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Loss of p53 suppresses replication stress-induced DNA damage
in ATRX-deficient neuroblastoma
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Genetic aberrations are present in the ATRX gene in older high-risk neuroblastoma (NB) patients with very poor clinical outcomes.
Its loss-of-function (LoF) facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells and is strongly linked to
replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary structures. However, limited information is
available on ATRX alteration-related NB tumorigenesis. We herein knocked out (KO) ATRX in MYCN-amplified (NGP) and MYCN single
copy (SK-N-AS) NB cells with wild-type (wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 technologies. The
loss of ATRX increased DNA damage and G4 formation related to RS in TP53 wt isogenic ATRX KO NGP cells, but not in SK-N-AS
clones. A gene set enrichment analysis (GSEA) showed that the gene sets related to DNA double-strand break repair, negative cell
cycle regulation, the G2M checkpoint, and p53 pathway activation were enriched in NGP clones. The accumulation of DNA damage
activated the ATM/CHK2/p53 pathway, leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce RS related
to DNA damage response (DDR) in TP53-truncated SK-N-AS cells. p53 inactivation abrogated cell cycle arrest and reduced G4
accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi anemia group D2 protein (FANCD2) with
ATRX deficiency, suggesting that ATRX maintained genome integrity and p53 deficiency attenuated RS-induced DNA damage in NB
cells featuring inactivated ATRX by regulating DNA repair mechanisms and replication fork stability.
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INTRODUCTION
Neuroblastoma (NB) is a pediatric tumor of the sympathetic
nervous system that accounts for 8–10% of all childhood cancers
and 15% of pediatric oncology deaths. Genomic studies revealed
that patients with high-risk NB frequently harbored recurrent
MYCN amplification (37%), TERT rearrangements (23%), and alpha
thalassemia mental retardation X-linked (ATRX) mutations or
deletions (11%) [1, 2]. Mutations in ATRX were found to be
mutually exclusive with TERT promoter mutations and MYCN
amplification, and defined a distinct subgroup of older NB patients
with poor outcomes [1–3]. In addition to human NB, loss-of-
function (LoF) mutations in ATRX have frequently been detected in
multiple malignancies [4–7], and have been implicated in the
telomerase-independent telomere maintenance alternative
lengthening of telomeres (ALT) mechanism, which has been
reported in 24% of high-risk NB [8–10]. The ATRX/DAXX complex
was found to be less abundant in ALT-positive NB tumors due to
ATRX mutations (55%) or low protein expression [9], which
supports the relationship between the ATRX status and ALT.
Previous studies described a link between the loss of ATRX,
replication stress (RS), DNA damage, copy number alterations, and
genomic instability [11–15]. ATRX has more recently been
suggested to bind to the G-quadruplex (G4) structure [16], with
its loss leading to an increase in the G4 structure or the formation
of stable DNA:RNA hybrids (R-loops), which is considered to

induce replication fork stalling and collapse and the generation of
DNA double-strand breaks (DSBs) at telomeres, suggesting a role
for ATRX in the resolution of the G4 structure and regulation of
R-loops [11, 17]. ATRX also forms a complex with DAXX to deposit
H3.3, which prevents the formation of the G4 structure [11, 18, 19]
or R-loops [17], thereby maintaining fork stability during acute RS.
A recent study demonstrated that somatic mutations in TP53

pathway genes were significantly enriched in ALT-positive tumors
[9]. Furthermore, p53 pathway aberrations were frequently
detected in ALT NB cell lines [20]. In ALT-positive tumors, ATRX
mutations are commonly connected to mutations in the tumor
suppressor gene TP53 [4, 21, 22], and the LoF of p53 activates the
ALT pathway [20]. Collectively, these findings highlight the
involvement of both ATRXmutations and p53 pathway aberrations
in NB tumorigenesis in terms of ALT. In mouse neural progenitor
cells (mNPCs), ATRX deficiency promoted p53-dependent apop-
tosis through the accumulation of DNA damage in the embryonic
brain caused by DNA RS [15]. However, DNA damage accumula-
tion and cell death were effectively rescued in ATRX/p53 double
mutant mice [23]. Although the loss of p53 promotes the growth
of emergent cancer cells by reducing RS-induced DNA damage
[24], the mechanisms by which p53 deficiency suppresses RS in
terms of ATRX loss remain unknown.
To avoid RS, G4 helicases prevent G4-induced genome

