube sample preparation instrument according to the
manufacturer’s protocol (Qiagen, Hilden, Germany). Exome capture was
accomplished using the Agilent SureSelect Human Clinical Research Exome
v2 QXT capture kit (Agilent, CA, USA). Briefly, the genomic DNA was
subjected to tagmentation reactions, inserting adaptor sequences
randomly throughout the genome. The DNA was PCR-amplified and then
incubated with biotin-labelled RNA capture probes complementary to
every exon. Following the purification of the exonic sequences through
streptavidin-magnetic bead separation, the DNA was amplified with
primers that introduced an 8-nucleotide index so that separate samples
could be run in the same lane for sequence analysis. The exomic libraries
were run on the NextSeq500 next-generation sequencer from Illumina
(Illumina, San Diego, CA) with paired-end 75 base pair reads.

Invasive ductal carcinoma (IDC) data
Open-access Masked Somatic Mutation data of the TCGA breast cancer
cohort (TCGA-BRCA) were downloaded from the Genomic Data Commons
(GDC) [11] using the R package TCGAbiolinks [15], v. 2.16.4. Harmonised
data (aligned to the hg38 reference genome), which were generated using
a Mutect2 variant calling pipeline, were downloaded and used for the
analyses. The TCGAquerysubtype function was used for retrieving additional
annotations of molecular subtypes, namely gene expression-based
PAM50 subtypes [16]. The R package Maftools [17], v. 2.4.12, was used
for reading data into R and combining the clinical data with the variant
data. Data were filtered to include only samples with the primary diagnosis
type ‘Infiltrating duct carcinoma, NOS’.

Pancreatic neuroendocrine tumour (PNET) data
Publicly available data concerning the coding substitutions and indels
present in 98 PNETs were used in this study. These somatic pathogenetic
or unknown variant data were accessed from a publication on PNET
mutational landscapes [12].

Data quality check and alignment
The breast NET pathogenetic or unknown variant analysis began with raw
sequencing data in the FASTQ format. Quality and adapter trimming were
carried out via TrimGalore, v. 0.6.4, in paired-end mode using Cutadapt, v.
2.4 [17]. A PHRED score cut-off of 20 was used, with any reads falling
outside of this threshold being discarded. Only sequence reads over 20
base pairs in length that had an error rate of less than 10% were retained
for further analysis. The quality of raw and trimmed reads was inspected
using FastQC, v. 0.11.9 [18]. The trimmed reads were aligned to the human
reference genome GRCh38 using the BWA aligner, v. 0.7.17 [19].

Somatic variant calling
Pathogenetic or unknown variants were called using the Mutect2 variant
caller in the GATK workflow, v. 4.0 [20]. A panel of normals, consisting of
exomes from the 1000 genome dataset [21], was used.

Variant annotation and filtering
In order to filter out likely artefacts and sequencing errors from the initial
set of candidate pathogenetic or unknown variants, the Mutect2-evaluated
metrics were used (Supplementary Table 1). The Mutect2-filtered variants
were annotated using Ensembl Variant Effect Predictor (VEP), v. 100.2 [22].
Based on the population databases included in the VEP (Supplementary

Table 2), a preliminary population allele frequency filter was applied by
requiring an allele frequency of 0.01 or below in all listed population
databases and subsets thereof. Moreover, variants were filtered based on
their predicted impact assigned by VEP such that only moderate- or high-
impact variants were retained.
To overcome the lack of normal control tissue, further filtering steps

involving population allele frequencies and variant effect predictions were
applied to this preliminary set of somatic variant calls (Supplementary
Table 3). The final filtered variant set of 4330 variants in 3112 genes was
obtained by filtering the preliminary call set based on the prediction scores
of the Cancer-specific High-throughput Annotation of Somatic Mutations
(CHASM-3.1) [23], and the Variant Effect Scoring Tool (VEST-4) [24, 25], and
by further manually excluding two variants that were deemed as very likely
germline variants. These two variants were single-nucleotide polymorph-
isms (SNPs): D159N in the gene CBWD6 and R296T in the gene LILRA1.
Both of these variants are annotated in the dbSNP database (IDs
rs62555254 and rs757520653), were flagged by MuTect2 as ‘germline_risk’
and were present in multiple patients (6 and 14, respectively). The
predictions of CHASM-3.1 and VEST-4 were obtained using programmatic
access to CRAVAT: Cancer-Related Analysis of Variants Toolkit [25]. The
CHASM method is based on a random forest classifier and is used for
identifying and prioritising those missense pathogenetic or unknown
variants that are most likely to generate functional changes that enhance
tumour cell proliferation. The VEST-4 method is also a random forest-based
method for prioritising rare missense and indel variants with likely
involvement in human disease. Both methods generated pathogenicity
scores ranging from 0 to 1, with 1 indicating likely pathogenic/driver
pathogenetic or unknown variant and 0 indicating likely non-pathogenic/
passenger pathogenetic or unknown variant.

