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High-grade serous ovarian, fallopian tube or peritoneal carcinoma is an aggressive subtype of ovarian cancer that frequently
develops resistance to chemotherapy. It remains contested whether the resistance is caused by the acquisition of novel molecular
aberrations or alternatively through the selection of rare pre-existing tumor clones. To address this question, we applied single-cell
RNA sequencing to depict the tumor landscape of 6 samples from a single case of advanced high-grade serous fallopian tube
carcinoma during neoadjuvant chemotherapy (NACT). We analyzed a total of 32,079 single cells, with 17,249 cells derived from the
pre-NACT multisite tumor tissue samples and 14,830 cells derived from the post-NACT multisite tumor tissue samples. We identified
the diverse properties of the tumor, immune and stromal cell types between the pre-NACT and post-NACT tumors. The malignant
epithelial cells displayed a high degree of intratumor heterogeneity in response to NACT. We showed that the primary resistant
clone (clone 63) epithelial genotype was already present in the pre-NACT tumors, and was adaptively enriched after NACT. This
clone 63 was correlated with a poor clinical prognosis. Furthermore, single-cell analysis of CD4+ T cells demonstrated that IL2RAhi-
CCL22+-Tregs were selectively enriched in post-NACT tumors. Interestingly, this Treg subtype could recruit and enrich themselves
through secreting the CCL22-CCR1 combination in pre-NACT and post-NACT tumors, and further express CD274 to suppress other
CD4 and CD8 T cells through a CD274-PDCD1 axis in the post-NACT tumors, and this predicted an immunosuppressive state after
NACT. Overall, our results provide important evidence for the adaptive resistance theory of HGSC, and for the potential
development of therapeutic strategies to treat HGSC and improve the survival of patients with HGSC.
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INTRODUCTION
High-grade serous carcinoma (HGSCs), such as ovarian, fallopian
tube, and peritoneal carcinoma are the leading cause of death
from gynecologic cancer. As most HGSC cases typically present
with multisite peritoneal tumors, it is unclear where the HGSC truly
originates. Traditionally, HGSC was hypothesized to arise from the
ovarian surface epithelium [1, 2]. Since the late 1990s, accumulat-
ing evidence has demonstrated that HGSC is derived from the
epithelium of the fallopian tube [3–6]. Multi-region deep
sequencing studies and recent single-cell sequencing analyses
have shown that these high-grade serous diseases harbor
frequent mutations in TP53, high copy-number alterations, and
high aneuploidy levels that result in extensive intratumor
heterogeneity [7–10].
Recent randomized clinical trials of patients with advanced-

stage ovarian, fallopian tube or peritoneal carcinoma have
shown that neoadjuvant chemotherapy (NACT) followed by
interval debulking surgery (IDS) and primary debulking surgery
(PDS) result in similar overall survival (OS) rates in patients
[11–13]. Thus, NACT is used increasingly in patients with
advanced-stage diseases. While NACT is effective in some
patients, it is reported that approximately 70% of patients who

undergo NACT, but retain residual viable tumors, have higher
rates of recurrence and poor survival prospects [14, 15]. It is
hypothesized that residual tumors remaining after NACT contain
intrinsically chemo-resistant cell populations [16, 17]. These cell
features could differ from the pre-treatment characteristics of
the tumor [18–24]. Unfortunately, a large systematic review of
42 studies demonstrated that there are no applicable gene
signatures appropriate for clinical use [25]. Furthermore, better
treatment responses in advanced stage high-grade serous
cancer of the ovarian, fallopian tube or peritoneal carcinoma
remains challenging, in part due to the difficulty of obtaining
tumors from multiple sites from the same patient, which
frequently harbor a distinct tumor microenvironment (TME)
[9, 26]. In addition, it remains poorly understood how the
complex interaction between tumor cells and the TME affects
treatment outcome in these advanced stage high-grade serous
diseases. Therefore, there are currently no treatment stratifica-
tion. The standard of care for these patients who have residual
tumors after NACT is the same regimen of carboplatin and
paclitaxel as for patients without residual tumors. We hypothe-
sized that comprehensive molecular analyses by comparing pre-
treatment tumors and residual tumors after NACT from the same
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individual, as measured by single-cell sequencing, would assist
in identifying innovative therapeutic targets.
In this study, we applied single-cell RNA-sequencing, perform-

ing paired analyses of the tumor cells and the TME alterations in
pre-NACT and post-NACT samples from the same patient with
high-grade serous fallopian tube carcinoma. Importantly, we
demonstrated that certain tumor cell clones and CD4+ Treg
subclusters were adaptively selected to evolve the resistant
phenotype in response to NACT. Furthermore, myofibroblastic
cancer-associated fibroblasts (myCAFs) and M1/M2 macrophages
were enriched in post-NACT tumors, whereas antigen-presenting
CAFs (apCAFs), tissue-resident, and glycolysis-related macro-
phages, and CD8+ Naïve T cells were enriched in the pre-NACT
tumors. Overall, these findings highlight the characteristics of pre-
NACT and post-NACT tumors. This information will offer an
opportunity to the development of treatment therapy for patients
with advanced high-grade serous diseases.