instability by resolving G4 structures [25, 26]. Another Fanconi
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anemia (FA) pathway protein, FANCD2, plays a key role in limiting
RS by controlling the stability of stalled replication forks in cells or
tumors lacking BRAC1/2 [27, 28], and has been shown to
cooperate with ATRX to limit RS and promote the homologous
recombination (HR)-dependent repair of DSBs [29]. In addition to
the H3.3 chaperone activity of ATRX/DAXX, the histone H3
deposition activity of FANCD2 was necessary for protecting stalled
replication forks [29]. Previous studies also revealed the transcrip-
tional regulation of G4 DNA helicases or FA pathway genes by
p53, which are involved in telomere maintenance, DNA repair, and
the centromere structure [30–32]. However, the impact of this
regulation in ATRX-deficient cells remains unclear.
In the present study, we revealed that ATRX depletion in TP53

wild-type (wt) NB cells was associated with an increased frequency
of DSBs and a subsequent RS-induced DNA damage response
(DDR), which was impaired by the loss of p53 through the
activation of G4 DNA helicases or the FA DNA repair pathway
protein, FANCD2. Collectively, the present results indicate that p53
deficiency limits ATRX loss-induced RS/genome integrity in NB
cells by regulating DNA repair mechanisms and replication fork
stability.

MATERIALS AND METHODS
Cell lines
Human NB cell lines (NGP, NB-69 and SK-N-AS) were obtained from official
cell banks (RIKEN Cell Bank, Tsukuba, Japan and ATCC, Manassas, VA, USA).
Additional details of cell lines are in the Supplementary Materials and
Methods.

ATRX CRISPR genome editing
CRISPR/Cas9 technology was used to generate ATRX KO cells. We designed
three guide RNAs (gRNAs) against exons 4 and 5 of ATRX (Supplementary
Fig. 1A, B). Further details are presented in the Supplementary Materials
and Methods.

Supplementary information
Other materials and methods and Supplementary Tables S1 to S4 are
described in Supplementary Information.

RESULTS
Generation of ATRX KO cells by CRISPR/Cas9 genome editing
We performed genome editing with the CRISPR/Cas9 system to
recapitulate the cellular and molecular perspectives of ATRX
deficiency in human NB using the NGP, NB-69, and SK-N-AS cell
lines, which are wt for the gene. NGP and NB-69 cells have wt TP53
with MYCN amplifications and MYCN single copy, respectively; the
MYCN single copy SK-N-AS cell line carries a TP53 truncation at its
C terminus [33]. All three cell lines were selected for ATRX gene
editing because neither displayed the ALT phenotype [8]; there-
fore, they were good comparable models for examining ATRX
functions because ATRX is often co-mutated with TP53 in different
tumors [8, 12, 20]. Our KO cells in three cell lines were
characterized in detail (Supplementary Fig. 1, “Materials and
methods”). As a control, we used bulked cells (referred to as Ctrl)
and two clonal cell lines (referred to as Ctrl-1 and Ctrl-2)
overexpressing Cas9 alone for NGP and NB-69 or SK-N-AS cells,
respectively. We isolated four independent cell clones for NGP and
three clones for both NB-69 and SK-N-AS with sequence-
confirmed frameshift mutations in ATRX (Supplementary Fig. 1C)
and completely devoid of ATRX protein expression, except for KO
(C-3) NGP cells (Fig. 1A, Supplementary Figs. 2A, B, 3A and Fig. 4A).
ATRX protein expression in ATRX KO cells for NGP and SK-N-AS
were also verified using immunofluorescence (IF) (Supplementary
Fig. 2A, B). Therefore, we successfully established several ATRX KO
isogenic cells in TP53 wt NGP, NB-69, and TP53 truncated SK-N-AS
cell lines for further study.