Cohort comparisons
The Maftools function mafCompare was used for analysing differentially
mutated genes between two cancer cohorts. Genes with a minimum of
five mutated samples in at least one cohort were considered in the
analysis. Differentially mutated genes were detected by performing
Fisher’s exact test on each gene between the two groups.

Variant associations with clinicopathological data
The association of the breast NET cohort variants with binary clinico-
pathological variables was studied by subsetting the cohort into
subgroups using the subsetMaf function of Maftools based on binary
clinicopathological variable statuses. The variables under study included
tumour size, nodal status, the presence of distant metastases at diagnosis,
the multifocality of cancer, ER or PR expression, Ki-67 expression, HER2
amplification, immunohistochemical synaptophysin or chromogranin
expression, number of deliveries, and primary tumour size in millimetres.
Differentially mutated genes between the subgroups were assessed using
mafCompare as described above in the Cohort Comparisons section, except
that a minimum of two mutated samples in at least one subgroup was
required.
Variant associations with non-binary clinical variables—that is, age at

diagnosis, number of births, and serum chromogranin A levels—were
analysed by comparing the distributions of the variable values in groups
based on the pathogenetic or unknown variant statuses of the mutated
genes. The R package ggpubr, v. 0.4.0 [26], was used for visualising the data
distributions of the subgroups as boxplots for the 30 most mutated genes.
A statistical comparison of the variable distributions regarding pathoge-
netic or unknown variant statuses of all mutated genes in the filtered
breast NET variant set was performed with a t-test (for data with normal
distribution) or a Mann–Whitney U-test (if the data were not normally
distributed). The Shapiro–Wilk normality test was used for assessing the
distributions of the five variable values. The p values were corrected for
multiple tests using the Benjamini–Hochberg procedure [27].

Survival analysis
Survival analysis of patients grouped by pathogenetic or unknown variant
statuses was performed using R packages survival, v. 3.2-7 [28], and
survminer, v. 0.4.8 [26]. Death due to breast cancer was used as the
endpoint event, with all other patients considered as censored cases. Of all
the mutated genes in the final filtered variant set, those mutated in at least
two patients were used in the assessment. The survdiff function was used
for statistically testing the survival curve differences of the non-mutated
and mutated patient groups for each gene, and the ggsurvplot function
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was subsequently used for plotting the Kaplan–Meier survival curves of the
comparisons that had a p value < 0.05.

Somatic interactions
Mutually exclusive or co-occurring pairs of mutated genes within the
breast NET cohort were detected using the somaticInteractions function of
Maftools. This function performed a pairwise Fisher’s exact test to detect
such interactions among the top 30 most mutated genes in the cohort.

Oncogenic signalling pathway enrichment analysis
The OncogenicPathways function of Maftools was used for checking for the
enrichment of known oncogenic pathways [29] in the breast NET, IDC and
PNET cohorts. This function calculated fractions of affected genes in a
pathway and fractions of samples with pathogenetic or unknown variants
in pathway genes.

Pathogenetic or unknown variant statistics of genes across all
TCGA cancer types
Open-access Masked Somatic Mutation data of all TCGA cohorts were
downloaded from the GDC as described above. Maftools [30], v. 2.4.12, and
custom R scripts were used for reading somatic variant data of all TCGA
cohorts into R and combining the clinical data with the variant data. For
each cancer type, the number and percentage of samples having
pathogenetic or unknown variants in the genes that were found to be
mutated in one or more TCGA data sets were calculated using custom R
scripts.

Mutational signature analysis
Mutational signatures were extracted from the filtered somatic variants of
the breast NET cohort using two separate tools: the R packages Maftools
[30], v. 2.4.12, and SigProfiler [31], v. 3.1. Maftools only extracts single-base-
substitution (SBS) signatures and estimates the similarity of each signature
to known COSMIC signatures separately. SigProfiler allows the extraction of
SBS and indel (ID) signatures, decomposing the de novo extracted
signatures as a weighted sum of COSMIC signatures, and further fitting
those COSMIC signatures back to individual patients’ mutational spectra.
SigProfiler was thus used to extract, decompose and refit mutational
signatures in the breast NET cohort and, additionally, the PNET and IDC
cohorts. Further details on the methods of mutational signature analyses
are given in the Supplementary data.
ADCK2 mRNA and immunostaining analyses have been reported in the

Supplementary data.

