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Neutrophils are central mediators of innate and adaptive immunity and first responders to tissue damage. Although vital to our
health, their activation, function, and resolution are critical to preventing chronic inflammation that may contribute to
carcinogenesis. Cancers are associated with the expansion of the neutrophil compartment with an escalation in the number of
polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in the peripheral circulation and tumor microenvironment.
Although phenotypically similar to classically activated neutrophils, PMN-MDSC is pathologically activated and immunosuppressive
in nature. They dynamically interact with other cell populations and tissue components and convey resistance to anticancer
therapies while accelerating disease progression and metastatic spread. Cancer-associated neutrophilia and tumor infiltration of
neutrophils are significant markers of poor outcomes in many cancers. Recently, there has been significant progress in the
identification of molecular markers of PMN-MDSC providing insights into the central role of PMN-MDSC in the local tumor
microenvironment as well as the systemic immune response in cancer. Further advances in sequencing and proteomics techniques
will improve our understanding of their diverse functionalities and the complex molecular mechanisms at play. Targeting PMN-
MDSC is currently one of the major focus areas in cancer research and several signaling pathways representing possible treatment
targets have been identified. Positive results from preclinical studies clearly justify the current investigation in drug development
and thus novel therapeutic strategies are being evaluated in clinical trials. In this review, we discuss the involvement of PMN-MDSC
in cancer initiation and progression and their potential as therapeutic targets and clinical biomarkers in different cancers.
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INTRODUCTION
Malignant cells are able to escape immune surveillance mainly by
escalating the production of pathologically activated myeloid-
derived suppressor cells (MDSC). It is quite evident that cytotoxic
T cells, memory T cells, TH1 cells, and B cells are associated with
prolonged survival, whereas elevated densities of Treg cells, MDSC,
and neutrophils are with poor prognosis (reviewed in [1]). Notably, in
multiple solid and non-solid tumors, the number of circulating MDSC
positively correlates to cancer stage and shorter survival [2–5].
Under a constant influence of tumor-secreted growth factors

and inflammatory mediators, myelopoiesis derails and polymor-
phonuclear (PMN)-MDSC and monocytic population of MDSC (M-
MDSC) expand heavily from their precursors in the bone marrow
(Fig. 1). Following chemokine concentration gradients, MDSC is
drawn into circulation and to the tumor microenvironment (TME)
where they support the tumor development primarily by
suppressing the cytotoxic anticancer immune responses.
When in the TME, most M-MDSC differentiate into other cell

types (see below), whereas polymorphonuclear myeloid-derived
suppressor cells (PMN-MDSC) amplify their pro-tumorigenic
immunosuppressive capacities and resistance to apoptosis due
to a phenotypic switch mediated by the TME [6, 7].
In the early stages of malignant transformation, classically

activated antitumor neutrophils are prevalent. However, during

disease progression, PMN-MDSC levels increase to become a
prominent immunosuppressive cell type in the circulation from
where they are recruited to the TME to aid in the establishment
of an immunosuppressive milieu that facilitates tumor escape
[8, 9].
Following the arrival in the TME, PMN-MDSC amplify their pro-

tumorigenic immunosuppressive capacities and resistance to
apoptosis due to a phenotypic switch mediated by the TME
[6, 7], whereas M-MDSC, differentiate into tumor-associated
macrophages (TAM), dendritic cells, and fibrocytes [10–13].
Although once considered a short-lived and static cell popula-

tion, it is now clear that the extended lifespan and pronounced
plasticity of neutrophils are highly dictated by the environment
[14]. Within the TME, classically activated neutrophils hold
antitumor functions, whereas immunosuppressive PMN-MDSC
drives tumor-promoting inflammation that has been associated
with poor oncological outcomes [15].
Due to their strong phenotypical and morphological similarities,

most previous studies have investigated circulating neutrophils
and tumor-associated neutrophils (TAN) without distinguishing
between the classically activated neutrophils and the pathologi-
cally activated PMN-MDSC, suggesting that the individual
contribution of PMN-MDSC in cancer progression has been not
fully explored.
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The varied nomenclature used in published research for
immunosuppressive neutrophils include TAN, N2 neutrophils, or
N2 cells (with reference to the former macrophage nomenclature),
immature neutrophils, alternatively activated neutrophils, low-
density neutrophils, and granulocytic- or G-MDSC.
To simplify the nomenclature in this review, we use the term

neutrophils for classically activated antitumor neutrophils; PMN-
MDSC for pathologically activated, pro-tumorigenic immunosup-
pressive neutrophils; and PMN-MDSCTME for the TME-infiltrating
subset of PMN-MDSC. We discuss the role of PMN-MDSC and
PMN-MDSCTME in cancer and as predictors and therapeutic
targets. Referring to previous TME-studies without the distinction
between neutrophils and PMN-MDSCTME, the term TAN has been
used. Likewise, previous studies on the prognostic capacity of the
neutrophil-to-lymphocyte ratio (NLR) do not discriminate between
immunocompetent neutrophils and MDSC and thus, the term
neutrophil is retained in the NLR section. Nonetheless, PMN-MDSC
as a cell type is a poorly defined concept and the definitions used
here are not canonical. We acknowledge that other definitions
exist, including previous marker-based definitions. To this end, the
term “pathologically activated” does not bear any different
functional meaning than immunosuppressive in contrast to
classically activated, immunocompetent neutrophils.

IDENTIFICATION OF NEUTROPHILS AND PMN-MDSC
Even though MDSC play beneficial roles in pregnancy to maintain
the maternal-fetal tolerance and in sepsis, trauma, and surgery to
balance the powerful inflammatory responses; MDSC are most
harmful in malignancy owing to their immunosuppressive
activities. The expansion of the MDSC compartment during the
postoperative surgical stress response may have detrimental
effects on the clinical outcome of cancer [16].
Neutrophilia is highly prevalent among patients with cancer.