RESULTS
Single-cell transcriptomic analysis in a patient with advanced
stage high-grade serous fallopian tube carcinoma treated
with neoadjuvant chemotherapy
The analytical scheme following the clinical course of a 71-year-
old female patient with stage IIIC high-grade serous fallopian tube
carcinoma is summarized in Fig. 1a. The staging and diagnosis of
this patient were initially confirmed based on CT imaging plus
laparoscopy to evaluate the feasibility of resection and obtain
histological biopsy specimens (Fig. 1b, c). We confirmed that this
patient was unlikely to be optimally cytoreduced by the
assessment laparoscopy. NACT was a better initial treatment
option. Then, we collected the pre-NACT tumor samples from the
peritoneum and greater omentum, as well as a small volume of
ascites (Fig. S1a). After undergoing two cycles of NACT regimens
(carboplatin and paclitaxel), the patient received IDS. Dosing per
cycle was shown as follows: (1) Cycle 1, carboplatin 535 mg (AUC
5) and paclitaxel 283 mg (175mg/m2); (2) Cycle 2, carboplatin
503mg (AUC 5) and paclitaxel 284 mg (175mg/m2). We collected
the post-NACT tumor samples from the colon serosa surface,
greater omentum, and lesser omentum at the time of IDS (Fig.
S1a). This patient was characterized as a high-grade serous
fallopian tube carcinoma based on the H&E staining, exhibiting
strong expression of PAX8, Ber-EP4, CA125, Ki-67, p16, WT1, and
mutant p53 protein (Figs. 1c, d and S1b). Genetic risk evaluation
showed that this patient did not have a BRCA1/2 mutation in
germline or tumor DNA.
Single cell RNA (scRNA) sequencing using the 10 x Genomics

Chromium platform was performed on these matched long-
itudinal specimens from this patient to assess the cell composi-
tions of the tumor environment in response to NACT. After
stringent filtering, a total of 32,079 cells from the six samples, with
17,249 cells derived from the pre-NACT multisite tumor tissue
samples and 14,830 cells derived from the post-NACT multisite
tumor tissue samples, were retained for further analysis (Fig. 2a).
The cell distribution of each sample was shown in Fig. S2. We
conducted clustering to define 22 clusters that were visualized
using uniform manifold approximation and projection (Fig. 2b and
S3a). Copy number variation (CNV) analysis was used to
distinguish malignant and non-malignant cells (Fig. 2c). These
cells were assigned to seven distinct cell types using known
marker genes (Figs. 2d, e and S3b): macrophages (marked with
SPP1, APOE, C1QA, C1QB, and APOC1, and MS4A7); T cells (marked
with CCL5, GZMA, NKG7, TRAC, GZMK, CD3D, CD3E, CD8A, and
CD4); malignant epithelial cells (marked with KRT18, CLU, WFDC2,
KRT8, KRT7, and EPCAM); stroma cells (marked with COL1A1,
COL1A2, COL3A1, SPARCL1, DCN, and LUM); endothelial cells
(marked with RAMP2, VWF, and CLDN5); smooth muscle cells
(marked with RGS5 and MGP); and B cells (marked with IGLC2,

CD79A, IGHM, MS4A1, and IGKC). Although the proportion of each
cell type varied greatly by sample, we found that epithelial cells
were enriched in the post-NACT samples, whereas T cells were
relatively enriched in the pre-NACT samples (Fig. 2f). Furthermore,
we applied single-cell regulatory network inference and clustering
(SCENIC) to assess the transcription factors underlying the
differences in the expression among different cell types. This
identified a set of upregulated transcription factors, such as FHL2,
FOXQ1, ID4, KLF5, MYC, NR2F6, OVOL2, PAX8, BARX2, SOX9 in
epithelial cells, SOX4 in stromal cells, SOX7 and SOX18 in
endothelial cells, ATF3, DDIT3, IRF8, JDP2, KLF10, NFATC1,
NR1H3, PRDM1 and SNAI1 in macrophages, FOXP3, MEOX1 and
MSX1 in T cells, and SPIB in B cells (Fig. 2g).