ATRX loss induces G4 formation and RS in TP53 wt NB cells
To clarify the biological consequences of ATRX deficiency, we
initially examined the viability and clonogenic survival of ATRX KO
NGP and NB-69 cells. An assessment of cell viability using the WST-
8 assay showed that ATRX loss resulted in failed cell proliferation
(Fig. 1A, Supplementary Fig. 3A), which is consistent with previous
findings on ATRX deficiency in mNPCs and glioblastoma cells
[12, 13]. We also observed lower clonogenic survival in ATRX KO
than in Ctrl cells (Fig. 1B, Supplementary Fig. 3B).
ATRX plays a key role in the regulation of DNA replication and

DNA damage repair pathways [13, 14, 34]. To ascertain whether
ATRX depletion results in the accumulation of DNA damage at
telomeres, we investigated γH2AX levels as a marker of stalled
replication forks and DSBs. γH2AX levels were elevated in ATRX KO
cells (Fig. 1C, Supplementary Fig. 3C), suggesting increases in
stalled and collapsed replication forks. We also found enhanced
telomeric DDR in ATRX KO NGP cells, as indicated by the increased
formation of γH2AX-associated telomere dysfunction-induced foci,
TIF (Fig. 1D, E). This result suggests that ATRX also functions to
protect against telomere DNA damage for telomere maintenance.
We then investigated whether increased levels of DNA damage

under ATRX-deficient conditions were induced by the formation of
G4. Consistent with previous findings [11, 35], G4 formation at
stalled replication forks was associated with RS and DDR. Using a
monoclonal antibody that recognizes the G4 structure in situ
(1H6), the nuclear accumulation of G4 was found to be higher in
ATRX KO cells than in Ctrl cells (Fig. 1F, G and Supplementary Fig.
3D-E). Moreover, G4s more extensively colocalized with DNA
damage foci compared with telomere region in the setting of
ATRX deficiency (Fig. 1F, H and Supplementary Fig. 3D). The
specificity of 1H6 antibodies for the G4 structure has already been
confirmed [11]. These results suggest that ATRX deficiency induces
G4 formation, indicating a role for ATRX in resolving the
G4 structure at stalled replication forks.
To clarify whether increased G4 levels result in RS in ATRX KO

NGP cells, we performed a Western blot analysis of RS signaling
pathways. As shown in Fig. 1I, ATRX loss increased phospho-KAP1,
phospho-Chk1, and phospho-RPA32 levels. Furthermore, IF
showed that ATRX loss induced phospho-RPA32 foci (Supplemen-
tary Fig. 4A) and colocalization with G4 signal (Supplementary Fig.
4B), suggesting that ATRX is required to limit RS. Collectively, these
results indicate that ATRX deficiency promoted RS and DDR in
TP53 wt NB cells.
Recent studies reported that ATRX deficiency promote the ALT

phenotype by inducing HR, which is exhibited by tumors harboring
ATRX mutations [13, 19]. To assess the effects of ATRX loss on ALT
in NB cell lines, we examined ALT-associated features in ATRX KO
NGP (Supplementary Fig. 5A-D) and NB-69 cells (data not shown).
The hallmarks of ALT, namely, C-circles (Supplementary Fig. 5B)
and ALT-associated PML bodies (APBs) (Supplementary Fig. 5C, D),
were not induced after the loss of ATRX in these KO cells.
Moreover, overall telomeric DNA between Ctrl and ATRX KO cells
was unchanged (Supplementary Fig. 5A). Therefore, ATRX defi-
ciency itself was not associated with the ALT phenotype in ATRX
KO TP53 wt NB cells, which is consistent with previous findings.