Using gene expression profiles from more than 18,000 patients,
the CIBERSORT study showed that TAN was the single-cell

population most highly associated with mortality for multiple
cancers [17].
In a recent study on healthy donors and cancer patients,

classically activated neutrophils were identified as
CD11b+CD15+CD16+CD66bhighArg1+/−STAT3-S100A9+LOX−

and PMN-MDSC in the peripheral blood from patients with
NSCLC were identified as CD11bhighCD15highCD66bhighCD33high-

Arg1highS100A9highLox1high [18]. The PMN-MDSC contains high
levels of prostaglandin E2 (PGE2), ROS, inducible nitric oxide
synthase, and arginase [19]. A high expression of arginase
diminishes T cell CD3ζ expression and impairs the aggregation
of the T cell receptor. The lectin-type oxidized LDL receptor 1
(LOX1), a specific marker of PMN-MDSC, is associated with
abnormal lipid metabolism [20]. Recently, the fatty acid
transport protein 2 (FATP2) also was identified as a specific
PMN-MDSC marker [21].
Although PMN-MDSC should be subjected to a co-culture T cell

assay to determine their immunosuppressive activity, the progress
in the identification of molecular markers represents a significant
advance in the classification of these cells [7, 18]. Nevertheless, the
surface markers expressed by MDSC mostly overlap with those
conventionally used to identify monocytes and neutrophils.
Further, it is still debated whether MDSC should be regarded as
a separate entity or rather as monocytes or neutrophils affected by
immunosuppressive tumor-derived factors [22].
Studies on the myeloid cell landscape of tumors have

confirmed a significant heterogeneity of myeloid cells in cancer
using microscopy and flow cytometry. Single-cell RNA sequencing
and mass cytometry demonstrated a diversity among innate
immune cells corresponding to immature PMN-MDSC from
various stages of myelopoiesis and to differentially activated
mature neutrophils. It appears that immunosuppressive PMN-
MDSC coexists not only with the classical neutrophils but also with
less activated and less suppressive PMN-MDSC (reviewed in [23]).
In addition, single-cell RNA sequencing in mice models has

confirmed the co-existence of classical neutrophils and PMN-MDSC

Fig. 1 Illustrates the differentiation of neutrophils and myeloid-derived suppressor cells from bone marrow to bloodstream and tumor
microenvironment. Red arrows indicate pathological activation. Within the tumor microenvironment, classically activated neutrophils hold
antitumor functions, whereas immunosuppressive polymorphonuclear myeloid-derived suppressor cells drive tumor-promoting inflammation
associated with poor oncological outcomes. The majority of monocytic myeloid-derived suppressor cells differentiate into TAM and
inflammatory dendritic cells contributing to immune suppression and chronic inflammation, DC dendritic cell, GMP granulocyte-macrophage
progenitor, IDC inflammatory dendritic cell, M macrophage, MB myeloblast, MDP monocyte/macrophage/dendritic cell progenitor, MM meta-
myelocyte, M-MDSC monocytic myeloid-derived suppressor cell, PMN-MDSC, polymorphnuclear myeloid-derived suppressor cell, TAM tumor-
associated macrophage. TME tumor microenvironment.
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in tumors, in which PMN-MDSC appeared very early in tumor
development and remained the most abundant PMN neutrophil
population [18].

NEUTROPHILS
Along with other cell types of the innate immune system—such as
natural killer cells, macrophages, and dendritic cells—neutrophils
constitute the first-line of cellular defense against invading
microbes and malformed host cells. During homeostasis, neu-
trophils are produced in numbers of 1011 cells/day in humans,
representing 50–70% of the circulating leukocytes and the largest
immune-cell population in circulation. In addition, neutrophils are
present in healthy tissues with striking tissue-driven heterogeneity
in their functions across different organs [24].
Primarily regulated by the microbiota, neutrophils survive for a

few hours to a few days and require a constant replenishment
from their granulocyte-monocyte precursors in the bone marrow
[25]. A study using deuterium oxide-labeled human neutrophils
estimated neutrophil half-life to be up to 5.4 days in vivo [26],
which contrasts with the previously estimated half-life of less than
one day based on ex vivo labeling [27].
Specifically, in a mouse model of head and neck cancer,

neutrophils infiltrated a tumor transplant within a few hours and
persisted in the TME for up to 3 days [28]. At sites of cancer and
inflammation, the exposure to cytokines such as the interleukin 1β
(IL1β) and granulocyte-colony-stimulating factor (G-CSF) and the
recognition of neutrophil pattern recognition receptors (PRR) by
damage-associated molecular patterns (DAMP) and pathogen-
associated molecular patterns (PAMP) increase the neutrophil
lifespan dramatically through inhibition of apoptosis [29].
In response to external physical and chemical properties in the

local environment, neutrophils make frequent shifts in function-
ality and express an arsenal of cytokines and proteolytic enzymes
[30] that are stored in their granules [31]. However, neutrophil
effector functions maintaining tissue health may also participate in
the initiation and progression of malignant transformation such as
modeling of extracellular matrix (ECM), angiogenesis, and release
of neutrophil extracellular traps (NET) that may aid in the
migration and dissemination of tumor cells [32–35].

Neutrophil life cycle
A fine balance between production, retention, mobilization,
and clearance tightly regulates the number of circulating
neutrophils. While the α-C-X-C chemokine receptor type 4
(CXCR4) signaling retains the neutrophils in the bone marrow,
the G-CSF signaling promotes the survival, proliferation, and
differentiation of granulocytic progenitor cells. Further, the
expression of G-CSF and interaction of IL8 with CXCR1/
2 subsequently drive the mature neutrophils into circulation
[36]. In inflammation, powerful inflammatory mediators such as
CXC chemokines, tumor necrosis factor-alpha (TNFα), leuko-
triene B4, IL8, and complement component 5a rapidly mobilize
neutrophil swarms (resembling the characteristics of swarming
insects), during which multiple neutrophils coordinate and
enhance their effector functions synergistically and aggregate
on the target [37].
Fascinatingly, the release of neutrophils and their clearance are

synchronized by a physiological circadian rhythm that releases
mature neutrophils in the early morning and in the night [38].
Migrating towards concentration gradients of the C-X-C motif
chemokine ligand 12 (CXCL12 - a CXCR4 ligand), aged or
exhausted neutrophils return from their field of action to be
phagocytized by macrophages in the bone marrow, spleen, liver,
and lungs. In response to this clearance, macrophages release
G-CSF that in addition to stimulating the production and release of
new neutrophils into the bloodstream, also enhances the
neutrophil effector functions [39].

