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CUL4B contributes to cancer stemness by
repressing tumor suppressor miR34a
in colorectal cancer
Yanjun Li1, Huili Hu1, Yuxing Wang1, Yujia Fan1, Yang Yang1, Beibei Guo1, Xueyong Xie1, Jiabei Lian1, Baichun Jiang1,
Bo Han2,3, Yanlei Wang4, Changshun Shao 5 and Yaoqin Gong 1

Abstract
Given that colorectal cancer stem cells (CCSCs) play key roles in the tumor dormancy, metastasis, and relapse, targeting
CCSCs is a promising strategy in cancer therapy. Here, we aimed to identify the new regulators of CCSCs and found
that Cullin 4B (CUL4B), which possesses oncogenic properties in multiple solid tumors, drives the development and
metastasis of colon cancer by sustaining cancer stem-like features. Elevated expression of CUL4B was confirmed in
colon tumors and was associated with poor overall survival. Inhibition of CUL4B in cancer cell lines and patient-derived
tumor organoids led to reduced sphere formation, proliferation and metastasis capacity. Mechanistically, CUL4B
coordinates with PRC2 complex to repress miR34a expression, thus upregulates oncogenes including MYCN and
NOTCH1, which are targeted by miR34a. Furthermore, we found that elevated CUL4B expression is associated with
miR34a downregulation and upregulation of miR34a target genes in colon cancer specimens. Collectively, our findings
demonstrate that CUL4B functions to repress miR34a in maintaining cancer stemness in CRC and provides a potential
therapeutic target.

Introduction
Colorectal cancer (CRC) is the main cause of cancer-

related death, as a result of metastasis and chemoresis-
tance1,2. Intratumoral heterogeneity that contributes to
therapy failure was recently explained by CSCs model.
CSCs refer to a subpopulation of immortal cells within the
tumor that can self-renew and give rise to various dif-
ferentiated cell types constituting the tumor. CSCs have
high tumorigenic ability in generating xenograft tumors,
which are highly invasive and metastatic, and are more
resistant to chemotherapy and radiotherapy3. CSCs in

colorectal cancer (CCSCs) can self-renew, undergo mul-
tilineage differentiation, and survive in adverse tissue
microenvironments, and are responsible for chemoresis-
tance and relapse4. Various molecules, including CD133,
EphB2, ALDH, LGR5, and DCLK1 have been proposed as
biomarkers for CCSCs5,6. Moreover, various pathways,
such as WNT and NOTCH1 pathway, as well as the
complex crosstalk between microenvironment and CSCs,
were found to be involved in the fine-tuning of CCSCs
compartment and regulate fate of CCSCs7–9.
The miR34a is a well-known tumor suppressor in var-

ious types of cancers10. Among its many functions,
miR34a has been shown to limit self-renewal of cancer
stem cells. In addition, miR34a also regulates stem cell
differentiation and somatic cell reprogramming11,12.
Many direct miR34a targets implicated in different bio-
logical pathways have been validated. For example,
miR34a was shown to inhibit the cell cycle regulators
cyclins, cyclin dependent kinases, and the proto-oncogene
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MYCN, which leads to proliferation inhibition13. miR34a
also inhibits NOTCH signaling, which control cell-fate
determination during development and oncogenesis12.
miR34 expression is transactivated by p53, via p53 bind-
ing sites in its promoter14. Aberrant CpG methylation of
its promoter also has been shown to silence miR34a in
many types of cancers, including CRC15,16.
CUL4B acts as a scaffold protein that assembles DDB1,

RBX1, and substrate receptors to form various CUL4B
RING E3 ligase complexes (CRL4B)17,18. CRL4B catalyzes
either polyubquitination for proteosomal degradation or
monoubiquitination at H2A for epigenetic modifica-
tion19,20. CUL4B is frequently overexpressed in multiple
kinds of solid tumor and functions to promote cell cycle
progression and metastasis by epigenetically repressing
tumor suppressors including miRNAs21–24. Recent clin-
ical study has suggested that miR34a contributes to CCSC
proliferation and inhibit colon cancer stemness11. Strik-
ingly, CUL4B is also a marker for predicting patient CRC
outcome, but the mechanism has not been completely
elucidated25. In this study, we tested whether CUL4B
promotes CRC by supporting CRC stemness. We found
that CUL4B complex directly targets the miR34a pro-
moter for epigenetic silencing, and therefore represses
transcription of miR34a that directly targets MYCN,
NOTCH1, and CD44. These findings illuminate the role of
CUL4B in CCSC maintenance and have therapeutic
implications.