Distinct features and adaptive clonal evolution of malignant
cells in response to NACT
To define the major subpopulation structure of the malignant
epithelial cells, we performed MNN clustering on our scRNA-seq
data, identifying 11 main subclusters with a panel of specific
marker genes (Fig. 3a, b). We compared each subcluster before
and after NACT (Fig. 3c). However, we did not find a new
malignant subcluster that conferred a chemoresistant pheno-
type induced by NACT. All the subclusters were already present
in the pre-NACT tumors. Hallmark analysis revealed that
subclusters 0, 1, 2, and 5 were enriched in TGF-β signaling,
WNT/β-catenin signaling, angiogenesis, and epithelial-
mesenchymal transition (EMT) (Fig. 3d). Strikingly, we noticed
that the vast majority of four subclusters were derived from
post-NACT D, E and F tumor cells (Fig. 3e), suggesting that they
might share a resistant genotype. We further observed that
these cells from the pre-NACT tumors were primarily detected
in ascites (Fig. 3e). The ascites also possessed more malignant
epithelial cells compared with those in other tumor samples in
the pre-NACT group (Fig. 3f). Moreover, enrichment of stem
cells in subcluster 0, 1, 2 and 5 was also identified based on the
cytoTRACE analysis (Fig. 3g). We showed that the drug
resistance scoring was significantly increased in these sub-
clusters (Fig. 3h). FOS and MYC were determined to be the
underlying transcription factors contributing to drug resistance
(Fig. 3i). Kaplan-Meier survival analysis showed that higher
expression of FOS and MYC in HGSC data obtained from TCGA
was associated with shorter OS times (Fig. 3j). Collectively, our
findings suggest that chemoresistance may arise due to the
selection and expansion of pre-existing subcluster malignant
cells.
To confirm the adaptive resistance hypothesis, we further

conducted lineage tracing analysis using VarTrix (Fig. 4a). The
phylogenetic trees showed four major subclones in malignant cells,
including subclone 546, 319, 358, and 63 (Fig. 4a). Among these,
analyses of HGSC cohorts from TCGA supported the enrichment of
the top 56 marker genes associated with clone 63 cells as a
significant indicator of adverse clinical outcomes in HGSC patients
(Fig. 4b–d and Table S1). The expression of the gene signature was
correlated with a significantly poorer clinical prognosis, including a
shorter disease-free interval, progression-free interval, and OS time.
Furthermore, the cell subcluster and tissue location distribution of
all the clones was analyzed (Fig. 4e, f). The clusters 3 and 10,
containing less than 50 epithelial clone cells, were excluded from
the analysis. We found that the main clones 63, 546, 319, and 358
were persistent in both pre-NACT and post-NACT samples, and
clone 63 was further enriched in the post-NACT samples (Fig. 4f),
consistent with adaptive resistance. Of note, we observed that the
primary pre-NACT tumor cells in the greater omentum were mostly
eliminated in this clone. The tumor cells in the post-NACT greater
omentum sample were primarily derived from pre-NACT ascites
and the peritoneum tumor cells. In addition, we conducted
evolutionary tree analysis based on the information of epithelial
subclusters and tissue samples (Fig. 4g). We found that no matter
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which sample B cells (from pre-NACT greater omentum tissues)
were evolved from in clones, they were convergent, whereas other
samples had obviously mixed with each other, and there was no
sample convergence. From the perspective of the composition of
the clones, our present study supports the notion that the cells of
post-NACT omentum tumors were not the same as pre-NACT
omentum tumors, but more likely originated from the other pre-
NACT samples. This may suggest a novel adaptive resistance
theory for HGSC.

Fibroblasts from post-NACT tumors show functional
alterations compared with fibroblasts from pre-NACT tumors
Further clustering in the fibroblast compartment gave rise to 3 cell
subpopulations (Fig. S4a and b), of which one fibroblast cluster
expressed high levels of ACTA2, POSTN, and HOPX, confirming their
identity as myCAFs; another cluster expressed major MHC-II genes
such as HLA-DRA, CD74, and HLA-DRB1, and was, therefore, termed
them apCAFs; and a cluster expressed high levels of CFD, DPT, and
CXCL12, and was considered to be inflammatory CAFs (iCAFs) (Fig.