The ligation of the neutrophil CXCR1/2 receptors by chemotac-
tic and angiogenic factors mediates the activation and migration
of neutrophils to the target areas. When penetrating the tissues,
neutrophils may switch chemoattractant preferences and func-
tional phenotypes [40]. Although the target tissues are regarded
as the main chemokine producers, neutrophils also produce these
chemokines to amplify the recruiting signals.
Human neutrophils express β1, β2, and β3 integrins (cluster of

differentiation [CD]-29, CD18, and CD61) that recognize ECM
components (fibronectin, fibrinogen, and collagen) and identify
locations for intravascular adhesion and transmigration from circula-
tion to the target area [41]. Once engaged by their ligands, the
conformation of these integrins changes to secure the anchoring to
the endothelial membrane and the activation of reactive oxygen
species (ROS) production [42]. ROS induces signals for the opening of
intercellular passages through which the leukocytes migrate. ROS and
inflammatory mediators induce the expression of the vascular cell
adhesion molecule 1 which functions as a scaffold for leukocyte
migration and as an effective ligand for the integrin α9β1, which is
highly and specifically expressed on neutrophils [43].
The interaction between neutrophils and endothelial cells

further stimulates the release of granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) to recruit new neutrophils and
increases the neutrophil lifespan by an auto-endocrine loop [44].
The tumor and mesenchymal cells in the TME express multiple

chemokines and cytokines (e.g., CXCL1, CXCL2, CXCL5, CXCL6, IL1,
IL1β, IL6, IL8, IL17, TNFα, and G-CSF), which are regulated by KRAS,
SNAIL, and NOTCH signaling [45–47].
These ligands, involved in the mobilization and recruitment of

neutrophils, are implicated in neutrophilia which is frequently
observed in patients with cancer.
The constant draw on the bone marrow by tumor-secreted

growth factors and TME-derived inflammatory mediators alters
hematopoiesis and triggers the production of PMN-MDSC with
aberrant effector functions and resistance to apoptosis (reviewed
in [48]). PMN-MDSC adheres to and cross the endothelial barrier
and follows the chemokine gradient to the target area [48–50].
The increasing PMN-MDSC and cytokine levels often also lead to
splenic infiltration and splenic production of PMN-MDSC, which
may eventually become the major source of these cells [51].
Upon downregulation of the main chemokine sensors CXCR1

and CXCR2 and upregulation of CXCR4, the majority of aged or
senescent neutrophils exit target tissues, re-enter circulation, and
return to the bone marrow, spleen, liver, and lungs where they
undergo apoptosis and phagocytosis; this phenomenon is called
reverse migration [52, 53]. Reverse migrating neutrophils are not
able to migrate back to the target tissue; however, they do have a
prolonged lifespan and increased capability of ROS production
within the circulation. In murine models of infection, reverse
migrating neutrophils were detected carrying live mycobacteria
and viruses from the infected area to the draining lymph nodes
[54, 55]. This could be a way to augment the adaptive immune
response but may also represent a route for spreading the
infection. Mechanistically, the reverse migration of neutrophils and
migration of tumor cells are much alike [56] and there have been
speculations if neutrophil reverse migration could support the
dissemination of tumor cells to the sites of neutrophil clearance,
which are indeed common sites of metastatic spread [6].

Neutrophil activation and killing mechanisms
Neutrophils possess diverse weaponry to eradicate invading
microorganisms and cells displaying non-self proteins. Upon
adhesion to neighboring cells or ECM components, neutrophils
are able to respond to a vast variety of environmental stimuli and
express extreme functional plasticity. Maturation stage, age,
cytokine- and PRR status, migratory capabilities, and NET formation
dictate their functionality;[57] however, a comprehensive under-
standing of neutrophil heterogeneity in cancer is lacking [58].
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Essential to tissue homeostasis, the phagocytic receptors on
neutrophils directly sense distinct molecular patterns that provoke
them to extend their membrane over the target followed by
internalization, fusion with lysosomes, and protein degradation.
Transformed host cells or invading pathogens display DAMP and
PAMP that are intercepted by PRR on neutrophils, e.g., toll-like
receptors and nucleotide-binding oligomerization domain (NOD)-
like receptors that trigger the production of multiple cytokines
and chemokines such as TNF, interferon-gamma (IFNγ), IL1, IL3,
IL8, CXCL1, CXCL2, CXCL4, and CXCL5 as well as G-CSF, GM-CSF
and leukotriene B4. Together, these signaling molecules cause a
massive swarming of neutrophils to the target areas [59].
In proximity to T cells and following the exposure to specific

cytokines like GM-CSF, IFNγ, and IL3, neutrophils are able to express
the major histocompatibility complex II and acquire antigen-
presenting phenotypes. They may even express co-stimulatory T cell
receptor molecules and assist in the activation of T cells [60].
Like other innate immune cells, neutrophils kill their target by

detecting activating ligands on target cell membranes and release
of cytotoxic contents (proteases and ROS) from their granules [61].
Further, neutrophils are capable of mediating antibody-

dependent cellular cytotoxicity by recognition of antigenic
epitopes by immunoglobulin Fc receptors [62]. The ligation of
neutrophil FcγRIIA or FcγRIIIB immunoglobulin-family receptors
triggers the production and release of ROS such as hydrogen
peroxide, hypochlorous acid, and various enzymes such as
myeloperoxidase, elastase, and matrix metalloproteinases (MMP)
that damage the target cell membranes, nucleic acids, and
proteins. Meanwhile, the neutrophils themselves are endogen-
ously protected from the oxidative stress they cause. In cancer
cells, the lethal effects depend on the expression of the transient
receptor potential channel subfamily M member 2, an H2O2-
dependent Ca2+ channel, whose activation leads to a lethal influx
of calcium ions [63]. Indeed, in a mouse model of breast cancer,
H2O2 production by neutrophils inhibited metastatic seeding in
the lungs [64]. Furthermore, ROS stimulates the production of
proinflammatory cytokines (TNFα and CXCL2) and activates the
release of proteases and the formation of NET [65].
As ROS are unstable oxygen-containing molecules with extreme

reactivity due to an unpaired electron, excessive or long-term ROS
production can cause significant tissue damage and may contribute
to carcinogenesis due to oxidative DNA damage and genetic
instability. Further, ROS inhibit T-cell differentiation and activation
and increase T-cell death influencing the expression of BCL2 and
FASLG that are involved in apoptosis [66]. In addition, the neutrophil

killing mechanisms involve trogocytosis, which is a direct mechanical
disruption of the target cell plasma membrane and transferal of
membrane fragments by endocytosis into the neutrophil. This
mechanism is induced by target cell antibody coverage and directly
augments neutrophils’ killing capacity [67] and may influence the
immunotherapeutic efficacy.

