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Diltiazem inhibits breast cancer metastasis via mediating
growth differentiation factor 15 and epithelial-mesenchymal
transition
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Migration and metastasis commonly happen to triple-negative breast cancer (TNBC) patients with advanced diseases. In many
studies, it has been suggested that epithelial-mesenchymal transition (EMT) is one of the key mechanisms triggering cancer
metastasis. Accumulating evidence has proven that calcium channel blockers mediate cell motility. Therefore, we attempt to
investigate the effects of diltiazem, which has been selected from several FDA-approved clinical calcium channel blockers, on EMT
in TNBC. By using both mouse and human TNBC cell lines, we found that diltiazem decreases colony formation and cell migration in
breast cancer cells. The expression of epithelial markers such as E-cadherin and ZO-1 were increased dose-dependently by
diltiazem, while mesenchymal markers such as Snail and Twist were decreased. In addition, we found that the expression of growth
differentiation factor-15 (GDF-15) was also increased by diltiazem. Administering recombinant GDF-15 also reverses EMT, inhibits
colony formation and migration in breast cancer cells. Moreover, treatment with diltiazem in tumor-bearing mice also decreases
cancer metastasis and nodule formation, with more GDF-15 expression in diltiazem-treated mice than saline-treated mice,
respectively. These findings suggest that diltiazem regulates EMT and cell motility through elevating GDF-15 expression in breast
cancers in vitro and in vivo.
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INTRODUCTION
Metastasis is a common and complex process in advanced cancer
stages and it causes fatal risk in most cancer patients [1, 2]. In late-
stage breast cancer patients, approximately 60% of the primary
tumors recur as well as transfer to lung or bone [3, 4]. This makes
both intractable treatment and high rate of mortality. Previous
studies have implicated that triple-negative or basal-like breast
cancer patients experience reduced overall and disease-free
survival compared with patients with other breast cancer subtypes
[5, 6], partially because of the higher local recurrence and distant
metastasis rates [7].
Epithelial-mesenchymal transition (EMT) is a crucial process

involved in cancer metastasis [8]. Through upregulating the
expression of mesenchymal-related genes, epithelial cells disas-
semble the polarity and cell-cell junctions in order to migrate and
invade [9]. In addition, zinc-finger-family of transcription factors
such as Twist, Snail, and matrix metalloproteinases (MMPs) are
upregulated during EMT, leading to aggressive cancer migration,
invasion and cell growth [10–12].
Growth differentiation factor-15 (GDF-15), also known as macro-

phage inhibitory cytokine (MIC)-1 or nonsteroidal anti-inflammatory

drug-activated gene (NAG)-1, is a member of TGF-β superfamily [13].
It has been reported to involve in cardio and renal protection, cellular
stress responses and metabolic related diseases [13–15]. However,
the role of GDF-15 is disputed among cancers since it involves in
tumor behaviors both positively and negatively depending on the
cellular state and environment [16]. The altered expression of GDF-15
influence proliferation, metastasis, immune escape, and drug
resistance [17, 18]. The functions and regulatory mechanisms of
GDF-15 are controversial and worth further investigation.
Diltiazem, an FDA-approved antihypertensive drug, is an