Fig. 1 Overview of the treatment schedule and characteristics of an advanced-stage high-grade serous fallopian tube carcinoma.
a Neoadjuvant chemotherapy treatment and sample acquisition for scRNA-seq. b CT imaging showing the clinical responses to NACT of the
patient with high-grade serous fallopian tube carcinoma. c H&E staining of the pre-NACT and post-NACT samples. d IHC staining of PAX8, Ber-
EP4, CA125, Ki-67, and p16 protein in pre-NACT and post-NACT tissue samples of the high-grade serous fallopian tube carcinoma.
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Fig. 2 scRNA-seq profiling of the pre-NACT and post-NACT high-grade serous fallopian tube carcinoma samples. a UMAP plots showing
cell groups by color in the pre-NACT and post-NACT sample groups. b UMAP plots showing pre-NACT and post-NACT cells, clustered and
color-coded according to the group. c Box plots showing the CNV signals for each cell type. d UMAP plots showing the cell types by color.
e Heatmap showing the top marker genes in each cell type. f Histogram indicating the proportion of cell types in each analyzed sample.
g Heatmap showing the expression regulation by transcription factors in each cell type, as estimated using SCENIC. UMAP uniform manifold
approximation and projection.
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Fig. 3 The subtypes of epithelial cells in pre-NACT and post-NACT tumors. a UMAP projections of subclustered epithelial cells, labeled in
different colors. b Heatmap showing the expression of marker genes in each indicated cell subcluster. c UMAP projection showing pre-NACT
and post-NACT cells, clustered and color-coded according to the group. d Heatmap indicating the primary hallmark pathways in each
subcluster. e Histogram indicating the proportion of subcluster cells in each analyzed sample. f UMAP plots showing the malignant and non-
malignant epithelial cells colored by red or blue in each tumor sample. g CytoTRACE analysis of epithelial cells in each subcluster. h UMAP
plots showing distinct drug resistance scores in each subcluster. i Gene bubble plots showing different expression levels of drug resistant-
related transcription factors in each subcluster. j Kaplan–Meier survival curves showing the association of FOS and MYC expression with
overall survival in patient with HGSCs (from TCGA). Log-rank p values are shown.
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Fig. 4 Analysis of clonal evolution in high-grade serous fallopian tube carcinoma tissues following NACT treatment. a Phylogenetic trees
showing the analyses of the clonal dynamics calculated from each cell type, and the subpopulation-specific differences in each clone are
indicated with color-coded bars. Kaplan–Meier survival curves for OS (b), DFI (c) and PFI (d) from TCGA HGSC data showing significant
prognostic separation according to the clone 63 marker gene signatures from our scRNA-seq data. Log-rank p values are shown. e Clonal
frequencies of the eight main clone cells are annotated in each epithelial subcluster. f The cell number distribution of the eight main clones in
each tumor sample. g Evolutionary tree analysis showing the distribution of epithelial subclusters and corresponding tissue samples. DFI
disease-free interval; PFI progression-free interval.
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S4b). Interestingly, myCAFs and iCAFs were mainly enriched in post-
NACT tissues, whereas apCAFs were mainly present in pre-NACT
tissues (Fig. S4a). Moreover, apCAFs were related to response to IFN
(Fig. S4c and S4d), while myCAFs indicated significant enrichment
for WNT/β-catenin signaling (Fig. S4e).

Macrophage subclusters between pre-NACT and post-NACT
tumors
Specific tumor-associated macrophage (TAM) subtypes have
important impacts on ovarian cancer progression and therapy
[27–29]. For instance, M2-like TAMs limit the effector function of
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CD8+T cells in metastatic HGSCs and associated with poor overall
survival [27]. Thus, we studied the macrophage subclusters in our
samples. According to the top differentially expressed genes and
known marker genes, macrophage subclusters were designated as
tissue-resident-, glycolysis related-, M1-, M2-, and cycling macro-
phages (Fig. S5a–c). Of note, M1 and M2 macrophages were
mainly enriched in post-NACT tissues, whereas tissue-resident and
glycolysis-related macrophages were mainly present in pre-NACT
tissues (Fig. S5d).

Features of CD4+ Treg subtypes in response to NACT
The clustering of T/NK cells of the tumor environment revealed 5
main populations, including NK/NKT subtype (GNLY and TRDC), γδ
T cells (GNLY, TRDC, and CD3D), CD4+CD8+ T cell subtype (CD3D,
CD8A, and CD4), CD8+ T cells (CD3D and CD8A), and CD4+ T cells
(CD3D and CD4) (Fig. 5a, b). The CD4+ and CD8+ T cell infiltration
into the stroma and tumor epithelium was further determined by
CD4 and CD8 IHC staining (Fig. S6).CD8+ T cells were further
designated as CD8 TEM, CD8 TEMRA/TEFF, CD8 TRM, CD8 Naïve,
CD8 IFN response, and CD8 Cycling cell subtypes, according to
their marker genes (Fig. S7a, S7b). All these subtypes were shared
across tumors and between pre-NACT and post-NACT samples
(Fig. S7c). Of note, CD8 Naïve and CD8 IFN response cells were
mainly enriched in pre-NACT samples (Fig. S7c).
We then investigated the CD4+ T cell heterogeneity to determine