NET formation (NETosis)
Neutrophils can expel web-like structures of protein-covered
nucleic acids called as the NET, which are known to immobilize
and neutralize pathogens (Fig. 2). Neutrophils are able to sense
the size of a target and selectively release the NET in response to
abnormal cells and large pathogens, but not in response to
smaller targets such as single bacteria [68].
However, in cancer, NET may also trap CTC, promote extravasation,

awaken dormant cancer cell, and prevent the physical interaction
between cytotoxic immune cells and tumor cells [69].
Mechanistically, antigens triggering PRR and ligating Fc

receptors cause an active fusion of the nuclear and cytoplasmic
membranes of the neutrophils. This fusion results in the
extracellular release of DNA filaments on which vast amounts of
neutrophil-derived enzymes such as neutrophil elastase, myelo-
peroxidase, and cathepsin G get bound. The expulsion of NET
results in immediate neutrophil cell death due to plasma
membrane rupture; however, neutrophils may also release NET
along with exocytosis of granules without dying and without the
DNA loss having any impact on their lifespan and ability to
phagocytose pathogens [70].
A systematic review analyzing the role of NETosis in disease

progression in patients with colorectal cancer (CRC) revealed that the
level of NET in the peripheral blood was associated with reduced
recurrence-free survival [71]. Furthermore, NET formation due to
surgical inflammation and complications facilitated tumor growth and
outgrowth of tumor cells in pre-metastatic niches [71, 72].
Notably, in neutrophils derived from patients with hepatocel-

lular carcinoma (HCC), NET trapped HCC cells, induced resistance
to apoptosis, and enhanced invasiveness by internalization of the
genetic material from NET into the trapped HCC cells [73].
The uncontrolled NET formation has deleterious consequences

in liver, lung, and kidney damage and in cancer-associated
vascular thrombosis which is observed in 20% of the patients with
cancer [74].
Citrullinated histone H3 is a specific biomarker for NET

formation. An elevated level of citrullinated histone H3, a key
step in NET formation, is associated with increased short-term
mortality in patients with cancer [75]. The H3 citrullination is a
post-translational epigenetic conversion of histone arginine to
citrulline, that loosens the tightly wound chromatin structure and
promotes gene transcription.
Peptidyl-arginine-deiminase 4 (PAD4), the enzyme responsible for

the conversion of arginine to citrulline and the citrullination of
histones, is required for NET formation. In murine cancer models,
PAD4 inhibitors inhibited NET, reverted the CD8+ T-cell exclusion, and
improved the efficacy of immune checkpoint inhibitors (ICI) [76].
Although this enzyme inhibition offers a novel mode for targeted
treatment, no PAD4 inhibitor has yet reached clinical trials.
Additionally, arginine deaminase and histone deacetylase

inhibitors that block citrulline production and transcriptional
repression are under evaluation as new targets in clinical trials
[77, 78]. The novel drugs under investigation target important
pathways involved in cell death, angiogenesis, and DNA repair.

PROGNOSTIC VALUE OF NEUTROPHIL-TO-LYMPHOCYTE RATIO
AND CIRCULATING PMN-MDSC
Considered a surrogate marker of inflammation status and
adaptive immune surveillance, neutrophil-to-lymphocyte ratio
(NLR) gauges the balance between the two. Even though a

Fig. 2 The neutrophil extracellular trap. A collapsing neutrophil
has expelled its web to trap bacteria (Photo and permission by
Volker Brinkmann, Max Planck Institute for Infection Biology, Berlin,
Germany).
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direct association between NLR and prognosis cannot be made
for all types of cancers, a pre-treatment NLR within the top 20th

percentile of any type of cancer is significantly associated with
poor overall survival (OS) and progression-free survival (PFS)
[79].
Further, elevated NLR is associated with low rates of response to

ICI across multiple solid cancers including non-small cell lung
cancer (NSCLC) [80], breast cancer [81], metastatic melanoma [82],
prostate cancer [83], CRC [84], PDAC [85], renal cell carcinoma
(RCC) [86], HCC [87], cholangiocarcinoma [88], ovarian cancer [89],
and sarcoma [90]. Neutrophilia with an NLR ≥4 correlates with
inferior disease-free survival (DFS) and OS in patients with
mesothelioma, PDAC, RCC, and CRC as well as cancer-associated
thrombosis [91–93].
An elevated NLR might be associated with a higher frequency of

tumor-infiltrating neutrophils as demonstrated in patients with
pancreatic cancer [94]. however, a general association between
the NLR and the extent of neutrophil infiltration cannot currently
be made or extrapolated to all cancer types.
In lung cancer, although the surgical resection was followed by

a reduction in peripheral neutrophil counts, preoperative levels of
circulating neutrophils and TAN were positively correlated with
tumor burden and independently associated with a worse OS (p
= 0.002) [95]. Likewise, a high neutrophil-to-CD8+ T cell ratio
correlated to poor DFS and OS in patients with resectable
esophageal squamous cell carcinoma [96].
In laryngeal cancer, there was a significant positive associa-

tion between high NLR values, programmed cell death-ligand 1
(PD-L1) combined positive score <1 (indicating the number of
PD-L1 positive cells in relation to total tumor cells), T count rate
<30%, and poor outcome highlighting the relationship
between circulating immune cells and the TME characteristics
[97].
In 2,280 patients with CRC undergoing primary tumor resection,

both the NLR and the lymphocyte-monocyte ratio (LMR) were
monitored preoperatively and postoperatively. Consistently low
NLR and LMR were associated with vastly improved median OS
compared to a high NLR and LMR at either interval [98]. Moreover,
in a cohort of 1,744 patients undergoing curative CRC resection,
the NLR was the only independent prognostic factor for poor OS
and cancer-specific survival and superior to both the LMR and
platelet-to-lymphocyte ratio [99].