L-type voltage-gated calcium channel blocker (CCB) [19].
Previous studies revealed the anti-tumor effects of some CCBs
among different cancer types, including induction of autophagy
and apoptosis [20], inhibition of cancer growth [21], or reverses
chemotherapeutic-resistance through inhibiting multidrug
resistance protein 1 [22, 23]. Evidence that suggests the anti-
tumor effect of CCBs is accumulating, however, the influences
of diltiazem are still vague. In this presented study, we
addresses the anti-tumor effects of diltiazem which inhibits
cell motility and EMT through elevating GDF-15 expression in
triple-negative breast cancer in vitro and in vivo.
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RESULTS
Diltiazem decreases cell motility and epithelial-mesenchymal
transition in breast cancer cells
Appropriate diltiazem concentration was chosen according to MTT
assay and proliferation examination which did not cause marked
cell death under indicated treatment (Supplementary Fig. 1). After
treating diltiazem for 10 days, colonies formed of JC (Fig. 1A, D),
4T1 (Fig. 1B, E) and MDA-MB-231 cells (Fig. 1C, F) were significantly
diminished in a dose-dependent manner. Colony formation was
reduced to 0.23 ± 0.05-fold, 0.33 ± 0.08-fold, and 0.22 ± 0.05-fold of
control under 100 μM diltiazem treatment on JC, 4T1, and MDA-
MB-231 cells, respectively. In cell culture insert system, treatment
of diltiazem for 24 h markedly decreased cell migration through
transwell membrane compared with vehicle-treated control group
in JC (Fig. 1G, J), 4T1 (Fig. 1H, K) and MDA-MB-231 cells (Fig. 1I, L).
Cell migration was reduced to 0.66 ± 0.11-fold, 0.59 ± 0.12-fold,
and 0.63 ± 0.02-fold of control under 100 μM diltiazem treatment
on JC, 4T1, and MDA-MB-231 cells, respectively. These findings
suggest that colony formation and cell migration ability were
inhibited by diltiazem in triple-negative breast cancer cells.
Moreover, the invasive motility of breast cancer cells was also
elucidated. In Supplementary Fig. 2, the invasive ability and would
healing ability were both significantly decreased by diltiazem in
4T1 and MDA-MB-231 cells in dose-dependent manners.
Next, we evaluated the effects of diltiazem on epithelial-

mesenchymal transition, since EMT mediates one of the major
migration mechanism of cancer cells. After treating by diltiazem for
24 h, protein expression of mesenchymal markers including Snail,
Twist, and vimentin were decreased in both 4T1 (Fig. 2A–C) and
MDA-MB-231 cells (Fig. 2F to H). On the other hand, protein
expressions of zonula occludens-1 (ZO-1) and E-cadherin represent-
ing as epithelial markers were significantly elevated by diltiazem in
both 4T1 (Fig. 2A, D, E) and MDA-MB-231 cells (Fig. 2F, I, J).
In addition, actin dynamics commonly occurs during epithelial-

mesenchymal transition [24]. F-actin or stress fiber disassembles and
rearranges to promote migration [25]. As demonstrated in Fig. 3,
diltiazem remarkably antagonized F-actin disassembly shown by

FITC-phalloidin staining in both 4T1 and MDA-MB-231 breast cancer
cells. Taken together, these findings suggest that diltiazem reverses
expression of EMT markers and may inhibit breast cancer motility.

Diltiazem mediates GDF-15 expression in breast cancer cells
GDF-15 is a critical regulator involved in cancer progression and
migration. In addition to the regulation of EMT and cell motility by
diltiazem, the expression of GDF-15 was significantly enhanced by
diltiazem dose-dependently measured by ELISA (Fig. 4). However,
as shown in Fig. 5A, B, the mRNA expression of GDF-15 was not
significantly elevated in accordance with protein expression. This
phenomenon led us to the investigation of the regulation of GDF-
15 degradation. After treating cells with MG132, the proteasome
inhibitor, the protein expression of GDF-15 analyzed by ELISA was
elevated in a dose-dependent manner (Fig. 5C, D). Furthermore,
proteins were immunoprecipitated with antibody against GDF-15,
and the precipitated proteins were immunoblotted with antibody
against ubiquitin. As shown in Fig. 5E, F, treatment of MG132 or
diltiazem reduced ubiquitinated GDF-15 levels. These findings
suggest that diltiazem upregulates GDF-15 expression at least in
part by inhibiting its proteasomal degradation.

GDF-15 decreases cell motility and epithelial-mesenchymal
transition in breast cancer cells
In order to elucidate whether diltiazem-inhibited cell motility and
EMT were regulated via GDF-15, recombinant GDF-15 was
administered to manifest the regulatory mechanism of diltiazem.
As shown in Fig. 6, colonies formed of JC (Fig. 6A, D), 4T1 (Fig. 6B,
E) and MDA-MB-231 cells (Fig. 6C, F) were significantly diminished
in a dose-dependent manner by GDF-15 administration. Colony
formation was reduced to 0.65 ± 0.07-fold, 0.44 ± 0.07-fold, and
0.56 ± 0.05-fold of control under 20 ng/ml GDF-15 treatment on
JC, 4T1, and MDA-MB-231 cells, respectively. In cell culture insert
system, treatment of recombinant GDF-15 for 24 h markedly
decreased cell migration through transwell membrane compared
with vehicle-treated control group in JC (Fig. 6G, J), 4T1 (Fig. 6H, K)
and MDA-MB-231 cells (Fig. 6I, L). Cell migration was reduced to