Ethical approval
This study was approved by the Local Ethics Committee of the
Ostrobothnian Hospital District (114/2011, amendment 23.2.2015) and
the National Supervisory Authority for Welfare and Health (1339/
05.01.00.06/2009).

RESULTS
Our final cohort included 53 patients fulfilling the most recent
WHO criteria for breast NETs [1]. At the time of diagnosis, four
patients had distant metastases, which were all bone metastases
(Tables 1 and 2). The mean follow-up time was 41.9 months (95%
CI 33.6–50.3 months). In 24 patients (45.3% of evaluable cases),
breast NETs were either suspected or diagnosed based on a
diagnostic needle biopsy.

Explorative analysis of variants
The filtered variant set consisting of 4330 variants in 3112 genes
was stored in the Mutation Annotation Format, and the properties
of the variants were summarised and visualised (Fig. 1A–C).
Variants were most commonly missense pathogenetic or
unknown variants and SNPs, with C > T pathogenetic or unknown
variants as the predominant single-nucleotide variant class. The
number of pathogenetic or unknown variants per patient ranged
from 30 to 513, with a median of 53 (Fig. 1D). Of the 30 most
mutated genes, TTN and PLEC were flagged by Maftools as genes

Table 1. Clinical and pathological baseline characteristics of the
breast neuroendocrine tumour (NET) cohort.

T class

T1 32 (60.4%)

T2 16 (30.2%)

T3 3 (5.7%)

T4 2 (3.8%)

Mean size of primary tumour, mm (95%
confidence interval)

26.8 (21.3–32.3)

N class

N0 30 (58.8%)

N1 11 (20.8%)

N2 8 (15.1%)

N3 2 (3.8%)

Missing 2 (3.8%)

Primary distant metastases

Yes 4 (7.5%)

No 49 (92.5%)

Multifocal cancer

Yes 13 (24.5%)

No 40 (75.5%)

HER2 amplification

Negative 51 (96.2%)

Positive 2 (3.8%)

Oestrogen receptor expression

Negative (0%) 2 (3.8%)

Low (1–9%) 0 (0%)

Moderate (10–59%) 0 (0%)

High (>60%) 51 (96.2%)

Progesterone receptor expression

Negative (0%) 2 (3.8%)

Low (1–9%) 5 (9.4%)

Moderate (10–59%) 8 (15.1%)

High (>60%) 34 (64.2%)

Ki-67 expression

Negative (<5%) 1 (1.9%)

Low (5–14%) 16 (30.2%)

Moderate (15–30%) 19 (35.8%)

High (>30%) 17 (32.1%)

In situ carcinoma present

Yes 36 (67.9%)

No 17 (32.1%)

Synaptophysin expression

Yes 53 (100%)

No 0 (0%)

Chromogranin expression

Yes 33 (62.3%)

No 14 (26.4%)

Not available 6 (11.3%)

Menopausal status

Postmenopausal 49 (92.5%)

Premenopausal 3 (5.7%)

Unknown 1 (1.9%)
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frequently found to be mutated in exome studies due to their
length, and they are thus likely to be passengers. They were not,
however, excluded from the call set at this point. In addition, the
most frequently mutated genes in this cohort were MYCBP2,
GATA3, SCN5A, DMD, EP400, TP53, JMJD1C and CREBBP, but the
pathogenetic or unknown variant compositions per gene varied
substantially. For example, 10 of the top 30 mutated genes had
only missense pathogenetic or unknown variants; while in the
nine patients with GATA pathogenetic or unknown variants, four
different variant types were observed. (Fig. 1E, F and Supplemen-
tary Fig. 1). Classification of the pathogenetic or unknown variants
is explained in Supplementary Table 4.
To investigate whether any of the most frequently mutated

genes were co-occurring or mutually exclusive in the breast NET
patients, somatic interaction analysis was conducted (Fig. 2). The
most significant co-occurring pairs of genes were MYCBP2/FRAS1
and NEB/MECOM with p values of 0.004. No significant mutually
exclusive pairs were detected.