their contribution to NACT responses, and identified 5 main subtypes
of CD4+ T cells, including CD4 TEM/Th1-like, CD4 TEMRA/TEFF, CD4
Naïve, CD4 Treg, and CD4 Cycling cells (Fig. 5c, d). A high diversity of
CD4+ T cells was observed between pre-NACT and post-NACT tumors
(Fig. 5e). We found that the subclusters of Tregs displayed distinct
enrichment in response to NACT (Figs. 5c, e). Thus, we re-clustered
CD4 Tregs and further identified four states of Tregs, including IL2RA-
high and CCL22 positive subtype (IL2RAhi-CCL22+-Treg), IL2RA-high
subtype (IL2RAhi-Treg), Type 1 IFN positive subtype (Type1IFN-Treg),
and IL2RA-Low subtype (IL2RAlo-Treg) (Fig. 5f), together consisting
34.3% of the tumor-infiltrating CD4+ T cells (Fig. 5c). These four Treg
states were mainly distinguished by higher expression of known
immune checkpoints IL2RA, TNFRSF4/9/18, and CD27 in IL2RAhi-Treg
cells, and plus CCL22 in IL2RAhi- CCL22+-Treg cells (Figs. S8a and 5g).
The gene features of each state are shown in Fig. 5g.
Cell metabolism is appreciated as a key regulator of T cell

function and fate [30–32]. We noticed an extremely high
expression of the glycolytic enzyme lactate dehydrogenase A
(LDHA) in IL2RAhi-CCL22+-Tregs (Fig. S8b), which indicates
LDHA might affect the function of Tregs. Consistently, previous
studies reported that LDHA plays a key role in the altered
glycolytic metabolism [33]. Therefore, we hypothesized that the
glycolytic metabolism be important for those immune effector
cells in the tumor. The metabolic features were further analyzed
for those subclusters. As shown in Fig. 5h, when compared with
the other three subtypes, Glycolysis/Gluconeogenesis was
significantly enriched in IL2RAhi-CCL22+-Treg cells, while
Citrate cycle was not notably increased, indicating an hypoxic
environment with the high expression of LDHA. In addition,
pathway analysis of the IL2RAhi-CCL22+-Treg cells also demon-
strated that Glycolysis/Gluconeogenesis was the primarily

enriched pathway (Fig. 5i). Interestingly, cell communication
analysis indicated that the features of the post-NACT samples D,
E, and F were more similar with pre-NACT sample A and C than
with sample B (Fig. 5j), indicating that these Tregs were present
in the pre-NACT tumors and were primarily derived from ascites
and the peritoneum, and persisted in all residual tumor samples
after NACT therapy.

Cell cross-talk between immune cells and tumor
microenvironment
Next, we investigated the correlation between specific Treg
subtypes and other cell types to explore the potential functional
roles of Tregs. We first conducted cell communication analysis to
determine which cell types could affect the enrichment of
IL2RAhi-Tregs and IL2RAhi-CCL22+-Tregs (Fig. 6a). Interestingly,
we observed that the IL2RAhi-CCL22+-Treg cells could recruit and
enrich themselves through secreting the CCL22-CCR1 combina-
tion in all tumor samples. We next determined whether the two
Treg subtypes could also affect other cell types in HGSC (Fig. 6b).
Notably, we observed that these IL2RAhi-CCL22+-Treg cells from
the post-NACT D, E, and F samples could express CD274 to
suppress other CD4 and CD8 T cells through CD274-PDCD1 axis.
Moreover, we found that the IL2RAhi-CCL22+-Tregs from pre-
NACT sample A and post-NACT samples D, E, and F could secrete
VEGFA to promote angiogenesis of endothelial cells via VEGFA-
KDR and VEGFA-FLT1 signaling. In addition, both IL2RAhi-Treg and
IL2RAhi-CCL22+-Treg cells could express PDGFA to promote the
growth of CAFs through PDGFA-PDGFRA interaction.

Pseudotime trajectory shows the characterization of distinct
CD4+ Treg subtypes
We further explored the dynamic cell transitions by inferring the
state trajectories using Monocle (Fig. 6c). This pseudotime
analysis revealed that the IL2RAlo-Treg cells were present at the
beginning of the trajectory path, whereas the IL2RAhi- CCL22+-
Treg cells and Type1IFN-Treg cells were present at the two
different terminal stages. One transition was determined to
initiate with IL2RAlo-Tregs, through an intermediate IL2RAhi-
Treg state characterized by enrichment of immune response,
apoptosis, T cell activation, T cell co-stimulation, myeloid
dendritic cell differentiation, and toll-like receptor signaling
pathway, and finally reach the IL2RAhi- CCL22+-Treg stage,
characterized by enrichment of NIK/NF-κB signaling, canonical
glycolysis, glycolytic process, regulation of apoptosis, and the
MAPK cascade (Fig. 6c). The main branch expression analysis
modeling (BEAM) genes for IL2RAhi-CCL22+-Tregs were
HAVCR2, CTLA4, TIGIT, TNFRSF4, TNFRSF9, and LAG3 (Fig. S9).
The transcription factors enriched in each cell state were further
analyzed. As shown in Fig. 6d, we revealed that STAT1, LEF1,
IRF7, POLR2J3, and ETS1 contributed to the transition from
IL2RAlo-Tregs to Type1IFN-Tregs, while ID3, FOSL2, NR4A1, ID2,
REL, and VDR contributed to the transition from IL2RAlo-Tregs to
IL2RAhi-CCL22+-Tregs. Collectively, our results suggest that
manipulation of Tregs with high immune checkpoint character-
istics might present a novel therapeutic strategy for both
primary and chemo-resistant HGSCs.