Results
Increased CUL4B expression is correlated with poor
prognosis of CRC and promotes patient-derived organoid
expansion
To address the role of CUL4B as a prognostic marker

in CRC, we examined CUL4B expression by immuno-
histochemistry in tissue microarrays comprising tumor
tissues and adjacent tissues from 75 cases of CRCs. As
shown in Fig. 1a, CUL4B was significantly upregulated
in 75 tumor tissues compared with paired adjacent tis-
sues. Notably, primary tumors with lymph node
metastasis (LNM) exhibited higher level of CUL4B
expression than those without LNM (Fig. 1b and Sup-
plementary Table S1). Furthermore, CUL4B expression
levels were negatively correlated with survival status of
CRC patients (Fig. 1c). Patient-derived tumor organoids
(PDOs), which recapitulate many structural and func-
tional aspects of tumors, are emerging models for cancer
research and drug response prediction26. We then
established five lines of CRC organoids (Fig. 1d) and
evaluated the effect of CUL4B expression on tumor
organoid-forming capacity. Knockdown of CUL4B in
PDOs led to smaller tumor organoids and decreased
organoid-forming capacity from single cells, whereas
overexpression of CUL4B increased this capacity (Fig.

1e, f), suggesting that CUL4B plays oncogenic roles in
CRC.

CUL4B enhances CRC stemness
The fact that CUL4B enhances the tumor-derived

organoid-forming capacity suggested that CUL4B is
involved in the enrichment of CSCs or cells with stem
cell-related characteristics. To test this, we first examined
whether CUL4B expression levels differ between CSCs
and non-CSCs. CUL4B levels were significantly higher in
the CSCs derived from HCT116 and HT29 cell lines than
differentiated cells (Fig. 2a). Furthermore, the pair–cell
assay indicated that CUL4B was highly coexpressed with
ALDH1, a well-known CSCs marker, in CCSCs (Fig. 2b
and Supplementary Fig. S1A, B). To further examine
whether CUL4B regulates CCSCs, we first knocked down
CUL4B in HCT116 cells. Serial sphere propagation assays
showed that the knockdown of CUL4B strongly inhibited
sphere formation capacity (Fig. 2c). Similar results were
obtained with HT29 cells (Supplementary Fig. S1C).
Consistently, knockdown of CUL4B in CCSCs derived
from CRC cell lines reduced sphere numbers, whereas
overexpression of CUL4B increased the ability of sphere
formation (Fig. 2d, e and Supplementary Fig. S1D). Next,
we used the mouse xenograft model to examine the effect
of CUL4B knockdown on tumor growth by injecting
CUL4B knockdown and control CCSCs into the left and
right flank of the same nude mouse, respectively. As
shown in Fig. 2f and Supplementary Fig. S1E, knockdown
of CUL4B in HT29 and HCT116-derived CSCs led to
smaller tumors than controls.

CUL4B enhances metastatic capacity of patient-derived
tumor organoids and CCSCs
As cancer stem cells have been considered as seeds for

tumor growth and metastasis, we further evaluated the
effect of CUL4B expression on metastatic capacity of
PDOs. To this end, CUL4B overexpression and control
organoids were injected into spleen and tumor metastases
to liver and lung were evaluated (Fig. 3a). We found that
overexpression of CUL4B in organoids significantly
increased metastatic potential to lung and liver in xeno-
graft models, as demonstrated by increased number of
micrometastatic nodules (Fig. 3b, c). Histological features
of metastatic tumor organoids in engraftment liver were
characterized by HE and human specific pan-keratin
staining (Fig. 3d). We then tested lung metastasis of
CUL4B knockdown and control colon cancer cell lines by
tail vein injection. As shown in Fig. 3e, f, the number of
tumor nodules was significantly reduced after the ablation
of CUL4B in HCT116 and HT29 lines. Taken together,
these data suggest that CUL4B promotes metastatic
capacity and increases ability of tumor cells to colonize in
the liver and lung.
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Fig. 1 Increased CUL4B expression is correlated with poor prognosis of CRC and promotes patient-derived organoid expansion.
a Representative pictures of IHC straining of CUL4B in human CRC tissues and the adjacent normal tissues (left). The percentages of CUL4B-positive
cells in 75 paired human colon tumor and their adjacent tissues (right). Data represent mean ± SEM (n= 75). ***p < 0.001. b Representative pictures
of IHC straining of CUL4B in human CRC LNM absent tissues and LNM present tissues. c Kaplan–Meier analysis of the correlations between CUL4B
protein level and overall survival of 100 patients with CRC. CUL4Bhigh, the expression of CUL4B is over than 50% in group and CUL4Blow is the other
50%. **p < 0.01. d Representative pictures of five PDOs. e Representative photographs were taken at ×40 magnification of organoids after the
knockdown of CUL4B in #02T PDOs and #09T PDOs or after the overexpression of CUL4B in #16T PDOs. f Organoids formation assay showed organoid
number per 15,000 cells in CUL4B knockdown and control #09T PDOs or #02T PDOs and in CUL4B overexpression and control #16T PDOs cultured for
7–10 days. Data represent mean ± SEM (n= 4). **p < 0.01; ***p < 0.001.
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CUL4B positively regulates oncogene MYCN via repressing
miR34a expression
In order to elucidate the regulation network of CUL4B