PMN-MDSCTME

In concert with tumor-derived chemokines (e.g., CXCL1, CCL2, and
INFγ), CXC chemokines produced by tissue-resident immune cells
promote the accumulation of neutrophils within the TME. Here, G-
CSF, GM-CSF, transforming growth factor β (TGFβ), TNFα, IFNγ,
IFNβ, and IL17 overexpressed by tumor cells, cancer-associated
fibroblasts, and TAM drive the phenotypic switch that promote
the reprogramming of neutrophils [6] and upregulate the
immunosuppressive capacity of PMN-MDSC arriving from the
circulation [18]. It has been demonstrated in murine models that
PMN-MDSCTME share similar surface markers with circulating PMN-
MDSC including CD11bhigh, CD15high, CD16high, CD66bhigh, HLA-
DR−, Arg1high, and LOX1high [20, 100, 101]. Nevertheless, it is
important to note that there is remarkable plasticity and
phenotypic range between neutrophils and PMN-MDSCTME.
Single-cell RNA sequencing has confirmed the co-existence of

classical PMN and PMN-MDSC in tumors in which PMN-MDSC
appeared very early in tumor development and remained the
most abundant PMN population [18].
The PMN-MDSCTME overexpresses a variety of pro-tumorigenic

cytokines, chemokines, and adhesion molecules and apart from
ROS, the cytoplasmic granules contain a variety of enzymes
(myeloperoxidase, elastase, and MMP such as collagenase [MMP8]
and gelatinase B [MMP9]). MMP remodels the ECM to promote
tumor cell migration (by degradation and realignment of collagen
fibrils) and accelerate angiogenesis, thus counteracting the effects
of anti-angiogenic molecules (reviewed in [6]).
Proteases, elastase, and MMP derived from PMN-MDSC NET

induce cell motility and proliferation of dormant tumor cells by
the activation of integrin α3β1 signaling pathways [35, 102]. Along
with tissue-resident stromal cells, PMN-MDSC also supports the
formation of pre-metastatic niches as well as the colonization and
outgrowth of disseminated tumor cells [103, 104] (Fig. 3).
PMN-MDSC are able to metabolize cysteine, L-arginine, and

L-tryptophan which are essential for T cell functions. The lack of
these compounds drives the differentiation of CD4+ T cells into
regulatory T cells and inhibits T cell proliferation and T cell
receptor assembly and thus rendering T cells anergic and
unresponsive to antigen-specific stimulation. Further, nitration of
CCL2 by MDSC-derived nitric oxide, prevents the infiltration of
T cells into the central tumor confining them to the peripheral
stroma [105].

Fig. 3 An overview of malignancy-associated mechanisms promoted by myeloid-derived suppressor cells. MDSCs inhibit CD4 and CD8
T cells while inducing regulatory T cells (Tregs). Through matrix metalloproteinases, MDSC promotes angiogenesis and enhances metastasis
through anti-inflammatory mediators such as TGF-β and IL-10. Through IL-10, MDSCs also modulate dendritic cells and macrophages. ARG1
Arginase-1, ECM extracellular matrix, EMT epithelial–mesenchymal transition, INOS inducible nitric oxide synthetase, MMP metalloproteinase,
GM-CSF granulocyte/macrophage colony-stimulating factor, PG prostaglandin E, VEGF vascular endothelial growth factor.
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In a mouse lung cancer model and in a KRAS-mutant human
lung adenocarcinoma cell line (A549), elastase-induced degrada-
tion of insulin receptor substrate 1 leads to increased proliferation
of tumor cells in both settings [106]. Furthermore, CCL17—a
downstream mediator of GM-CSF and recruiter of immunosup-
pressive regulatory T cells—was found to be one of the most
strongly upregulated genes among PMN-MDSCTME that correlated
with disease progression and poor prognosis [107].
Several studies (that use the term TAN without distinguishing

between classically activated neutrophils and pathologically activated
PMN-MDSCTME) have shown a correlation between TAN levels and
poor prognosis in PDAC, HCC, melanoma, gastric cancer, RCC, and
gliomas [93]. Variations in prognostic significance of TAN may be
explained by variations in the geographical distribution of TAN within
the TME, with intra-tumoral TAN having a stronger association with
metastasis and poor outcome than peritumoral localization. This was
most dramatically demonstrated in RCC, head, and neck squamous
cell carcinoma, and lymphoma with hazard ratios for OS >2 [28, 93]. In
CRC, TAN may predominantly be found at the invasive front and in
the presence of tumor budding and marked TGFβ expression, both
predicting a poor prognosis [108]. Notably, a meta-analysis of 18,000
tumor tissue samples revealed intra-tumoral PMN-MDSCTME gene
expression signatures to be the strongest predictor of poor survival
across all cancer types [17]. Overall, the identification of PMN-
MDSCTME offers a wide scope in furthering our understanding of their
functions and improving diagnostic and treatment trajectories.

Neutrophils and metastases
Precisely how reverse migrating neutrophils eventually could
support tumor cell migration is currently unknown. However, a
pre-clinical study demonstrated that lipid-laden PMN-MDSC
served as an energy source that fueled CTC during migration [19].
In a murine lung cancer model, cyclooxygenase (COX) and PGE2

pathways promoted mesenchymal cells in the TME to increase the
expression of genes (Hilpda and G0s2) associated with repro-
grammed lipid metabolism in PMN-MDSC to increase the uptake
and storage of lipids. The lipid-laden neutrophils served as an
energy source to fuel metastatic tumor cells, augmenting their
proliferative and metastatic capacity [109].
In another murine study, PMN-MDSC selectively and signifi-

cantly upregulated the fatty acid transporter protein 2 (FATP2) and

the uptake of free fatty acids [105]. Through STAT5, GM-CSF
controlled the expression of the FATP2-encoding gene SLC27A2,
and an increased turnover of PMN-MDSC even reinforced lipid
transfer. Interestingly, inhibition of FATP2 by lipofermata showed a
reduction in tumor size in various murine models [21].
Traveling in clusters with CTC, PMN-MDSC supports cell cycle

progression and survival of CTC by delivering energy-rich lipid
vesicles [19, 109] (Fig. 4). Confirmed by high levels of Ki67 in CTC
from neutrophil clusters, it was demonstrated that the proximity
to neutrophils promoted CTC proliferation and plasticity within
the circulation, and conferred CTC from these clusters with an
increased metastatic potential [19]. In invasive breast cancer,
circulating clusters of tumor cells and leukocytes are more prone
to resulting in metastases than solitary CTC and thus lead to a
significantly worse PFS [110].