Fig. 1 Colony formation and cell migration are inhibited by diltiazem in breast cancer cell lines. After diltiazem treatment (1–100 μM) for
10 days, the number of colonies formed (bigger than 1mm in diameter) were counted. Note that colony formation of JC (A, D), 4T1 (B, E), and
MDA-MB-231 cells (C, F) were all inhibited by diltiazem. Scale bar, 1 cm. In cell culture insert system, diltiazem (50 or 100 μM) treatment for 24 h
also reduced cell migration in JC (G, J), 4T1 (H, K), and MDA-MB-231 cells (I, L). Scale bar, 400 μm. Graphs showed mean ± S.D. of three
independent experiments. p value was calculated using Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001 compared to control group.
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0.57 ± 0.09-fold, 0.68 ± 0.15-fold, and 0.57 ± 0.12-fold of control
under 20 ng/ml GDF-15 treatment on JC, 4T1, and MDA-MB-231
cells, respectively. These findings suggest that colony formation
and cell migration ability were inhibited by GDF-15 in triple-
negative breast cancer cells.
Moreover, after treating by GDF-15 for 24 h, protein expressions of

Snail, Twist, and vimentin representing as mesenchymal markers
were decreased in both 4T1 (Fig. 7A–C) and MDA-MB-231 cells (Fig.
7F–H). On the other hand, protein expressions of epithelial markers
including zonula occludens-1 (ZO-1) and E-cadherin were signifi-
cantly elevated by GDF-15 in both 4T1 (Fig. 7A, D, E) and MDA-MB-
231 cells (Fig. 7F, I, J). Taken together, these findings indicate that
GDF-15 reverses EMT and inhibit breast cancer motility.

Diltiazem attenuates pulmonary metastasis in vivo
4T1-luc breast cancer cells were intravenously injected into female
BALB/c mice through tail vein. As shown in Fig. 8A, B, luminescence
intensity of 4T1 cells obtained from IVIS system on the 18th, 21st and
25th days demonstrated that diltiazem-treated mice had minor lung
metastasis compared with control group. The presence of multiple
nodules indicates pulmonary metastasis of 4T1 breast cancers cells,
and the treatment of diltiazem significantly reduced the number of
pulmonary nodules compared with control group (Fig. 8C, D).
Representative images of H&E staining of lung sections showed the
density and the size of nodules in Fig. 8E. In addition, Fig. 8F also
demonstrated that diltiazem enhanced GDF-15 expression or
secretion exhibited by immunohistochemical images.

Fig. 3 Diltiazem attenuates F-actin disassembly and reorganization in breast cancer cell lines. After treating with 50 μM diltiazem for 24 h,
F-actin dynamics was revealed by FITC-phalloidin staining. Note that F-actin disassembling was attenuated by diltiazem on both 4T1 (A) and
MDA-MB-231 cells (B) in representative images. Scale bar, 100 μm.

Fig. 2 Diltiazem abrogates epithelial-mesenchymal transition by increasing epithelial markers expression and decreasing mesenchymal
markers expression in breast cancer cell lines. Cells were treated with diltiazem (10–100 μM) for 24 h, and protein expressions were detected
by Western blot. It is shown that diltiazem decreased the expression of mesenchymal markers (Snail, Twist and vimentin) but increased the
expression of epithelial markers (E-cadherin and ZO-1) on 4T1 (A–E) and MDA-MB-231 (F–J) breast cancer cells. Graphs showed mean ± S.D. of
three independent experiments. p value was calculated using Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001 compared to control group.

Fig. 4 Diltiazem dose-dependently increases GDF-15 protein secretion in breast cancer cell lines. After diltiazem treatment for 24 h, culture
media were collected and GDF-15 expression was examined by ELISA. Note that Diltiazem elevated GDF-15 secretion on JC (A), 4T1 (B) and
MDA-MB-231 (C) cells. Graphs showed mean ± S.D. of three independent experiments. p value was calculated using Student’s t test. **p < 0.01;
***p < 0.001 compared to control group.
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Furthermore, by homogenized lung tissues, we found that
epithelial markers E-cadherin was increased in diltiazem-treated
group, and mesenchymal markers Snail was decreased by
diltiazem compared with control group (Fig. 9A–C). The mRNA

expression of GDF-15 was not significantly altered, however,
serum concentration of GDF-15 was markedly enhanced in
diltiazem-treated group compared with control (Fig. 9D, E). In
addition, serum concentration of metalloproteinase (MMP)-9 and