Comparison between breast NET, IDC and PNET cohorts
From the most mutated genes, CREBBP and JMJD1C especially
were more commonly mutated in the breast NET cohort
compared with the IDC cohort (Fig. 3A). Likewise, MEN1 (6%)
and DAXX (2%) had rarely pathogenetic or unknown variants in
breast NETs, with pathogenetic or unknown variant rates of 37%
and 22% in PNETs (Fig. 3B). GATA3, CREBBP and JMJD1C
pathogenetic or unknown variants were not found in PNETs, but
they had an 11–17% frequency in breast NETs. TTN variants are
likely not associated with cancer [32]. The results indicated that
the MEN1 gene had the most significantly different pathogenetic
or unknown variant rates in the patients of the two cohorts, being
mutated in 36 out of 98 (36.7%) PNET samples in comparison to

only 3 out of 53 (5.7%) breast NET samples (adjusted p value
0.00050). Altogether, 30 genes had statistically significantly
different pathogenetic or unknown variant frequencies between
breast NETs and PNETs after p value adjustment (Supplementary
Fig. 2). Between breast NETs and IDCs, only pathogenetic or
unknown variant frequencies of TP53 (11.3% in breast NETs and
41% in IDCs, adjusted p value 0.027) and ADCK2 (9.4% in breast
NETs vs. 0.28% in IDCs, adjusted p value 0.045) were significantly
different (Supplementary Fig. 3). Four of the five ADCK2
pathogenetic or unknown variants observed in breast NETs were
located in the same codon (Phe385Leu) (Supplementary Fig. 4).
Variant allele frequency data from the most common genes
showing higher pathogenetic or unknown variant rates in breast
NET compared with IDC and PNET cohorts (ADCK2, TP53, GATA3,
CREBBP and JMJD1C) are reported in the Supplementary Table 5.
To summarise, there were substantial differences in the mutational
profile of breast NET, IDC and PNET. This was exemplified by a rare
occurrence of TP53, PIK3CA, MEN1 and DAXX in breast NETs and a
relatively high proportion of ADCK2 pathogenetic or unknown
variants.

Oncogenic signalling pathways
Enrichment of breast NET mutated genes in known oncogenic
signalling pathways (n= 31) were studied next. The most enriched
oncogenic pathway in breast NET was PI3K (51%) and then RTK-
RAS (45%) and this enrichment was found in 36% and 55% of
samples for PI3K and RTK-RAS, respectively (Fig. 4A). Also in IDCs,
RTK-RAS and PI3K pathways were commonly enriched (Fig. 4B).
However, while there was a very frequent TP53 pathway
enrichment in IDCs, this was only rarely observed in breast NETs.
In PNET cohort, none of the oncogenic pathways was prominently
affected by others (Fig. 4C).

Associations between clinical and pathological parameters
and pathogenetic or unknown variants in breast NETs
After multiple testing correction, higher age at diagnosis was
significantly associated with the presence of pathogenetic or
unknown variants in 19 genes, and pathogenetic or unknown
variants in 41 genes were significantly associated with lower age
(Supplementary data). Tumour size, nodal status, the presence of
distant metastases at diagnosis, tumour multifocality, ER or PR
expression, Ki-67 expression, HER2 amplification, immunohisto-
chemical synaptophysin or chromogranin expression, primary
tumour size (in mm), or parity were not associated with the
presence of any pathogenetic or unknown variants. The associa-
tion of the pathogenetic or unknown variant status with patient
survival of each of the 3112 mutated genes in the filtered variant
set was studied by grouping samples based on the pathogenetic
or unknown variant status of each gene and performing overall
and disease-specific survival analysis. None of the pathogenetic or
unknown variants was statistically significantly associated with
survival after multiple testing correction was applied.

Mutational signature analysis
The de novo signature extraction with SigProfiler resulted in two
SBS signatures and two ID signatures in the breast NET cohort
(Supplementary Figs. 5–8, respectively). The two SBS signatures
were decomposed into three COSMIC SBS signatures each,
comprising four unique signatures in total (Supplementary Figs.
5–7). Two de novo ID83 signatures were found in breast NET
samples. The other one of these was found to be composed of
three COSMIC ID83 signatures, but the other one did not show
high similarity to any of the COSMIC ID83 signatures (cosine
similarity = 0.559; Supplementary Figs. 8–11).
The signatures associated with deficient DNA repair mechan-

isms, such as SBS6, SBS30 and ID7, were frequently found among
breast NETs. Three novel signatures were found, and one of these,
ID83A, was detected in 68% of breast NET cases. The results of

Table 2. The primary treatment modalities of the breast
neuroendocrine tumour (NET) cohort.