TARGETING PMN-MDSC
It is now clear that PMN-MDSC induce immunosuppression and
escape of tumor cells from host immunity. As the impact of
neutrophils on anticancer therapy is unraveled, the immune profiles
of the peripheral blood and TME are receiving ever-increasing interest
from researchers. The role of PMN-MDSC in directly facilitating cancer
cell migration and metastasis is also evident but the knowledge of the
molecular mechanisms involved is still limited. At the same time, it is
also not apparent in what phase of the patient trajectory the
interventions targeting PMN-MDSC would have the greatest impact
on curative treatment strategies in relation to surgery (perioperative
strategies) or in stage IV cancer either as monotherapy or as adjuncts
to other local or systemic treatments.
Circulating PMN-MDSC, as well as PMN-MDSCTME, can induce

resistance to DNA-alkylating agents (gemcitabine and 5-fluorouracil)
through exosomal delivery of miRNA to tumor cells to augment the
repair of double-stranded breaks in the DNA [111, 112]. In addition,
they confer resistance to ICI by increasing the expression of immune
checkpoint proteins and tyrosine kinase inhibitors (VEGF- and mTOR
inhibitors) through VEGF receptor, IL17, and PI3K/platelet-derived
growth factor receptor (PDGFR) signaling [113].
Depletion of neutrophils is currently only achievable by extra-

corporeal granulocytapheresis, which has been used in selected cases
of non-malignant disease [114]. However, the interruption of a

Fig. 4 PMN-MDSC travel in clusters with CTC and stromal cells in the bloodstream. PMN-MDSC fuel the proliferation and survival of CTC by
providing them with energy-rich lipid vesicles. The proximity of PMN-MDSC to CTC promotes the plasticity of CTC and increases their
metastatic potential. In the TME, PMN-MDSCs accelerate their own lipid transfer, uptake, and storage of lipids through increased expression of
FATP2, HILDPA, and LOX1 proteins. CTC circulating tumor cell, FATP2 fatty acid transporter protein 2, FFA free fatty acids, HILDPA hypoxia-
inducible lipid droplet-associated protein, LOX1 lectin-like oxidized low-density lipoprotein receptor.
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number of signaling pathways that may represent treatment targets
has been identified and pursued in drug development [115]. In the
following sections, we will present the major therapeutic strategies
areas involving targeting PMN-MDSC.

Immunotherapy
Immunotherapy includes ICI that revitalizes dysfunctional T cells,
adoptive cell transfer using CD8+ T cells equipped with synthetic
chimeric antigen receptors (CAR-T) that enhance T cell functionality,
and antibody-based therapies targeting cancer-specific antigens.
Despite showing positive responses initially, immunotherapies

may lack a long-term effect and cause side effects that may lead
to their discontinuation; this emphasizes the need for the
development of long-lasting and safer therapeutic approaches.
A major challenge to the success of ICI therapy is the low levels

of infiltrating lymphocytes in solid cancers (e.g., PDAC, triple-
negative breast cancer, and CRC) [116]. TAN may directly inhibit
effector T cell functions, contribute to immune exclusion, and
recruit regulatory T cells (reviewed in [117]).
Targeting the tumor-promoting or tumor-protecting functions

of PMN-MDSC may increase the efficacy of ICI and even expand ICI
indications. Especially drugs that may influence PMN-MDSC-
mediated immune exclusion, NET-mediated ICI resistance, NET-
related thrombosis, and NET-mediated side effects to ICI therapy
have been attractive prospects [117].
In HCC, circulating PMN-MDSC had a substantial PD-L1

expression, and the expression was even higher in the PMN-
MDSCTME [118] suggesting that PMN-MDSC are powerful players in
T-cell exhaustion and important targets for anti-programmed cell
death 1 (PD1) and/or anti-PD-L1 antibodies.

In laryngeal cancer, a PD-L1 CPS ratio ≥1 and a TIL count ≥30%
within the TME were positively associated with higher DFS and
reduced recurrence [97].
Anti-PD1 antibody therapy has become the first-line therapy for

most patients with NSCLC either as monotherapy for PD-L1-high
tumors or in combination with conventional chemotherapy for
PD-L1-low tumors. Tissue analyses of patients with NSCLC
demonstrated a subgroup of patients in which the presence of
high numbers of PMN-MDSC was most likely responsible for
preventing CD4+ and CD8+ T cell infiltration. These patients were
resistant to ICI therapy and the CD8+ T cell/neutrophil ratio within
the tumor stroma could effectively distinguish between respon-
ders and non-responders [119].
Preclinical studies point towards synergistic effects of the

epigenetic modifiers entinostat (histone deacetylase inhibitor) and
5-azacytidine (DNAmethylation blocker) in combination with ICI [120].
Currently, massive clinical efforts on immune profiling have

been undertaken, but very few targeted MDSC therapeutics in
combination with ICI have reached the clinic.
Developers of antibody therapies search to expand the

possibilities of bi- and tri-specific monoclonal antibodies and cell
engager constructs (Fig. 5) that bind different targets simulta-
neously, such as securing the immunological synapse between
effector cells and tumor cells whilst blocking the disease-related
pathways. So far, only one such antibody (blinatumomab) has
been approved by FDA for the treatment of lymphoblastic
leukemia. As with CAR-T therapy, the progress is slow for
antibodies targeting solid tumors due to the lack of unique tumor
antigens. Moreover, several trials in the pipeline have been halted
because of the futility or toxicity of the products. The safety issues

Fig. 5 Schematic examples of bi- and trispecific antibodies and cell engager molecules. Bi- and tri-specific antibodies are engineered
molecules designed to simultaneously bind two or three different targets, respectively. They are recombinant proteins with variable Fab
regions or fragments of light chains. Novel antibodies under current clinical investigation target either one or two T-cell receptors (e.g., CD3
and CD28) and a tumor-specific (and stably expressed) antigen (e.g., CD19, CD38, HER2) with limited distribution in normal tissue to reduce
off-target effects. CD3 binding induces T-cell stimulation and drives the T cell to the tumor cell. CD28 binding mediates co-stimulatory signals
to fully activate the T cell receptor, reduce the release of non-specific cytokines, and increase the expression of Bcl-xL that blocks T-cell
apoptosis. When the antibody anchors the T cell to the tumor cell epitope, it forms a synapse that leads to cytotoxic cytokine release, target
cell killing, and T-cell proliferation. Through serial lysis, individual T cells are able to induce multiple tumor cell killings. Bispecific engager
molecules: The variable antigen-binding regions of the heavy and light chains can be fused together to form a single-chain variable fragment
(scFv), which is only half the size of the Fab fragment but still retains the specificity of the parent antibody. These molecules are recombinant,
scFv fusion protein constructs comprised of the antigen-binding regions (variable heavy and light chains) of two antibodies bound together
by linker peptides (usually Ser-Gly peptide linkers). An engager molecule binds with e.g., CD3 on T cells (bispecific T cell engager—a BiTE) or
CD16 on NK cells (bispecific killer-cell engager—a BiKE). The other arm binds to a tumor-associated antigen (e.g., HER2). Tri- and tetra-specific
killer-cell engagers (TriKEs and TetraKEs) have been designed and are currently under clinical evaluation. Fab region the fragment antigen-
binding region that binds to antigens is composed of one constant and one variable domain of each of the heavy and the light chain. FC
region the fragment crystallizable region is the tail region of the antibody that interacts with cell surface Fc receptors. VL variable light chain,
VH variable heavy chain.
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are currently being addressed by T cell engager technologies,
where specific tumor proteases unmask and activate the antibody
pro-drugs [121].