Increased DNA damage induces the ATM/CHK2/p53 pathway
in TP53 wt ATRX KO NB cells
To elucidate ATRX-dependent transcriptional alterations and their
functional consequences, we performed a microarray analysis of
Ctrl and ATRX KO NGP cells. According to GSEA, upregulated
genes were implicated in DSBs and HR repair, cell cycle checkpoint
activation, negative cell cycle regulation, and p53 pathway
activation (Fig. 2A–E). This result suggested that the pathways
involved in negative cell cycle regulation and DNA damage-
induced p53 pathway activation were enhanced by ATRX
deficiency in TP53 wt NGP cells accompanied by transcriptional
changes in their related gene members.
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Fig. 1 ATRX loss induces G4 formation and RS in TP53 wt NGP cells. A Western blots show the depletion of ATRX protein expression in cell
lysates prepared from Cas9 control (Ctrl) and ATRX KO (C-1, C-3, C-4, and C-21) NGP cells. β-Tubulin was used as a loading control. Lower panel,
growth curves show that viability was lower in ATRX KO NGP cells than in Ctrl cells. Data are expressed as means ± standard deviation (SD),
N= 3. A two-way ANOVA followed by a multiple comparison Bonferroni post hoc test was used to compare differences between groups (*p <
0.05 and **p < 0.01). B Clonogenic assay of Ctrl and ATRX KO NGP cells demonstrating the weaker proliferative abilities of KO cells than Ctrl
cells. Lower panel, representative images for clonogenic formation are shown. Error bars represent SD from three technical replicates. **p <
0.01; A one-way ANOVA with Dunnett’s and Tukey’s test were used for statistical analyses. C Immunoblot showing activation of the DDR upon
the depletion of ATRX, including the phosphorylation of histone H2AX on Ser-139 (γH2AX). D, E γH2AX/TelG immuno-FISH (D) shows
increased TIF (telomere dysfunction-induced foci) in ATRX KO NGP cells. Arrows denote the colocalization of telomeric foci (red) and γH2AX
signals (green). Cells were also stained with DAPI to visualize nuclei (blue). E Quantification of TIF+ cells among 100 cells analyzed in (D).
F, G Coimmunofluorescence staining of ATRX-intact (Ctrl) and ATRX KO NGP cells with the anti-G-quadruplex (G4) antibody, 1H6 and anti-
γH2AX. G Quantification of G4+ cells among 100 cells analyzed in (F). H G4 (1H6)/TelG immuno-FISH reveals colocalization of G4 on telomeric
region in ATRX KO NGP cells. Nuclei are counterstained with DAPI (blue). I Representative immunoblot analysis of p-KAP1 (Ser-824), KAP1,
p-Chk1 (Ser-345), Chk1, p-RPA32 (Ser-33), and RPA32, showing the activation of RS arising from ATRX deficiency. β-Tubulin served as a loading
control.
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Proliferation inhibition by ATRX deficiency may be mediated by
increases in DNA damage and activation of the ATM/CHK2/p53
pathway, supporting GSEA results. In response to DNA damage,
p53 is phosphorylated by the ATM/CHK2 pathways, leading to cell
cycle arrest or apoptosis [36]. Therefore, we investigated the
involvement of ATM signaling in response to increased DNA
damage. A western blot analysis of Ctrl and ATRX KO NGP cells
demonstrated an increase in the activation of ATM in ATRX KO
cells (Fig. 2F). ATR activation was not observed in Ctrl or ATRX KO
cells (data not shown). Moreover, consistent with the formation of
γH2AX in ATRX KO cells, the activation of ATM-dependent DSB
signaling events was also detected in these cells, as revealed by
increases in the phosphorylation of CHK2 and p53. Activated p53

then upregulated the expression of p21, which mediated the
inhibition of proliferation. Moreover, p53 activation was observed
in ATRX KO NB-69 cells, but downstream γH2AX and p21 only
modest (Supplementary Fig. 3C). Collectively, these results
revealed that the loss of ATRX in both MYCN-amplified and MYCN
single copy TP53 wt NB cells promoted the accumulation of DNA
damage and activated the cell cycle checkpoint pathway of DDR,
the ATM-CHK2-p53-p21 pathway, leading to cell cycle arrest.

p53 inactivation limits ATRX loss-induced G4 formation and
RS in TP53 wt NGP cells
The inactivation of p53 by a viral oncoprotein or TP53 mutation is
commonly observed in ALT-positive cell lines [37]; ALT phenotype
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Fig. 2 Increased DNA damage leads to ATM/CHK2/p53 pathway induction in ATRX KO NGP cells. A The Gene Set Enrichment Analysis
(GSEA) results of differentially expressed gene sets between Ctrl and ATRX KO NGP cells. Collected nominal p-values and normalized
enrichment scores (NES) were listed. B–E GSEA enrichment plot. The gene sets of B ‘GO DOUBLE STRAND BREAK REPAIR’, C ‘HALLMARK G2M
CHECKPOINT’, D ‘GO NEGATIVE REGULATION OF CELL CYCLE PROCESS’, and E ‘PID p53 REGULATION PATHWAY’ were significantly enriched in
ATRX KO NGP cells. F Representative immunoblots for the expression of the indicated proteins in cell lysates prepared from Ctrl and ATRX KO
NGP cells. ATRX KO NGP cells showed the increased activation of p53-ATM checkpoint proteins. β-Tubulin was used as a loading control.
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in NB is associated with ATRX mutation and p53 pathway
alterations [20]. To establish whether p53 deficiency with the loss
of ATRX promotes ALT in NB cells, a C-terminally V5-tagged
dominant-negative p53 (p53_R273H or p53_R175H) vector or
control was stably transduced into ATRX KO NGP cells (Fig. 3A, left
panel). Mutant p53 exerts a dominant-negative effect by
preventing wt p53 from binding to the promoter of its target
genes [38]. We initially investigated whether the forced expression
of mutant p53 affected the survival of ATRX KO NGP cells. The
results obtained showed that it significantly enhanced cell survival
during cell cultures, indicating that mutant p53 reduced the ability
of wt p53 to induce cell cycle arrest in ATRX KO NGP cells
(Supplementary Fig. 6). The hallmarks associated with ALT were
then examined in those cells. Similar to original ATRX KO NGP cells,
p53_R273H or p53_R175H did not display C-circles (Supplemen-
tary Fig. 7B) or APBs (Supplementary Fig. 7C, D). Moreover, the
total telomeric DNA content did not significantly differ between
Ctrl and ATRX KO cells with the p53 mutant (Supplementary Fig.
7A). Therefore, NGP cells with ATRX deficiency and the p53 status
cannot induce the ALT phenotype, which is associated with ATRX
mutation and p53 pathway aberration in NB.
An investigation of DDR in p53-inactivated ATRX KO NGP cells