in colon cancer regulation, we performed RNA sequen-
cing of CUL4B knockdown and its control PDOs from

three individuals. Eight genes were identified to be sig-
nificantly downregulated by CUL4B knockdown in all
three PDOs, including NRCAM, EDAR, UPK3A, FAM3D,
CYP2T3P, LCN2, and MYCN (Fig. 4a). We also selected
13 well-known cancer-related genes that were obviously
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reduced in at least two of three CUL4B knockdown PDOs.
Quantitative real-time PCR (qRT-PCR) was used to fur-
ther examine the expression of these 20 genes in four
CUL4B knockdown and their controls as well as CUL4B
knockdown or control CCSCs. As shown in Fig. 4b, c,
knockdown of CUL4B in PDOs or CCSCs significantly
downregulated seven genes, including ID1, UPK3A,
CYP2T3P, FAM3D, NPTX2, AGR3, and MYCN. Among
these genes,MYCN, a well-recognized oncogene, is on the

top of the downregulated genes in CUL4B knockdown
PDOs and CCSCs, with significant downregulation in all
five datasets. Western analysis further confirmed
decreased MYCN protein level in all four CUL4B
knockdown PDOs (Fig. 4d). Furthermore, MYCN was
upregulated in CUL4B overexpressed PDOs (Fig. 4d).
It has been reported that several miRNAs target

MYCN13, and our recent studies showed that CRL4B
complex epigenetically represses miRNAs23. We thus
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performed miRNA sequencing in #16PDOs and identified
59 candidate miRNAs that might be regulated by CUL4B
in colon cancer. Overlapping these miRNAs with the 269
miRNAs predicted to target MYCN by TargetScan data-
base, miR34a and let7e were identified in both lists (Fig.
4e). qRT-PCR assay indicated that miR34a, but not let7e,
was negatively regulated by CUL4B in both CCSCs and
PDOs (Fig. 4f, g and Supplementary Fig. S2).
To further clarify whether CUL4B regulates MYCN

expression through miR34a, we constructed luciferase
reporter vectors containing 3′UTR of MYCN with and
without point mutations in the two seed sequences of
miR34a as previously described (Fig. 4h)13. Luciferase
assay showed that the activity of the reporter containing
the MYCN 3′UTR was much lower in CUL4B knockdown
HCT116 than that in control cells (Fig. 4i). In contrast, no
obvious difference in luciferase activity of mutant MYCN
3′UTR was observed between CUL4B knockdown and
control cells. In addition, inhibition of miR34a could
reverse the decreased activity of wild-type MYCN 3′UTR
reporter (Fig. 4j). In line with these results, inhibition of
miR34a was able to rescue the decreased levels of MYCN
protein in CUL4B knockdown cells (Fig. 4k). Collectively,
these results indicate that CUL4B positively regulates
MYCN levels via repressing miR34a expression.

CRL4B coordinates with PRC2 complex to repress miR34a
expression
miR34a has been reported as the target gene of p5314,27.

To determine whether CUL4B regulates miR34a by reg-
ulating p53, we first evaluated the effect of manipulating
CUL4B expression on p53 protein level in CCSCs. As
shown in Fig. 5a, p53 levels in CCSCs were not altered by
CUL4B knockdown or overexpression. Previous reports
have shown that EZH2 binds to the promoter region of
−1028 to −910 bp upstream of transcriptional starting
sites of mature-miR34a28,29. We then performed ChIP
assay with primer pairs covering that region. CUL4B,
DDB1, and EZH2 co-occupancy was detected at this

region and was associated with enriched H2AK119ub1
and H3K27me3, in both HCT116 and HT29 lines (Fig.
5b). Knockdown of CUL4B led to reduced binding of
CRL4B and PRC2 complexes, consequently decreased
H2AK119ub1, H3K27me3 and increased H3K4me3 (Fig.
5c and Supplementary Fig. S3A). Bisulfite sequencing
revealed no alteration in the methylation pattern in the
miR34a promoter after CUL4B knockdown (Supplemen-
tary Fig. S3B). Next, we examined the role of miR34a
repression by CUL4B in maintaining the stemness of CRC
cells. As shown in Fig. 5d, e, inhibition of miR34a
remarkably restored the sphere-forming capacity and
migration in CUL4B knockdown CRC cells, indicating
that CUL4B contributes to maintaining CRC stemness at
least partially through repression of miR34a.