CHEMOKINE INHIBITORS
PMN-MDSC actively communicate with cancer cells through
inflammatory mediators and growth factors such as IL8 [122],
IL17a [123], CCL2 [124], TNFα [125], BV8, VEGFα [126], and TGFβ
plays important roles in various aspects of tumor cell dissemina-
tion, invasion, and angiogenesis. High IL8 expression has been
shown to correlate negatively with T-cell markers and IFNγ-
dependent gene signatures in the TME leading to the conclusion
that mechanisms of T-cell exclusion and immunosuppression
involve PMN-MDSC [19, 127]. Anti-IL8 antibodies are currently
being evaluated as monotherapy or in combination with ICI in
several clinical trials (Table 1).
Chemokines receptors and their ligands play prominent roles in

neutrophil trafficking. CXCR1/2 are highly expressed by neutrophils,
and guide them to their dominant ligand IL8 and alternate ligands
(CXCL1, CXCL2, CXCL5, and CXCL6) that are elevated in many cancers
and regulated by various factors in the TME (as reviewed in [128]).
Aiming to block tumor cell migration, the CXCR1/2 antagonists have
begun to reach the clinic (Table 1). The CXCR1/2 inhibitors (reparixin,
SX-682) have been in clinical trials in combination with paclitaxel for
breast cancer (NCT01861054, NCT02370238, and NCT02001974);
however, results have not been published yet. Similarly, an ongoing
stage 2 clinical trial (NCT03473925) on advanced microsatellite-stable
CRC, castration-resistant prostate cancer, and NSCLC is investigating
NET formation during combination therapy with a CXCR1/2
antagonist (navarixin) and PD1 inhibitor (pembrolizumab).
The binding of CXCL12 (stromal cell-derived factor 1) to CXCR4

on tumor cells enhances proliferation, either via MAPK or PI3K/Akt
pathways, and CXCL12 also recruits immunosuppressive cells as
Tregs and MDSC that contribute to immune evasion [129]. The
CXCR4 inhibitor ulocuplumab has been investigated in hemato-
logical malignancies (NCT01120457, NCT01359657). Notably, one
study on ulocuplumab in PDAC and small cell lung cancer was
terminated due to futility (NCT02472977).
To decrease or inhibit neutrophil recruitment to tumors, the

CXCR1/2 antagonist reparixin is currently being tested in
combination with paclitaxel as first-line therapy in patients with
metastatic triple-negative breast cancer (NCT02370238). SX-682,
another CXCR1/2 inhibitor is being investigated in pancreatic
ductal adenocarcinoma (PDAC) and metastatic melanoma
(NCT04477343 and NCT03161431), whereas the selective CXCR2
inhibitor AZD5069 is being evaluated in metastatic castration-
resistant prostate cancer (NCT03177187).
IL17a is an immune and inflammatory mediator with multiple

biological activities. IL17a is widely found in the inflammatory
microenvironment of various tumors and is involved in tumor cell
dissemination, chemotherapy resistance, and immunosuppres-
sion. In a study, where TAN was isolated from patients with gastric
cancer, it was demonstrated that IL17a derived from these cells
promoted the epithelial-mesenchymal transition through JAK2/
STAT3 signaling. The use of a neutralizing antibody inhibited the
TAN stimulated activities that also included enhanced migratory
and invasive capabilities [130].
The effects of CJM112 (anti-IL17A and anti-IL17F) therapy on the

PMN-MDSC compartment is currently being evaluated in multiple
myeloma (NCT03111992; Table 1).
The role of anti-TNFα monoclonal antibodies such as infliximab

in cancer is still debated. Anti-TNF therapy is currently used to
treat ICI complications like colitis. In some cases, anti-TNF
treatment seems to boost the ICI response without increased risk
of later recurrence [131]. The efficacy of anti-TNF therapy in
combination with ICI in advanced melanoma is being evaluated in
an ongoing clinical trial (NCT03293784).

TGF-β inhibitors
Overexpression of TGFβ by tumor cells is a major suppressor of
both adaptive and innate immune responses, promoting all stages
of tumor development in several cancer types [132]. Besides
polarizing neutrophils into PMN-MDSC, TGFβ is also a strong
neutrophil chemoattractant and its inhibition could potentially
result in impaired neutrophil recruitment [133, 134]
Galunisertib is a novel TGFβ receptor 1 kinase inhibitor that was

recently investigated in a phase I trial in combination with anti-PD-
L1 in patients with recurrent and/or refractory metastatic
pancreatic cancer; however, the clinical activity was limited. The
investigators suggested that the combination could be more
effective in an earlier line of treatment [135].
Multiple trials on TGFβ receptor inhibitors often in combination

with ICI or standard therapies are ongoing (Table 1; ClinicalTrials.
gov).

Tyrosine kinase inhibitors (TKI)
Translocations, amplifications, and mutations activate many
tyrosine kinases (TK) in cancer. TK is directly implicated in all
disease stages and are major targets for drug discovery. Already,
multiple TKI targeting EGFR, ALK, ROS1, HER2, NTRK, VEGFR, RET,
MET, MEK, FGFR, PDGFR, and KIT have been developed and more
than 40 drugs have gained FDA approval in cancer therapy [136].
The spleen tyrosine kinase (SYK) is especially important for the

neutrophil Fc receptor and β2 integrin signaling and thus selective
SYK inhibitors have been developed and are under investigation
for hematological malignancies (See trial details in Table 2).
On 21 March 2021, FDA approved lorlatinib (Lorviqua), a 3rd

generation small-molecule TKI, for anaplastic lymphoma kinase-
positive NSCLC. Preclinical trials on PDAC and CRC models were
recently conducted to study the effect of this molecule in other
solid cancers with heterogeneous TME [21]. In PDAC, lorlatinib
modulated neutrophil development and recruitment from the
bone marrow through abrogation of G-CSF, GM-CSF, and
CXCL1 signaling that reduced the number of TAN. Further, the
amount of ECM and the size of PDAC tumors and metastases were
reduced. Through elevated levels of tumor-infiltrating CD8+

T cells, lorlatinib increased the therapeutic response to anti-PD-1
treatment and improved survival. In the CRC arm of the trial,
hepatic metastases were initiated by intrasplenic injections of
organoid-derived CRC cells. Lorlatinib reduced the growth of
metastases and the number of neutrophils in the lesions; however,
there was no significant change in the number of metastases in
the study group when compared to that in the control group
[137].
In general, TKI may block several (and irrelevant) kinases and it

is therefore critical to develop more selective antibodies since
multi-targeting TKI can cause unnecessary off-target toxicities. The
next-generation kinase inhibitors will probably show an improved
selectivity and an ability to combat resistance mechanisms and
maybe play a key role in immune signaling to complement
immuno-oncology approaches [138]. Furthermore, interventions
with kinase inhibitors before the onset of more advanced
metastatic disease could be a significant step towards improving
the efficacy and overall survival efficacy of kinase inhibitors.