revealed that the activation of the ATM/CHK2/p53 pathway
decreased after p53 inactivation. The levels of key phosphopro-
teins involved in DDR were lower in ATRX KO NGP cells with the
p53 mutant than in original KO cells (Fig. 3A, right panel). IF of
γH2AX also showed a weaker signal in p53-inactivated ATRX KO
NGP cells (Fig. 3B, C), suggesting the influence of the p53 status on
DDR-related cell cycle arrest upon the loss of ATRX. p53
inactivation abolished DDR and also prevented the formation of
G4 (Fig. 3D, E) and suppressed the RS pathway in ATRX KO NGP
cells (Fig. 3F). Furthermore, IF showed that p53 inactivation
reduced phospho-RPA32 foci (Supplementary Fig. 8), consistent
with immunoblot results. Therefore, p53 deficiency decreased
ATRX loss-induced RS and DDR.

ATRX deficiency-related DDR and RS are not induced in TP53
truncated (C terminus) SK-N-AS cells
We attempted to confirm the ALT phenotype or p53 deficiency-
related suppression of RS and DDR upon the loss of ATRX in the
NB cell line with mutant TP53 and a MYCN single copy. A previous
study reported an ALT phenotype associated with ATRXmutations,
the lack of MYCN amplification, and p53 pathway alterations in NB
[20]. Therefore, we selected the SK-N-AS cell line carrying a MYCN
single copy and TP53 truncation at the C terminus [33]. We
isolated several isogenic ATRX KO clones from SK-N-AS cells
(discussed in the “Materials and methods” and “Results” sections).
We then assessed the ALT status and found that the total telomere
content and C-circle levels were below the ALT cut-off value
(Supplementary Fig. 9A, B). However, APBs were partially detected
in ATRX KO SK-N-AS cells (Supplementary Fig. 9C, D). Although
APBs are one of the important markers of the ALT phenotype,
C-circles are very specific and quantifiable markers of ALT [39].
Therefore, true ALT features were not observed in SK-N-AS cells
after ATRX KO. These results suggest that, at least under the
present experimental conditions, the ALT phenotype in NB cell
lines was not associated with ATRX mutations, the lack of MYCN
amplification, or p53 pathway aberrations.
WST-8 and colony formation assay results showed that the loss

of ATRX did not significantly alter the viability of SK-N-AS cells (Fig.
4A, B). Moreover, γH2AX foci were not detected in ATRX KO SK-N-
AS cells, indicating low levels of DNA damage (Fig. 4C) which is
contrast with others findings following ATRX KO in TP53 wt SK-N-
SH cells with prior p53 inactivation [34]. These relative phenotypic
differences may be due to different experimental strategy or cell
line specificity. As expected, ATRX deficiency did not induce the
ATM/CHK2/p53 pathway (Fig. 4D). In addition, G4 formation was
not detected in KO cells, leading to a suppressed RS response

(Fig. 4E, F). In contrast to previous findings [15], these results
indicated that p53 aberrations inhibited ATRX loss-induced RS
related to DDR in NB cells.