Fig. 5 Diltiazem decreases GDF-15 proteasomal degradation in breast cancer cell lines. After treating diltiazem for 2 to 6 h, the mRNA
expression of GDF-15 had no significant changes on 4T1 cells (A) and MDA-MB-231 cells (B) analyzed by real-time PCR. In addition, treating
cells with proteasome inhibitor MG132 (0.25–1 μM) for 6 h markedly enhanced GDF-15 secretion in culture media on both 4T1 (C) and MDA-
MB-231 cells (D) examined by ELISA. (E, F) The cell lysates were immunoprecipitated with normal IgG or anti-GDF-15 antibody. The
immunoprecipitated proteins were subjected to SDS-PAGE and immunoblotted against ubiquitin (Ub) and GDF-15. Diltiazem dose-
dependently decreased the level of ubiquitinated GDF-15, as well as MG132 did. Graphs showed mean ± S.D. of three independent
experiments. p value was calculated using Student’s t test. **p < 0.01; ***p < 0.001 compared to control group.

Fig. 6 Colony formation and cell migration are inhibited by recombinant GDF-15 in breast cancer cell lines. Both JC and 4T1 cells were
treated with murine recombinant GDF-15 protein (5–20 ng/ml), and MDA-MB-231 cells were treated with human recombinant GDF-15 protein
(5–20 ng/ml). After GDF-15 treatment for 10 days, the number of colonies formed (bigger than 1mm in diameter) were counted. Note that
colony formation of JC (A, D), 4T1 (B, E), and MDA-MB-231 cells (C, F) were all inhibited by GDF-15. Scale bar, 1 cm. In cell culture insert system,
GDF-15 treatment for 24 h also reduced cell migration in JC (G, J), 4T1 (H, K), and MDA-MB-231 cells (I, L). Scale bar, 400 μm. Graphs showed
mean ± S.D. of three independent experiments. p value was calculated using Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001 compared to
control group.
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MMP-2 were both declined by diltiazem, however, no significant
difference was observed in MMP-12 expression (Fig. 9F–H). These
findings indicate that diltiazem enhances GDF-15 expression,
reverses EMT, and reduces MMP-9 and MMP-2 expressions,
leading to attenuation of breast cancer lung metastasis.

DISCUSSION
Calcium as a second messenger regulates cardiac system, metabo-
lism, and various cellular processes. In oncology researches, Ca2+

signaling is involved in apoptosis, autophagy and cell cycle [26].
Nevertheless, the relationship between the use of calcium channel
blockers (CCBs) and the risk of cancers is a controversial issue for
years. In 1990s, it was hypothesized that regular use of CCBs
increases the risk of various cancers [27–30]. It was proposed that
calcium antagonism leads to apoptosis inhibition resulting in tumor-
promoting effect [31, 32]. Several studies tracked and investigated

the risk of cancers on patients who were on long-term medication of
CCBs. They found some CCBs such as verapamil and nifedipine
increased the risks in lung, colorectal, kidney and breast cancers
[29, 33]. However, from recent large population-based cohort study,
strong evidence has provided that CCBs use is not associated with an
increased risk of cancer [34, 35]. Several studies reported that voltage
gated Ca2+ channels (VGCC) are highly expressed in cancer cells to
increase cell survival, thus, inhibition of VGCCs induces autophagy, as
well as reduces the Ca2+ influx and dynamics to promote apoptosis
[26, 36]. Moreover, accumulating studies proved the anti-cancer
effects, including inhibition of cell proliferation as well as solving the
drug resistance in chemotherapy [21–23, 37]. In this present study,
we also confirmed the anti-tumor effects of VGCC diltiazem on triple-
negative breast cancers, including inhibition of EMT and cell motility
in vitro and in vivo.
Diltiazem, an FDA-approved calcium channel blocker, is

indicated for angina, hypertension and congestive heart failure

Fig. 7 GDF-15 reverses epithelial-mesenchymal transition by increasing epithelial markers expression and decreasing mesenchymal
markers expression in breast cancer cell lines. 4T1 cells were treated with murine recombinant GDF-15 protein (5 to 20 ng/ml), and MDA-MB-
231 cells were treated with human recombinant GDF-15 protein (5 to 20 ng/ml). After treating with GDF-15 recombinant protein for 24 h,
protein expression of epithelial/mesenchymal markers were detected by Western blot. It is shown that recombinant GDF-15 decreased the
expression of mesenchymal markers (Snail, Twist and vimentin) but increased the expression of epithelial markers (E-cadherin and ZO-1) on
4T1 (A–E) and MDA-MB-231 (F–J) breast cancer cells. Graphs showed mean ± S.D. of three independent experiments. p value was calculated
using Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001 compared to control group.