Surgical management

Partial breast resection and axillary evacuation 4 (7.5%)

Mastectomy and axillary evacuation 21 (39.6%)

Partial breast resection and sentinel node biopsy 18 (34.0%)

Mastectomy and sentinel node biopsy 8 (15.1%)

Partial breast resection only 1 (1.9%)

Mastectomy only 1 (1.9%)

Adjuvant chemotherapy

FEC 4 (7.5%)

Docetaxel and FEC 10 (18.9%)

Other adjuvant chemotherapy 2 (3.8%)

Neoadjuvant chemotherapy 2 (3.8%)

No adjuvant chemotherapy 35 (66.0%)

Adjuvant trastuzumab

Yes 2 (3.8%)

No 51 (96.2%)

Adjuvant radiotherapy

Yes 37 (69.8%)

No 16 (30.2%)

Adjuvant endocrine therapy

Tamoxifen 7 (13.2%)

Aromatase inhibitor 36 (67.9%)

No adjuvant endocrine therapy 10 (18.9%)

FEC 5-fluorouracil, epirubicin and cyclophosphamide.
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mutational signatures are not, however, directly comparable
between the cohorts, since the probability of finding a specific
signature is related to the cohort size.
To summarise, the signatures SBS1 and SBS5 were the most

common mutational signatures in the breast NET cohort (Table 3
and Supplementary Fig. 7). While the SBS1 signature has been
linked to spontaneous deamination of 5-methylcytosine, the
aetiology of SBS5 is still unknown [33].

ADCK2 mRNA and protein levels
After observing that ADCK2 pathogenetic or unknown variant
rates were substantially different between breast NET and IDC, we
determined also the mRNA and protein levels of ADCK2 in the
breast NET samples (Supplementary Fig. 12). ADCK2 mRNA and
protein levels (with immunohistochemistry) were not different
between ADCK2-mutated and non-mutated cases (Supplementary
Figs. 13 and 14). We tested if ADCK2 pathogenetic or unknown
variants or ADCK2 mRNA or protein expression would have
associations with tumour size, nodal status, the presence of

distant metastases at diagnosis, tumour multifocality, ER or PR
expression, Ki-67 expression, HER2 amplification, immunohisto-
chemical synaptophysin or chromogranin expression, primary
tumour size (in mm), or parity. After these analyses, only an
inverse association of tumour size (T1 vs. T2–4) and ADCK2 mRNA
expression (p= 0.040) remained statistically significant. The
characteristics of the patients with ADCK2 pathogenetic or
unknown variants are shown in Supplementary Table 6.

DISCUSSION
We studied the expression of 1099 genes from 53 breast NET
samples and compared the results with pathogenetic or
unknown variants from IDC and PNET. The results presented
here suggest that the breast NET mutational profile is different
from that of IDC, but still shares more similarities with the profile
of IDCs than that of PNETs. These results also revealed several
novel potentially druggable targets in breast NETs, such as
CREBBP and MMRd.

Fig. 1 Summary of the filtered breast NET cohort variants. Panels A–C show the distribution of variants. Panel D shows the number of
variants in each sample. In panel E, variants per sample are demonstrated and panel F shows the six most common pathogenetic or unknown
variants in the breast NET cohort. TTN variants are likely not associated with cancer. SNP single-nucleotide variant, ONP oligo-nucleotide
polymorphism, INS insertion, DEL deletion.
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Our study is by far the most comprehensive sequencing study
performed on breast NET of 53 patients. In the pioneering study of
Ang et al., the authors searched for point pathogenetic or
unknown variants in 90 genes from 18 neuroendocrine breast
cancers as per WHO 2003 criteria [34]. Later, Lavigne et al. checked
the hotspots of 22 genes in a series of 42 neuroendocrine breast
cancers [9]. More recently, two separate studies from the same
group have reported breast NET mutational profiles in
10–18 samples, describing 254 of the most frequently mutated
genes related to breast cancer or DNA repair [8, 10].
The main differences detected here were the low frequency of