p53 inactivation leads to the upregulation of G4-resolving
helicases and FA pathway proteins involved in replication fork
protection
When replication forks encounter DNA damage, G4 or R-loops
may hinder fork progression and increase RS [40]. Under these
conditions, specific proteins are recruited to the site of the stalled
fork in order to manage the cellular response to this stress. Recent
studies described an emerging class of DNA unwinding enzymes,
known as helicases, which directly resolve the G4 DNA structure
and remove RS during DNA replication [25, 26]. Another well-
studied G4 helicase regulator or FA pathway protein, FANCD2,
stabilizes and helps to restart stalled replication forks, thereby
avoiding the generation of DNA damage and genome instability
[27, 28]. To directly investigate how the p53 status affects ATRX
loss-mediated RS-induced DSBs, we searched for p53-regulated
molecules involved in G4 structure resolution and replication fork
protection, leading to the release of RS (Fig. 5A) [30–32]. We
speculated that in the absence of ATRX, other G4-resolving
helicases or DNA repair molecules may prevent RS during DNA
replication. Accordingly, our initial aim was to clarify whether the
inactivation of p53 triggered the upregulation of these molecules
in Ctrl or ATRX KO NGP cells. Therefore, we compared the mRNA
levels of six candidate genes implicated in G4 structure resolution
and replication fork recovery in TP53 wt and p53-inactivated Ctrl
or ATRX KO NGP cells. Five out of the six genes were upregulated
after the inactivation of p53 (RTEL1, FANCD2, BLM, WRN, and
RECQL4) (Fig. 5B), which is consistent with previous findings on
p53-dependent regulation [30–32]. Importantly, the induction of
FANCD2 expression by p53 inactivation was the strongest. In
addition to FANCD2, BLM expression also increased (Fig. 5B). These
results appear to support previous findings showing that FANCD2
cooperated with BLM to facilitate stalled fork restart and suppress
new origin firing; FANCD2 and BLM were also shown to have
cooperative as well as independent roles in the context of stalled
fork recovery [41]. Moreover, FANCD2 protein levels were higher in
p53-inactivated Ctrl or ATRX KO cells than in TP53 wt Ctrl or ATRX
KO NGP cells, which was consistent with qPCR data (Fig. 5B, C).
These results support the previous finding of FANCD2 expression
being markedly affected by the activation of p53 [30].
We also examined the expression of G4 helicases and FANCD2

at the mRNA level in Ctrl and ATRX KO SK-N-AS cells (Fig. 5D). An
immunoblot analysis showed that FANCD2 protein levels
remained unchanged between Ctrl or ATRX KO cells (Fig. 5E),
suggesting that basal FANCD2 levels in SK-N-AS cells were
sufficient for replication fork protection after the loss of ATRX.
Furthermore, ALT-positive NB cell lines with the TP53 mutation

(SK-N-FI) had higher FANCD2 and BLM expression levels than TP53
wt (NGP) and TP53-truncated (SK-N-AS) cells (Supplementary Fig.
10A). To date, no functional assays have been performed to
establish whether these phenomena are the result of TP53
mutation in ALT-positive NB cells with ATRX LoF. In public
datasets (R2, http://r2.amc.nl), FANCD2 expression levels were
shown to be strongly associated with an advanced tumor stage
and poor prognosis in human NB (Supplementary Fig. 10B, C).
These findings suggest that upregulated FANCD2 expression may
promotes the ALT phenotype in ATRX-mutated NB. Collectively,
these results indicate that FANCD2 expression levels significantly
increased under the setting of p53 deficiency and may cooperate
in the protection of stalled replication forks after the loss of ATRX.

p53 deficiency limits ATRX loss-induced RS and genome
instability through the FA pathway protein, FANCD2
The loss of ATRX hinders fork stability by G4 or R-loop formation
and increases RS (Fig. 1, Supplementary Fig. 3) [11, 17]. Since ATRX
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and FANCD2 have recently been reported to cooperate in
replication fork recovery [29], we investigated whether FANCD2
decreases RS in the context of ATRX deficiency. We validated the
knockdown efficiency of several FANCD2 shRNAs in HeLa cells and
found that shRNA 3 and shRNA 4 efficiently knocked down
FANCD2 at the protein level (Fig. 6A). We then measured the RS
marker in two p53-inactivated ATRX KO NGP cells infected with
FANCD2 shRNA. In cells lacking FANCD2 and ATRX, we observed
elevated levels of γH2AX, which marks DNA damage sites, as well
as stronger RS signals (Fig. 6B). Therefore, FANCD2 was required to
prevent RS and ultimately genomic instability in ATRX-deficient
cells, similar to BRCA2 deficiency [27, 28]. Cell proliferation assays
showed that the inhibition of FANCD2 significantly decreased the