Fig. 5 Distinct Treg subpopulations detected in pre-NACT and post-NACT tumors. a UMAP plots showing the subtypes of T/NK cells,
labeled in different colors. Subtype annotations are indicated in the Figure. b Violin plots showing selected marker genes in distinct T/NK cell
subtypes. c UMAP plots showing the subtypes of CD4+ T cells from pre-NACT and post-NACT tumors. Each subcluster is color-coded. Subtype
annotations are indicated in the Figure. d Heatmap depicting marker gene enrichment for each cell subtype of CD4+ T cells. e UMAP plots
showing the color-coded cell groups of CD4+ T cells in response to NACT. f UMAP plots showing four main cell subtypes of Tregs, labeled in
different colors. g Dot plots showing the expression levels of specific genes in each Treg subtype. h Metabolic pathway analysis showing the
enrichment of Glycolysis/Gluconeogenesis and the citrate cycle in each Treg subtype. i KEGG pathway analysis showing the primary enriched
pathways of IL2RAhi-CCL22+-Treg cells. j Cell communication analysis showing the overlapping relationship between specific pre-NACT and
post-NACT tumor samples.
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DISCUSSION
Despite the progress made in treatment strategies, the clinical
outcomes of advanced HGSCs remain dismal. The high incidence
of early recurrence, resistance to therapeutics, and the lack of

efficient therapeutic targets represent the major obstacles in
improving OS rates. Recurrent tumors are often treated based on
the pathological characteristics of the primary tumor. However,
whether the recurrent and primary tumor share a similar

Fig. 6 Analysis of cell communication and CD4+ Treg cell transition states in pre-NACT and post-NACT tumors. a Dot plots showing
chemokine-receptor communication between distinct cell types and Treg subtypes in the pre-NACT and post-NACT tumor microenvironment.
b Dot plots showing ligand-receptor pair analysis of the interactions between IL2RAhi-CCL22+-Treg or IL2RAhi- Tregs and distinct cell types in the
pre-NACT and post-NACT tumor microenvironment. c Heatmap showing the dynamic changes in gene expression along the pseudotime. The
enriched pathways are labeled by colors. d Heatmap showing the dynamic changes in transcription factor expression along the pseudotime.
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microenvironment has not been evaluated. Here, we provide a
single-cell transcriptomic atlas to characterize the tumor’s features
in pre-NACT and post-NACT samples from the same patient with
high-grade serous fallopian tube carcinoma.
A key finding of this study was the identification of chemo-

resistant clones in post-NACT tumors. We revealed that the chemo-
resistant clones were already present in the pre-NACT tumor cells,
and were adaptively selected in response to NACT, consistent with
the theory of adaptive resistance. Previous studies have reported that
platinum-based chemotherapy-induced new somatic mutations in
high-grade serous ovarian cancer, supporting the acquired model of
therapy resistance [34]. Our data suggest another model of
chemoresistance (adaptive) in the establishment of a resistant tumor
phenotype of HGSCs. It may raise the possibility of diagnostic
opportunities for examining the chemo-resistant clones in HGSC
patients prior to the administration of NACT to predict which patients
may benefit from NACT. Furthermore, there may be novel
therapeutic strategies to overcome chemo-resistance by targeting
the chemo-resistant clones.
Importantly, we have identified distinct states of CD4 Tregs that

differed based on the expression levels of IL2RA and immune
checkpoint genes, such as TNFRSF4/9/18, CD27, and CCL22. It is
important to note that the CD4-IL2RAhi- and CD4-IL2RAhi-CCL22+-
Treg subtypes were already present in the pre-NACT tumors and
persisted in all residual tumor samples after NACT therapy. Of note,
the IL2RAhi-CCL22+-Tregs could recruit and enrich themselves
through secreting CCL22-CCR1 pair. These Tregs could also express
CD274 to suppress other CD4 and CD8 T cells through a CD274-
PDCD1 axis. It is possible that the IL2RAhi-CCL22+-Tregs are
responsible for a more potent immunosuppressive state of post-
NACT tumors. Our data may assist in identifying more effective
therapeutic targets for immunotherapies in chemo-resistant HGSCs.
Furthermore, we demonstrated the presence of 3 CAF subtypes,