Fig. 8 Diltiazem attenuates 4T1 cells colonization to lung in vivo. A Representative IVIS images of BALB/c mice 21 days after 4T1-luc cells
injection. Diltiazem (1, 3 mg/kg) was given by oral gavage, and ddH2O was served as vehicle control. B Quantification of luciferase intensity of
mice on days 18, 21, and 25. Representative images of dissected lungs and the number of nodules was counted (C, D). Scale bar, 1 cm.
Representative images of H&E staining (E) and GDF-15 expression (F) of pulmonary slices. Scale bar, 500 μm. Graphs showed mean ± S.D. of at
least four independent experiments. p value was calculated using Student’s t test. ***p < 0.001 compared to sham group. ###p < 0.001
compared to control group.
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in clinical application. The usual doses for hypertension and
angina in adults are among 120 and 180mg daily, and the
maximum dose is 540mg per day. The general oral dosage for
cardiovascular and retinal studies are between 25 and 50mg/kg
per day in experimental mouse model [38–40]. In our studies,
dosages ranged from 1 to 3mg/kg minimize the impact to blood
pressure and cardio functions.
Intracellular calcium levels and/or calcium-dependent pathways

are factors influencing ubiquitin-proteasome system. It has been
reported that calcium activates Nedd4 E3 ligase activity resulting
in increased poly-ubiquitin products [41]. Calcium binding
domains are presence on several members of the Nedd4 family
and CBL family of E3 ligases and exhibit putative calcium binding
property [42]. It has been demonstrated that ubiquitination of
proteins is observed when intracellular calcium level elevated, and
ubiquitination of proteins is suppressed when the entry of calcium
ion into the cells is inhibited, suggesting the ubiquitin-proteasome
system is activated in response to the elevation of intracellular
calcium level [43]. In accordance with our finding, we found that
ubiquitination of GDF-15 was suppressed under the treatment of
calcium channel blocker diltiazem (Fig. 5), which in part leading to
increased GDF-15 secretion.
GDF-15 regulates and involves in a variety of cellular functions,

including cardiovascular, metabolism, and kidney diseases [44].
Although being a member of TGF-β superfamily, more and more
evidence showed that GDF-15 has high affinity with GDNF family
receptor α-like (GFRAL) [45, 46], which is correlated to anti-obesity
effects and energy balance [45, 47]. However, the role of GDF-15 in
cancers is ambiguous by exerting pro-tumorigenic and anti-
tumorigenic functions [48]. Several studies referred that GDF-15
promotes cancer proliferation and metastasis in colorectal [49],
cervical [50], pancreatic [51] and lung cancers [52]. Other reports
indicates that GDF-15 promotes migration, invasion and cell growth
through TGF-β/Smad signaling [49, 50]. On the contrary, evidence
indicates that GDF-15 acts as a tumor suppressor by inducing p53-
mediated apoptosis in colorectal [53], prostate [54] and breast
cancers [55]. It has also been reported that GDF-15 may be decreased
under pro-metastatic condition [55]. This is similar with our finding in
Fig. 9E showing the serum concentration of GDF-15 was significantly
repressed in control tumor-bearing mice compared with sham mice.
Wang et al. has revealed that decreased GDF-15 expression enhances
EMT, cell migration ability in breast cancer cell line, and metastatic
nodules in breast cancer-bearing mice [55]. Furthermore, over-
expression of GDF-15 diminishes migration ability on both normal