survival of p53-inactivated ATRX KO NGP cells (Supplementary Fig.
11A, B). In addition, FANCD2 downregulation reduces the cell
viability of ALT-positive SK-N-FI cells (Supplementary Fig. 12A-C).
Therefore, FANCD2 may be partly required for the survival of
ATRX-deficient cells, suggesting a synthetic lethal relationship
between them. Collectively, these results propose a key role for
FANCD2 in the protection of replication forks upon the loss of
ATRX in NB cells.

DISCUSSION
In the present study, ATRX deficiency activated RS and DDR
through the G4 formation, leading to cell cycle arrest in TP53 wt
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NB cells. Both MYCN single and MYCN amplification may activate
p53 pathway in ATRX KO cells and drive RS. The synthetic lethal
relationship between ATRX mutation and MYCN amplification has
been reported [3]. However, TP53-truncated SK-N-AS cells were
devoid of the DDR pathway upon the loss of ATRX. Moreover, the
inactivation of p53 by dominant p53 mutants (R273H and R175H)
in ATRX KO NGP cells rescued cell viability in response to the
inhibition of ATM/CHK2/p53 pathway activation. However, the
mechanisms by which the p53 status influences the effects of
ATRX deficiency on the fate of NB cells currently remain unknown.
Therefore, we initially demonstrated that p53 deficiency limited
ATRX loss-induced RS/genome integrity in NB cells by regulating
G4 helicases and the replication fork-protecting FA pathway
protein, FANCD2 (Fig. 6C).
Approximately 24% of high-risk NB harboring the ALT

phenotype and 50–55% of ALT NB have somatic alterations in
ATRX [1, 2, 8, 9]. ALT is a HR-based mechanism, and ATRX

deficiency induced the formation of G4 in the GC-rich regions of
DNA, leading to replication fork stalling and the provision of a
substrate for HR [11, 42]. The loss of ATRX also promoted the
accumulation of R-loops at telomeres [17], which facilitate the
formation of G4 structures in untranscribed DNA strands [43].
Moreover, replication fork stalling and collapse may generate
DSBs and DNA damage pathway signaling in ATRX-mutant glioma.
While the loss of ATRX induces RS and DNA damage via G4 DNA,
ATRX deficiency in conjunction with the chemical stabilization of
G4 enhanced RS to induce DNA damage and cell death [11].
Consistent with these findings, we also observed G4 formation, RS,
and DDR leading to cell cycle arrest as a consequence of ATRX
deficiency in TP53 wt NB cells, supporting the findings that ATRX-
negative NPCs induce excessive levels of DNA damage in the
embryonic brain caused by DNA RS [15]. Moreover, the ATM/
CHK2/p53 pathway was found to be activated in response to ATRX
deficiency-associated DNA damage, indicating that ATRX-null cells
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mostly depend on ATM-associated DDR signaling pathways for
DNA repair [15, 44], which is consistent with other findings [45].
p53 inactivation or mutant TP53 with ATRX deficiency inhibited
the ATM/CHK2/p53 pathway, which may be attributed to the
inhibited formation of G4.

Emerging studies revealed that cancer cells with ALT were
hypersensitive to the inhibition of ATR, another component of
DNA damage checkpoint-activating kinases other than ATM in
human cells [46]. In contrast, in several telomerase-positive and
ALT-positive NB or non-NB cell lines treated with an ATR inhibitor,
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ALT-positive cells were not generally more sensitive to ATR
inhibition than telomerase-positive cells [34, 47]. We also did not
observe the significant activation of ATR in NB cells featuring the
inactivation of ATRX, which appears to support the finding that
differences in ATR inhibitor sensitivity were not related to ATRX-
deficient ALT [47].
While p53 inactivation rescued the survival of ATRX-deficient