TP53 pathogenetic or unknown variants and the high frequency of
ADCK2 pathogenetic or unknown variants in breast NETs. To the
best of our knowledge, ADCK2 pathogenetic or unknown variants
have not been previously assessed in the cancer literature.
Furthermore, typical pathogenetic or unknown variants of PNETs
and other NENs, such as ATRX, DAXX and MEN1, were very rarely
detected in breast NETs. TP53 was the most commonly mutated
oncogene in IDCs, being mutated in 41% of cases in the TCGA
data [11]. In our PNET comparison cohort, TP53 was mutated in
only 3.1% of cases [12]. In our breast NET samples, TP53 gene
pathogenetic or unknown variants were detected in 11.3% of
samples, while previous breast NET studies reported the TP53
pathogenetic or unknown variants frequency to be between 0 and
7% [9, 10]. The mutational spectrum of TP53 in our material was
otherwise in line with the TCGA IDC data, but no nonsense TP53
pathogenetic or unknown variants were observed in our patients.
PIK3CA is another of the most commonly mutated genes in IDCs,
especially in the luminal A subtype, where most breast NETs also
fit [11]. In our breast NET cohort, only 9% of tumours harboured

PIK3CA pathogenetic or unknown variants, while the rate was 31%
in the TCGA IDC material. Previously, PIK3CA pathogenetic or
unknown variants have been reported in breast NETs in 7–20% of
cases, in studies with smaller sample sizes and more limited
sequencing [8, 9]. Nevertheless, according to our analysis, the
PI3K/Akt/mTOR pathway, NOTCH pathway and RTK-RAS pathway
were the most commonly affected oncogenic pathways in breast
NETs. From the therapeutic point of view, all three of these
pathways are well druggable with US Food and Drug Administra-
tion (FDA)-approved compounds [35–37]. Thus, also in terms of
affected pathways, breast NETs are more comparable to IDCs than
PNETs, with the transforming growth factor beta pathway
demonstrating the most pathogenetic or unknown variants
[11, 12]. The transcription factor GATA binding protein 3 (GATA3),
responsible for mammary gland development and for luminal
transcription programme, was the most frequently mutated gene
in breast NETs. The GATA3 pathogenetic or unknown variant rate
was comparable to that of the IDC cohort (17 and 14%,
respectively), whereas no GATA3 pathogenetic or unknown
variants were detected in our PNET cohort. In agreement with
this, the Reis-Filho group reported GATA3 pathogenetic or
unknown variants in one of their 10 breast NET samples [8].
GATA3 protein expression and GATA3 pathogenetic or unknown
variants may predict better prognosis, at least in ER-positive breast
cancers [38, 39]. Nevertheless, the exact biological significance of
GATA3 pathogenetic or unknown variants remains unclear [40].
IDC-related GATA3 pathogenetic or unknown variants are mainly
concentrated in exons 5 and 6 encoding for the C-terminal region
of the protein, and are almost solely frame shift pathogenetic or
unknown variants, which is concordant with pathogenetic or

Fig. 2 Somatic interaction analysis of the 30 most mutated genes in the breast NET cohort. The most significant co-occurring pairs of
genes were MYCBP2/FRAS1 and NEB/MECOM (p value for both 0.004). Statistically significant pairs are indicated with darker colours and dots
or asterisks if the p value <0.05 or < 0.01, respectively.
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Fig. 3 Co-bar plots comparing the top 5 most mutated genes. Co-bar plots comparing the top 5 most mutated genes from breast NET and
IDC cohorts (A) and breast NET cohort and PNET cohorts (B). Especially CREBBP and JMJD1C especially were more commonly mutated in the
breast NET cohort compared with the IDC cohort. Likewise, MEN1 and DAXX had rarely pathogenetic or unknown variants in breast NETs, with
pathogenetic or unknown variant rates of 37% and 22% in PNETs. GATA3, CREBBP and JMJD1C pathogenetic or unknown variants were not
found in PNETs, but they had an 11–17% frequency in breast NETs. TTN variants are likely not associated with cancer.
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unknown variants observed in our breast NET patients [41]. ADCK2
is a mitochondrial protein kinase whose function is still poorly
understood. However, other members of the ADCK family have
been implicated in ubiquinone biosynthesis [42]. According to the
publicly available data from TCGA, the prevalence of ADCK2
pathogenetic or unknown variants in most cancers is 0%, rarely
above 1%, with the maximum pathogenetic or unknown variant
frequencies observed in endometrial carcinomas and in rare
uterine carcinosarcomas, up to 3.5% of cases [43, 44]. ADCK2
pathogenetic or unknown variants were extremely rare in IDCs,
0.28%, and no ADCK2 pathogenetic or unknown variants were
found in the PNET cohort [11, 12]. In breast NETs, we found ADCK2
missense pathogenetic or unknown variants in 5/53 (9.4%) cases,
four of them being located in the same codon (Phe385Leu).
Interestingly, ADCK2 inhibition abrogates oestrogen-related sig-
nalling, including ESR1 in ER-positive breast cancers [45]. ADCK2
protein expression has been reported to be elevated in luminal A
compared to luminal B breast cancers [46]. Lately, high ADCK2
protein expression has been proposed to be a marker for an
improved therapeutic response during breast cancer neoadjuvant
treatment [47]. The observed ADCK2 pathogenetic or unknown
variants did not, however, associate with mRNA or protein
expression. The number of cases here was, however, too small