including apCAFs, iCAFs and myCAFs, of which apCAFs were
mainly found in pre-NACT tissues, and both iCAFs and myCAFs
were primarily found in post-NACT tissues, revealing that the
desmoplastic microenvironment of the HGSCs was highly hetero-
geneous during NACT treatment. It was reported that apCAFs had
the ability to present antigens to T cells and potentially modulate
the immune response [35]. In this study, myCAFs were the most
prevalent fibroblast subpopulation after NACT treatment. It was
reported that certain myCAF subtypes could upregulate CTLA4
and PD1 expression in Tregs and were associated with resistance
to immunotherapy [36]. Consistent with this, we also found that
the IL2RAhi-CCL22+-Treg subtype was enriched after NACT
treatment. Moreover, IL2RAhi-Tregs and IL2RAhi-CCL22+-Tregs
expressed PDGFA to promote the growth of myCAFs through
PDGFA-PDGFRA interaction. Our data uncovered a possible
interaction between specific CAFs and IL2RAhi-CCL22+-Tregs,
and their roles in immunotherapy resistance.
In the presence of NACT, we found an enrichment of M1 and

M2 polarization, while the proportion of the tissue-resident and
glycolysis-related macrophages were significantly decreased. In
addition, the main feature of CD8+ Naïve T cells was to
differentiate into effective cytotoxic T cells after antigen stimula-
tion [37]. These cells are known to be associated with protective
immunity and better clinical outcomes [38]. Our data showed that
the proportion of the CD8+ Naïve T cell subpopulation
significantly decreased after NACT treatment. These results
support the presence of a chemo-resistant microenvironment in
the residual tumors after NACT treatment.
The main limitation of our study is that we analyzed the pre-

NACT and post-NACT tumor samples at a single-cell resolution
from only one case of patient with high-grade serous fallopian
tube carcinoma. Future work will need to be performed in a larger
cohort of HGSC patients to validate and explore the mechanistic
roles of the chemo-resistant signatures.

Collectively, our single-cell sequencing results provide novel
insights into the development of chemo-resistance in HGSCs, and
may have potential therapeutic values for HGSCs.

METHODS
Human tissue specimens
The pre-NACT and post-NACT high-grade serous fallopian tube carcinoma
tissue samples were obtained from the Women’s Hospital of Zhejiang
University with Institutional Review Board (IRB) approval from the Women’s
Hospital of Zhejiang University (approval no. IRB-20210313-R) and
conducted in accordance with Declaration of Helsinki. Patients were
enrolled after providing written informed consent.

Isolation of single cells
After surgical resection, fresh tissues were obtained and immediately
dissected into fractions for enzymatic digestion into single cells. After
digestion, the cells were filtered through a 35 µm cell strainer, followed by
enrichment of live single cells, and finally loaded for single-cell sequencing.

scRNA sequencing and statistical analysis
scRNA sequencing and data analysis were performed by NovelBio Bio-
Pharm Technology Co., Ltd. using the NovelBrain Cloud Analysis Platform.
We used fastp with the default parameters to filter the adaptor sequence
and remove low-quality reads to obtain the clean data [39]. We obtained
the feature-barcode matrices by mapping reads to the human genome
(GRCh38 Ensemble: version 91) using CellRanger v3.1.0. The down sample
analysis was applied according to the mapped barcoded reads per cell of
each sample and the aggregated matrix was then obtained. Cells
containing over 200 expressed genes and a mitochondria UMI rate below
20% passed the cell quality filtering, and finally mitochondrial genes were
removed from the expression table.
We applied the Seurat package (version: 3.1.4) for cell normalization and

regression based on the expression table. In order to remove the batch
effect, we used the fastMNN function (k= 5, d= 50, approximate= TRUE,
auto.order= TRUE) in the R package scran (v1.10.2) and applied the mutual
nearest neighbor method based on the scale data of the top 2000 highly
variable genes and sample batch info [40]. Utilizing the graph-based
cluster method (resolution was optimized in different sub-clustering results
of different cell types), we obtained the unsupervised cell cluster results
based on the MNN top 10 principal. The significant marker genes were
calculated by the FindAllMarkers function using the Wilcoxon rank sum
test algorithm. The cell identification criteria were logFC >0.25, p < 0.05,
min.PCT > 0.1, and p.adj <0.05. To identify the sub-cell type detailed, the
clusters of the same cell types were selected for sub-clustering analysis,
graph-based clustering, and marker analysis.