cells, in an attempt to identify the underlying survival mechanism,
we focused on G4 helicases and their regulator, which is involved
in the protection of replication forks. We hypothesized that in the
absence of ATRX, other molecules may contribute to overcoming
the G4 or R-loop secondary DNA structure and promoting stalled
replication fork recovery, which are negatively regulated by p53. A
number of p53 downregulated G4-interacting helicases that are
capable of unfolding G4 structures have been reported [30–32].
They include the RECQ helicase family, WRN, BLM, RECQL4, or
RTEL1. WRN and BLM play major roles in unwinding G4 DNA
during telomere replication [25, 26, 48–51]; however, RTEL1 has
also been implicated in G4 processing and is involved in DNA
replication and recombination or required for the maintenance of
telomere integrity [52, 53]. RECQ helicases are strongly expressed
in various cancers and their overexpression provides a survival
advantage to cancer cells through the protection of stalled
replication forks against breakage and possibly the restart of
broken replication forks. Therefore, RECQ helicases have been
proposed as a target for anticancer therapy because the inhibition
of RECQ helicases induced DSBs in different origins and reduced
the proliferation of cancer cell lines [48, 54]. In addition to RECQ
helicases, p53 also downregulated FA DNA repair pathway
proteins, such as FANCD2 and FANCJ, which are known to be
involved in replication fork stabilization or the resolution of
R-loops by recruiting RNA processing factors [30, 55] and
G4 structures [48, 56, 57], respectively. Moreover, G4 helicases in
complex with FA proteins collaborate in response to stalled
replication forks [58]. In our targeted screening, FANCD2, BLM,
WRN, RTEL1, and RECQL4 mRNA expression were increased in ATRX
KO NGP cells after the inactivation of p53. FANCD2 and BLM
expression was strongly induced by the inactivation of p53.
Moreover, we showed that the inhibition of FANCD2 further
induced DNA DSB-related RS, thereby decreasing the cellular
growth of p53-inactivated ATRX KO NGP and ALT-positive SK-N-FI
cells. Consistent with previous findings, FANCD2 in the present
study may also appeared to stabilize replication forks [28] and
restart forks by cooperating with BLM helicase [41, 58]. FANCD2
also promoted the MRE11 exonuclease-dependent restarting of
forks through the deposition of a histone H3 variant, which is a
crucial event during the re-initiation of DNA replication and
recruitment of CtIP at stalled replication forks [29].
In contrast, the upregulation of FANCD2 was positively associated

with tumor size and a poor prognosis in breast cancer, ovarian
cancer, nasopharyngeal carcinoma, glioblastoma, endometrial carci-
noma, and esophageal squamous cell carcinoma [59–65]. Similarly,
FANCD2 was found to be upregulated in advanced stage NB, and
Kaplan–Meier survival curves showed a worse prognosis in patients
with high FANCD2 expression levels (R2 database). These findings
suggest that the strong expression of FANCD2 may promotes the
ALT phenotype in ATRX-mutated NBs, and supports other findings
showing that FANCD2 was necessary for telomere maintenance in
ALT cells by facilitating the formation of C-circles, possibly by
promoting the recruitment of BLM to replication-stressed ALT
telomeres [66]. A recent study also described the non-canonical
function of FANCD2 with several nuclear receptors to regulate the
ALT telomere maintenance pathway [67]. In addition to FANCD2 and
FANCJ, other FA genes, including FANCM, were negatively regulated
by p53 [30]. FANCM is a FA helicase that is essential for the viability of
ALT cancer [68]. FANCD2 is required for the functional consequences
of FANCM in response to DDR [69]. The inhibition of FANCM was
previously shown to induce a potent acute apoptotic phenotype in

ALT cancer cell lines [68], suggesting its potential as an anticancer
target in ALT. Therefore, as a regulator of FANCM, FANCD2 will be an
excellent target candidate for the treatment of ALT cancers.
The present results demonstrated the dependency of ATRX-

deficient cells on p53 dysfunction for cellular survival. Moreover,
we proposed that the dependency by these cells on the loss of
p53 is mediated by G4 or R-loop resolution and replication fork
stability as well as the recovery function of G4 helicases and the
FA pathway protein, FANCD2. The present results may also
expand the previously suggested roles of FANCD2 as a master
regulator/handler of endogenous RS, thereby representing a
therapeutic target for ATRX-deficient tumors. Further studies are
needed to clarify the mechanisms by which ATRX deficiency
interacts with the loss of p53 for NB progression and therapeutic
responses.
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