mammary gland epithelial cells and breast cancer cells [55].
Enhanced GDF-15 expression also reduces the number and sites of
local and distal metastases in vivo compared to control group in lung
adenocarcinoma [56]. It has also been reported that anti-cancer
drugs, such as Phortress, enhances GDF-15 expression and tumor
recession in breast cancers [57]. Consistent with previous studies, we
found that serum GDF-15 expression is decreased in breast cancer-
bearing mice, and diltiazem-induced GDF-15 exhibits anti-tumor
effects by decreasing EMT and metastatic nodules of breast cancer.
In our study, cellular response to diltiazem-induced GDF-15 secre-

tion and the anti-tumor effects of GDF-15 were different in strength
in different cell lines. Some possible explanations for the phenomena
include: (1) the expression of GDF-15 in different cells lines or species,
and (2) the contribution of GDF-15 receptors in different cells. In fact,
among TGF-β superfamily members, GDF-15 shows the lowest
sequence conservation across species [58]. While sequence of TGF-β1
are 99–100% identical between rat, mouse and human, GDF-15 is
below 70%. In addition, the promotor regions are entirely different
between humans and mice [59]. Other than that, the receptor for
GDF-15 was unknown until recent years. Glial cell-derived neuro-
trophic factor family receptor α-like (GFRAL) was describes as the sole
receptor for GDF-15 [45, 60], which is distantly related to TGF-β
receptor family and was originally considered expressed in human
brain stem exclusively [61, 62]. With increasing evidence verifying the
expression of GFRAL is also in cancer tissues, clues of GFRAL-
independent effects of GDF-15 are also accumulating [63–65].
Nevertheless, further investigations are needed to elucidate these
points.

CONCLUSIONS
In conclusion, diltiazem attenuates colony formation, cell migra-
tion, and EMT by increasing GDF-15 expression level through
inhibiting its proteolytic degradation in different breast cancer cell
lines in vitro. Diltiazem administration in vivo also upregulates
serum level of GDF-15, diminishes EMT and MMP-9/MMP-2
expression, leading to the decrease of lung metastasis of breast
cancer.

METHODS & MATERIALS
Materials
Materials used were listed in supplementary file (Supplementary
Table 1).

Fig. 9 Diltiazem influences EMT markers, GDF-15 and MMPs expressions in vivo. A–D The protein expression of epithelial marker E-
cadherin, mesenchymal marker Snail, and the mRNA expression of GDF-15 were examined by using homogenized lung tissues. Graphs
showed mean ± S.D. of at least three independent experiments. E–H The expression of serum GDF-15, MMP-9, MMP-2, and MMP-12 were
measured by ELISA. Graphs showed mean ± S.E.M. of at least four independent experiments. p value was calculated using Student’s t test.
*p < 0.05; **p < 0.01; ***p < 0.001 compared to sham group. #p < 0.05; ##p < 0.01 compared to control group.

Y.-C. Chen et al.

6

Oncogenesis           (2022) 11:48 



Cell culture
JC cells, a murine primary breast cancer cell line characterized as
basal-like or luminal B type [66], was purchased from Bioresource
Collection and Research Center (Hsinchu, Taiwan) and cultured in
the RPMI-1640 Medium (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 1 mM sodium pyruvate and 4.5 g/L
glucose. 4T1 cells, a murine triple-negative breast cancer cell line,
was provided from American-Type Culture Collection (Manassas,
VA) and maintained in RPMI-1640 Medium. MDA-MB-231 cells,
human triple-negative breast cancer cell line, was obtained from
Bioresource Collection and Research Center (Hsinchu, Taiwan) and
have been authenticated by STR profiling. MDA-MB-231 cells were
maintained in RPMI-1640 Medium. 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin were added. Cells were cultured in
37 °C incubator with 95% air and 5% CO2. All cells used in this
study were tested for mycoplasma. Cells that subjected to
following assays were seeded in 6-well, 24-well, or 96-well plates,
and experimental processes were conducted sequentially as
designs shown in figures. No blinding was done.

Cell viability
To investigate the cytotoxic effects on diltiazem, JC, 4T1 and MDA-
MB-231 cells were seeded in 96-well plates with the density of
1 × 104 cells/well and exposed to 0 to 100 µM diltiazem for 24 and
48 h with or without serum. In MTT assay, the cells were incubated
with 0.5 mg/ml MTT solution dissolved in cultured medium in
37 °C incubator for an hour. After washing, cells were lysed with
DMSO, and measured by SpectraMax M5 plate reader (Molecular
Devices, Sunnyvale, CA, United States) with O.D. 550 nm. In
proliferation assay, cells were photographed after indicated
treatment and the numbers of cells were counted.