for any conclusions about this. Furthermore, possible changes
caused by the detected pathogenetic or unknown variants on
putative enzyme activity or substrate specificity cannot be ruled
out. Nevertheless, the suggested inverse association between
ADCK2 mRNA levels and tumour size encourages further
investigation into its role in tumour development. Pathogenetic
or unknown variants in some central epigenetic regulators were
overrepresented in breast NETs compared to IDCs. Lysine
acetyltransferase CREBBP was mutated in 11% of breast NETs,
which is of a similar magnitude to that reported previously in
neuroendocrine small-cell lung cancer [48]. TCGA material
reported a pathogenetic or unknown variant rate of only 2% for
IDCs, but in rare adenoid cystic carcinomas of the breast, 31% of
tumours have shown CREBBP pathogenetic or unknown variants
[12, 49]. Interestingly, there is recent evidence from multiple
tumour types that histone deacetylase inhibitors could offer
exceptionally high response rates in tumours harbouring CREBBP
pathogenetic or unknown variants [48, 50]. Likewise, JMJD1C, a
histone demethylase associated with epigenetic regulation,
harboured pathogenetic or unknown variants in 11% of our
breast NETs and only 2% in IDCs.
In contrast to the rather comparable mutational profile between

breast NETs and IDCs, breast NETs and PNETs demonstrated more

Fig. 4 Enriched oncogenic signalling pathways in breast NETs, invasive ductal carcinomas (IDCs) and pancreatic NETs (PNETs). The bar plots on
the left side in panels (A–C) show the number of mutated genes in the pathway in each of the cohorts, and the bar plots on the right side in
panels (A–C) show the fractions of samples having mutated genes in the pathway. Oncoplot panels (D–F) visualise the pathogenetic or
unknown variants of RTK-RAS, PI3K and NOTCH pathways in breast NETs. Tumour suppressor genes are in red font and oncogenes are in blue
font in panels D–F. As the main results, the most enriched oncogenic pathways in breast NET were PI3K and RTK-RAS. A very frequent TP53
pathway enrichment in IDCs was only rarely observed in breast NETs. In PNET cohort, none of the oncogenic pathway was prominently
affected over others.
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major differences. MEN1 is a tumour suppressor gene participating
in DNA stability and gene regulation. Germline MEN1 pathoge-
netic or unknown variants, with a prevalence of 3–4/100,000 in the
Caucasian population, predispose to duodenopancreatic NETs
[51]. In PNETs, pathogenetic or unknown variants in the MEN1
gene have been reported in 37–44% of cases [12, 52]; whereas in
TCGA IDC material, only 0.9% of cases harboured MEN1
pathogenetic or unknown variants [11]. Thus, our breast NET
material, with 6% of patients carrying MEN1 pathogenetic or
unknown variants in their tumours, seems to be an intermediate
form between IDCs and PNETs. Interestingly, in our recent study,
low MEN1 protein expression was associated with poor local
relapse-free survival in breast NETs [4]. Whether the low MEN1
expression was actually due to the pathogenetic or unknown
variant was not, however, addressed [53]. Pathogenetic or
unknown variants in chromatin remodelling genes DAXX and
ATRX are also characteristic of PNETs, and they are also frequent in
other NENs [13, 54]. Similarly with MEN1, these pathogenetic or
unknown variants were still very rare in breast NETs: none of the
samples harboured ATRX pathogenetic or unknown variants, and
only one patient had a DAXX pathogenetic or unknown variants.
Previously ATRX pathogenetic or unknown variants have been
reported in 0–0.9% of breast cancers, depending on the biological
subtype [55, 56]. There are no previous reports on DAXX
pathogenetic or unknown variants in breast cancer.