Prostaglandin E2 and COX inhibition
The COX enzymes (mainly COX2) degrade cell membrane
phospholipids and trigger the release of PGE2. Apart from
increased mitogenic signaling, genomic instability, and suppres-
sion of apoptosis, PGE2 release by PMN-MDSC and PMN-MDSCTME

represents an important mechanism of T-cell suppression.
Multiple preclinical trials have demonstrated the potential for

COX2 inhibition to increase the efficacy of immunotherapy and
several clinical trials on COX2 inhibitor and ICI are ongoing. One
important caveat is that COX2 inhibitors are linked to GI bleeding
and cardiovascular events, including death, meaning that the
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safety profile of COX2 in combination with ICI will have to be
firmly defined prior to broader clinical use. A specific PGE2
receptor inhibitor, grapiprant, is currently tested in combination
with ICI for microsatellite-stable CRC and NSCLC (Table 3).
Whereas NET traps CTC and fuels the metastatic process, anti-

inflammatory drugs like acetylic salicylic acid, an unselective,
irreversible COX inhibitor, proved effective in inhibiting HCC
metastasis in combination with DNase 1 through multiple
mechanisms among others by blocking and digesting NET and
abrogating the metastatic potential of trapped HCC cells. The use
of well-known anti-inflammatory drugs in combinatory regimens
is likely to be developed.
Recently, it was reported that the expression of FATP2

accelerates the uptake of triglycerides by PMN-MDSC and that
lipid-laden PMN-MDSC plays critical roles in PMN-MDSC mediated
T-cell suppression and supported migrating tumor cells. In vitro,
FATP2-deficient neutrophils show low ability to suppress T-cell
proliferation, and lipofermata, a FATP2-inhibitor, reduced tumor
growth and increases sensitivity to anti-CTLA-4 immunotherapy.
Nonetheless, lipofermata has not yet reached the clinic [21].

DISCUSSION
Exhibiting marked heterogeneity and functional versatility, neu-
trophils are the protagonists during immune responses. Although
they are crucial to our health, pathological activation and impaired
resolution of neutrophils can cause chronic illness and cancerous
tissue transformation. Malignancies are often associated with the
expansion of the neutrophil compartment and cancer-mediated
neutrophilia has been demonstrated in several cancers. Displaying
immense plasticity and cross-talk with other cell types, escalating
levels of PMN-MDSC tend to accumulate in the circulation and in
the TME regardless of the tumor type or stage.
The increasing numbers of PMN-MDSC correlate with poor

outcomes in several solid cancers such as RCC, melanoma, CRC,
HCC, head and neck cancer, and NSCLC [17]. The data from
preclinical tumor models underlines the significant therapeutic
effects of eliminating PMN-MDSC, which make PMN-MDSC
extremely relevant targets. Although their turnover and excep-
tional plasticity make PMN-MDSC formidable adversaries, several
therapeutic strategies targeting PMN-MDSC functions are being
investigated clinically (Tables 1–3).
PMN-MDSC use multiple mechanisms to suppress anticancer

immunity and their depletion as a treatment modality seems like
an appealing concept; however, depletion of PMN-MDSC is not
feasible in humans currently. On the brighter side, a number of
signaling pathways that may represent potential treatment targets
have been identified. The identification of specific molecular
markers of PMN-MDSC represents a significant advancement in
the classification of these cells. Ongoing improvements in
sequencing techniques and proteomics will further guide us in
the quest for finding novel immunotherapeutic targets.
In addition to ICI revitalizing the tumor-infiltrating cytotoxic

immune cells, engineered biologics such as adoptive immune-
cell therapies, T-cell engagers, and multi-specific antibodies are
likely to reach the clinic in the near future. To further improve
outcomes, targeting PMN-MDSC may be key for next-
generation immunotherapies.
To address the versatility of PMN-MDSC, the cross-talk with cell

populations within the TME, and their potential reprogramming,
future studies should investigate tissue-resident stromal and
immune cells as well as the origin of PMN-MDSC outside of the
tumor bed, i.e. the bone marrow and spleen.
When it comes to the treatment of solid cancers, surgical

resection remains the therapeutic mainstay. However, a
substantial number of patients experience disease recurrence
after radical surgery. Paradoxically the surgical injury may
enhance the dissemination of tumor cells and the growth of

residual cancer tissue by suppression of innate and adaptive
immunity as well as accelerating the expansion of MSDC.
Preclinical and clinical studies indicate that the expansion and
levels of MDSC correlate with the disease stage and the
magnitude of the surgery-induced inflammatory response
(surgical stress response). However, results are not univocal
and conflicting evidence exists [139–141]
Apart from the suppression of anticancer immunity, MSDC

supports the formation of pre-metastatic niches (fertilize the soil)
and reinforces the survival, proliferation, and extravasation of CTC
(sow the seeds). Evidence is scarce regarding the direct impact of
surgery on MDSC, however, research points towards MDSC as the
central players orchestrating the diverse and complicated machin-
ery of postoperative metastasis formation [16]. The perioperative
period should attract attention with the aim of targeting MDSC and
identifying the optimal window of opportunity.
The shift in perspective in which we use translational research

and focus on molecular alterations in cancer has opened the door
for individually targeted therapies. Nonetheless, we need an
integrated approach to look at the combined interactions
between tumor cells and immune cells similar to that shown by
Pelka et al. [142].
Subsequently, we must assimilate advanced datasets to

evaluate the heterogeneity of immune responses and tumor
profiles across patients and assess the impact on disease
development in order to tailor optimal personalized therapies.
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