Colony formation
1 × 103 cells/well were seeded into 6-well plates and maintained in
culture medium with 10% serum. Indicated treatment was given in
the following day. Medium mixed with diltiazem (0~100 μM) or
recombinant GDF-15 protein (0~20 ng/ml) were refreshed every
3 days. At the end of the treatment (the 10th day), cells were stained
with 1% crystal violet solution for 5min, and the number of colonies
was counted by ImageJ, with diameter larger than 1mm [67].

Cell migration and invasion
We investigated cell migration ability by cell culture insert system. By
using transwell, cells were resuspended in medium containing 10%
FBS, and 2 × 104 cells were seeded in the upper chamber of cell
culture inserts. 600 μL medium containing 15% FBS was added in the
lower chambers (24-well, 8-μm pore size, Costar New York, NY, USA).
After 6 h for letting adhere, 50 μL medium mixed with diltiazem (0,
50 or 100 μM) or recombinant GDF-15 protein (0, 10 or 20 ng/ml)
were added into the upper chambers. After 24 h treatment, medium
was gently removed and stained with 0.1% crystal violet for 5min.
The chambers were then washed by PBS twice to removed excess
crystal violet. Cells in the upper chambers were scraped off carefully
by cotton swabs before being photographed. In invasion assay,
4 × 104 cell were seeded in the upper chamber of cell culture inserts
which were coated with 50 µl/cm2 Corning Matrigel Basement
Membrane Matrix (Product number: 354234).

Wound healing assay
2-well silicone culture inserts were first placed in 24-well plates.
5 × 104 cells suspended in 60 μl culture medium were seeded in
each well. After letting adhere for 24 h, inserts were removed
carefully and the cell-free gaps were formed. Meanwhile, 500 μl
serum free medium was added into 24-well plates, and the photos
for 0-h timepoint were taken under the microscope. After adding
another 500 μl serum free medium with or without indicated
treatment for another 24 h, the photos for 24-h timepoint were
then taken.

Immunoprecipitation and western blot analysis
After indicated treatment in a 6-well plate format, cells were washed
by PBS and lysed by RIPA buffer (150mM NaCl, 50mM Tris-HCl, pH
7.4, 1mM EGTA, 1% NP-40, 0.25% deoxycholate and protease
inhibitors cocktail). Samples were votexed and placed on ice for
20min prior to centrifuging 13,500 rpm for 25min. Next, supernatant
was collected and quantified by using the pierce™ BCA protein
analysis kit (Thermo Scientific, Waltham, MA, USA). For immunopre-
cipitation, 500 µg protein lysates were incubated with 20 µl Protein G
Mag Sepharose® Xtra (Cytiva, Marlborough, MA, US) along with 20 µg
anti-GDF-15 antibody at 4 °C overnight. The Protein G Mag
Sepharose was then washed by elution buffer 3 times, and 2X
sample buffer was added prior to being heated at 100 °C for 10min.
Whole cell lysates or immunoprecipitates were then seperated in 8%
~12% SDS-PAGE and transferred to PVDF membrane (Millipore,
Billerica, MA, USA). After blocking with 7.5% skim milk dissolved in
TBST for 2 h, membranes were hybridized with primary antibodies
overnight. On the second day, membranes were washed by TBST
thrice and hybridized with secondary anti-mouse or anti-rabbit
antibodies under room temperature for 1 h. Protein signals were
excited by using enhanced chemiluminescence (EMD Millipore,
Billerica, MA, USA) and exposed to Fujifilm Super RX-N films (Valhalla,
NY, USA). The protein expression was then quantified by ImageJ.

Enzyme-linked immunosorbent assay (ELISA)
Cultural supernatant was collected for measuring GDF-15 secre-
tion from 1 × 106 cells per well in 6-well plates by using human
and murine GDF-15 ELISA kit. Serum of the mice was collected for
measuring GDF-15, MMP-9, MMP-2, and MMP-12 expression by
murine ELISA kit accordingly. The procedures were conducted by
following the standard protocols provided by manufactorers.