Breast cancer mutational signatures have been recently
described [57]. They provide insight into carcinogenetic processes
and also have the potential to influence cancer diagnostics and
treatment [58]. In breast NETs, the most common mutational
signatures were related to aging (SBS1 and SBS5), a finding which
is in line with the generally older age of the population with this
disease. Interestingly, the SBS6 and ID7 signatures associated with
defective mismatch repair (MMRd) were recorded in 28% and 23%
of cases, while they were quite rare in IDCs and absent in PNETs.
MMRd tumours are sensitive to PD-1 inhibitors, and the FDA has
recently approved pembrolizumab for tumour-agnostic treatment
of MMRd solid tumours. Thus, a subset of breast NET patients
might benefit from MMRd testing. Finally, our analysis and
previous data suggest the presence of APOBEC-related mutational
signatures SBS2 and SBS13 in one-third of the IDC patients. In
breast NET cases, these signatures were not found [57].
We acknowledge several pitfalls in our study design. First, non-

cancerous tissue was not available from the same patients. We
were thus unable to make definite divisions between somatic and
germline pathogenetic or unknown variants and e.g. copy number
alteration analyses were not possible. We took, however, various
approaches to enrich somatic pathogenetic or unknown variants,
such as the exclusion of any pathogenetic or unknown variant rate
higher than 1% in public databases as well as any pathogenetic or
unknown variants with non-high degree of pathogeny. We are

Table 3. Summary table of the mutational signature analysis.

Signature Breast NET

IDC PNET Proposed aetiology

n % n % n

%

SBS1 49 92 683 94 73 75 Spontaneous deamination of 5-methylcytosine (clock-like signature)

SBS2 0 0 241 33 0 0 Activity of APOBEC family of cytidine deaminases

SBS3 0 0 217 30 0 0 Defective homologous recombination DNA damage repair

SBS5 53 100 580 80 89 92 Unknown (clock-like signature)

SBS6 15 28 156 22 0 0 Defective DNA mismatch repair

SBS10a 0 0 39 5 0 0 Polymerase epsilon exonuclease domain mutations

SBS10b 0 0 133 18 0 0 Polymerase epsilon exonuclease domain mutations

SBS13 0 0 226 31 0 0 Activity of APOBEC family of cytidine deaminases

SBS29 0 0 41 6 0 0 Tobacco chewing

SBS30 8 15 0 0 18 19 Defective DNA base excision repair due to NTHL1 mutations

SBS36 0 0 0 0 6 6 Defective DNA base excision repair due to MUTYH mutations

ID1 4 8 72 10 0 0 Slippage during DNA replication of the replicated DNA strand (enriched in
cancers with DNA mismatch repair deficiency)

ID2 4 8 22 3 0 0 Slippage during DNA replication of the replicated DNA strand (enriched in
cancers with DNA mismatch repair deficiency)

ID3 0 0 0 0 31 32 Tobacco smoking

ID7 12 23 34 5 0 0 Defective DNA mismatch repair

ID8 0 0 301 42 0 0 Repair of DNA double-strand breaks by non-homologous end-joining
mechanisms or mutations in topoisomerase TOP2A

ID11 0 0 0 0 19 20 Unknown

ID13 0 0 0 0 11 11 Ultraviolet light exposure

ID83A (breast
NET novel)

36 68 0 0 0 0 ?

ID83B (IDC novel) 0 0 142 20 0 0 ?

ID83C (IDC novel) 0 0 314 43 0 0 ?

For each COSMIC Single Base Substitution (SBS) and Insertion/Deletion (ID) signature detected, the number of samples with the signature, and the fraction of
those samples in the respective cohort, are indicated.
IDC invasive ductal carcinoma, PNET pancreatic neuroendocrine tumour.

P. Karihtala et al.

9

Oncogenesis           (2022) 11:53 



aware that this filtering may have resulted in the exclusion of
some somatic pathogenetic or unknown variants. Our study may
also be criticised for using TCGA data for all IDC cases and for not
selecting only ER-positive and HER2-negative tumours. Although
the majority of breast NETs showed a luminal A-like phenotype,
there were also ER-negative and HER2-positive breast NETs, as also
demonstrated by breast NET cases in this study. PNETs were
chosen as a NET comparator group as these tumours are among
the most deeply characterised malignant NETs. On the other hand,
e.g., neuroendocrine lung cancers have a much more aggressive
clinical course compared to breast NETs.
We conclude that the breast NET mutational profile, including

oncogenic pathway analysis, more closely resembles that of IDCs
than PNETs. There are, however, certain differences between
breast NET and IDC mutational profiles, as exemplified by those in
the MEN1 and ADCK2 genes. Taken together, these findings
suggest that breast NETs are indeed a separate breast cancer
entity. Whether it should be treated differently, e.g. according to
their mutational signature profiles, remains to be elucidated. This
study may lay the foundation for future studies evaluating
potential therapeutic breast NET targets, such as CREBBP.

DATA AVAILABILITY
Data are available upon reasonable request.
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