Pseudo-time analysis
The single-cell trajectories analysis was performed using Monocle2 (http://
cole-trapnell-lab.github.io/monocle-release) using DDR-Tree with the
default parameters. Prior to Monocle analysis, we selected marker genes
from the Seurat clustering results and raw expression counts of the cells
that had passed filtering. Based on the pseudo-time analysis, BEAM
analysis was used for branch fate determined gene analysis, and only
significant genes (q value <0.01) were selected for visualization, and the
top 2000 BEAM genes were selected for functionalized annotation using
Gene Ontology (http://geneontology.org/) and KEGG pathway annotation
(https://www.kegg.jp/).

Cell communication analysis
Cell communication analysis was applied to study the cell-cell commu-
nication molecule features by utilizing CellPhoneDB, a public repository of
ligands, receptors and their interactions [41]. Based on the interaction and
the normalized cell matrix achieved by Seurat normalization, the significant
mean and cell communication significance was determined (p < 0.05).

SCENIC analysis
SCENIC analysis (pySCENIC, v0.9.5) [42] was applied to assess transcription
factor regulation strength based on the 20-thousand motifs database for
RcisTarget and GRNboost.
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QuSAGE analysis
We performed QuSAGE (2.16.1) analysis [43] to characterize the relative
pathway activation of a given gene set based on the geneset collected
from KEGG pathway database, Molecular signatures database (http://
www.gsea-msigdb.org/gsea/index.jsp), and immune response gene sets
from a referenced article [44].

Differential Gene Expression Analysis
The function FindMarkers with the Wilcoxon rank sum test algorithm was
applied to identify differentially expressed genes. The following criteria
were used: logFC > 0.25, p < 0.05, and min.PCT > 0.1.

CNV estimation
Cells defined as theca_stroma, endothelium, SMC, and monocytes were
used as references to identify somatic copy number variations using the R
package infercnv (v0.8.2). For each cell, the extent of the CNV signal was
scored and the mean of squares of CNV values across the genome was
then defined. Putative malignant cells were identified as those with CNV
signals >0.05 and CNV correlations >0.5.

Cytotrace
To predict the relative differentiation state of cells, we performed Cytotrace
(v0.1.0) analysis based on the expression data in epithelia sub-clustering
results [45].

Drug resistance score and transcription factors analyses
The drug resistance-related genes and the related transcription factors
were collected from the gene lists of Human Cancer Drug Resistance &
Metabolism PCR Array (Qiagen). Drug-resistant score was further calculated
using the Z-score mean value of the expressed genes.

Lineage tracing based on mitochondrial mutation
We used VarTrix (https://github.com/10XGenomics/vartrix) to calculate the
alternative allele frequency and the coverage of each position in the
mitochondrial chromosome. Then, we built phylogenetic trees based on
the mitochondrial mutations clone info following Zhang et al. [46].

Immunohistochemistry (IHC)
IHC was performed on a 4-μm thick paraffin-embedded human high-grade
serous fallopian tube carcinoma tissue sections with the use of primary
antibodies as previously described. Slides were stained for PAX8 (#ZM0468,
1:100), Ber-EP4 (#ZM0099, 1:100), CA125 (#ZM0019, 1:100), Ki67 (#ZM0166,
1:200), p16 (#ZM0205, 1:100), p53 (#ZM0408, 1:50) and WT1 (#ZM0269,
1:100) all from OriGen Technologies, Inc. Anti-CD8 (66868-1-Ig, 1:2000) and
anti-CD4 (67786-1-Ig, 1:1000) were purchased from Proteintech. Images
were captured using a digital scanning microscopic imaging system
(OCUS).

Survival analysis using bulk RNA-seq data
The TCGA bulk RNA-seq data along with survival data of human high-grade
serous ovarian cancer patients were downloaded from UCSC Xena (https://
xenabrowser.net/datapages/). For evaluating the effects of signature genes
of specific clusters on survival, Z-scores were first calculated for the mean
expression of the signature genes. The point with the most significant split,
as determined using a log-rank test, was defined as the optimal cutoff. The
Kaplan-Meier survival curves were plotted using the R package survminer
and the statistical analysis was determined using the R package survival.

Statistical analysis
For the single-cell data analysis, the association between two variables
including samples, clones, and genes was assessed by Pearson correlation
analysis. Wilcox Rank-sum test was used to compare the differentially
expressed marker genes. Fisher’s Exact test was used for pathway
significant analysis. Benjamini & Hochberg correction was performed for
multiple comparisons.

DATA AVAILABILITY
Single-cell RNA sequencing data are available: GEO Series accession number
GSE191301.
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