Quantitative real-time PCR
Cells in 6-well plates were lysed by using TRIzol Reagent (Thermo
Fisher Scientific, Waltham, MA) after indicated treatment. Total RNA
was extracted and quantified by BioDrop spectrophotometer
(BioDrop Ltd., Cambridge, UK). 2 μg RNA was then reverse
transcribed into cDNA using cDNA Reverse Transcription Kit (Thermo
Fisher Scientific, Waltham, MA). Primers mixed with SYBR Green
Master Mix (Applied Biosystem, Singapore) and cDNA samples were
both loaded into MicroAmp™ Optical 96-Well Reaction Plate (Applied
Biosystem, Singapore). The reacting condition was set as 95 °C for
5min, 45 cycles at 95 °C for 10 s, and 60 °C for 1min. The sequence of
primers used are provided in Supplementary Table 1.

Immunofluorescence
To investigate actin dynamics in breast cancer cell lines, FITC-
phalloidin Reagent (Abcam, Waltham, MA) was used to stain F-actin.
5 × 104 cells were seeded in 24-well plates with glass coverslips
inside, and medium containing 50 μM diltiazem was added after cell
attachment. After another 24 h, medium was removed. Cells were
fixed by 4% formaldehyde for 15min and permeabilized by 0.1%
triton x-100 for 5min. 5% skim milk dissolved in PBS were added and
blocked for 1 h. The coverslips were then incubated with 1X
phalloidin reagent and placed in a dark place for 75min. Before
mounting the coverslips, cells were incubated with DAPI (1 μg/ml) for
5min. We washed the cells with PBS thrice before every steps. Cells
were then photographed under fluorescence microscope (Olympus,
Tokyo, JP) at 360 nm and 495 nm wavelength.

Mouse tumor-bearing models
All experiments were approved by Institutional Animal Care and
Use Committee (CMUIACUC-2020-318, China Medical University,
Taichung, Taiwan). 7-week-old female BALB/c mice (19 ± 1 g) were
purchased from National Laboratory Animal Center (Taipei,
Taiwan) and housed in laboratory animal center (China Medical
University, Taichung, Taiwan) with humidity and temperature
controled. Diet and water were under free access. After adapting
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for a week, 200 μL serum-free medium containing 1 × 105 4T1-luc
cells (labeled with luciferase) were given by tail intravenous
injection while the sham group was injected with 200 μL serum-
free medium with no cancer cells. After injection, cancer-bearing
mice were randomly grouped before diltiazem (1 or 3 mg/kg in
saline) or saline was administered by oral gavage once a day,
5 days a week. There were 4 mice in sham group, and 6 mice in
each experimental group. Body weight and blood pressure had
been monitored, and mice were sacrificed on the 30th day. There
were 2 mice in control group died before designed end point, and
the data collected from these 2 mice were exluded from analysis.
After deep anesthesia, cardiac puncture blood collection and
organ (lung, spleen and liver) disection were performed. Post-
caval lobe lung tissues were lysed by RIPA buffer or TRIzol using
Precellys 24 Tissue Homogenizer (Bertin Instrument, France). No
blinding was done.

In vivo imaging
To trace luciferase labled-4T1 breast cancer cells in live mice, mice
were injected intra-peritoneally with D-luciferin (10 μL/g, dissolved
in DPBS, AAT Bioquest, California) 10 min before anesthesia using
2.5% isoflurane by veterinary anesthesia vaporizer. Luminescence
intensity was then detected and analyzed by IVIS Lumina LT Series
III (PerkinElmer, Waltham, MA).

Immunohistochemistry
Disected lungs were subjected to 10% formalin fixation followed by
paraffin embedment. Lung slices were stained with hematoxyline
and eosin (H&E) or hybrisdized with antibodyes. In breif, lung slices
were first rehydrated and treated with Hydrogen Peroxide Block
(ThermoFisher) and then Protein Block (ThermoFisher). After block-
ing, the slices were incubated with primary antibody against GDF-15
(Sigma-Aldrich) overnight. The slices were then subjected to
secondary Antibody Enhancer and Polymer-HRP (GBI LABS), followed
by using diaminobenzene (ThermoFisher) as the chromogen before
being mounted.

Statistics
Statistical analysis was performed by using GraphPad Prism and
SigmaPlot softwares. Values are expressed as mean ± S.D. of three
independent experiments unless otherwise stated. Sample sizes are
calculated for significance to be reached. No pre-test was performed
to choose sample size. No data points was exluded. Results were
analyzed with Student’s t-test, and significance was defined as
p< 0.05.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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