CUL4B upregulates miR34a targets in CCSCs, and its
expression correlates with miR34a network in human
colorectal cancer specimens
The fact that CUL4B suppresses miR34a expression

prompted us to examine whether other miR34a target
genes are downregulated in CUL4B knockdown cells due
to the derepression of miR34a. Indeed, the knockdown of
CUL4B in CCSCs derived from HCT116 and HT29 cell
lines significantly reduced the levels of NOTCH1, NUMB,
and CD44 (Fig. 6a). Moreover, inhibition of miR34a could
effectively restore these protein level in CUL4B knock-
down HCT116 cells (Fig. 6b). The luciferase assay showed
that the knockdown of CUL4B markedly suppressed the
activities of reporter containing wild-type NOTCH1 3′
UTR, whereas reporter carrying the mutant 3′UTR were
unresponsive to CUL4B knockdown (Fig. 6c). Further-
more, inhibition of miR34a could reverse the decreased
activity of wild-type NOTCH1 3′UTR-containing reporter
(Fig. 6d). We also observed altered protein levels of CD44,
NUMB, and NOTCH1 in CUL4B knockdown or over-
expressed PDOs (Fig. 6e). Collectively these data sup-
ported the role of CUL4B in repressing miR34a, and thus
upregulating genes that maintain CCSC features.

(see figure on previous page)
Fig. 4 CUL4B positively regulates oncogene MYCN via repressing miR34a expression. a Venn diagram of downregulated genes by RNA
sequencing in three CUL4B knockdown PDOs. b Heatmap of selected CUL4B-regulated candidate genes by RNA sequencing in CUL4B knockdown
PDOs. c mRNA levels of CUL4B-regulated genes by qRT-PCR in CUL4B knockdown HCT116 CSCs and HT29 CSCs. Data represent mean ± SEM (n= 3).
*p < 0.05; **p < 0.01; ***p < 0.001; ns no significance. d Western blotting analysis of MYCN expression in CUL4B knockdown or overexpressed PDOs.
e Overlapping analysis of CUL4B-regulated candidate miRNAs with miRNAs targeting MYCN. f The levels of miR34a were analyzed by qRT-PCR in
CUL4B knockdown or overexpressed and its control PDOs. Data represent mean ± SEM (n= 3). ***p < 0.001. g The levels of miR34a were analyzed by
qRT-PCR in CUL4B knockdown or overexpressed and its control HCT116 CSCs and HT29 CSCs. Data represent mean ± SEM (n= 3). ***p < 0.001. h
Schematic of two putative miR34a binding sites in the MYCN 3′UTR. i Luciferase assay showed reporter activity of wild-type MYCN 3′UTR, but not
mutant, was decreased in CUL4B knockdown HCT116. Data represent mean ± SEM (n= 4). ***p < 0.001; ns no significance. j Luciferase assay showed
decreased luciferase activity of wild-type, but not mutated MYCN 3′UTR in CUL4B knockdown HCT116 was rescued by miR34a repression. Data
represent mean ± SEM (n= 4). ***p < 0.001; ns no significance. k Western blotting analysis shows decreased MYCN expression in CUL4B knockdown
HCT116 cells was rescued by miR34a repression. Intensity of CUL4B and MYCN bands was qualified with GAPDH as the reference by Quantity One
software. Reletavie number was listed below with shNC as the control.
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To further investigate the clinical relevance of our above
findings, we isolated RNA and protein from 38 fresh
tumor samples and paired adjacent normal tissues. As
expected, downregulation of miR34a was observed in 61%

(23/38) of tumor tissues (Supplementary Fig. S4A), while
upregulation of CUL4B was observed in 68% (26/38) of
cancer tissues (Supplementary Fig. S4B). Importantly, we
observed a significant inverse correlation between CUL4B
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protein and miR34a levels (Fig. 6f). Moreover, upregula-
tion of MYCN was observed in 71% (27/38) of cancer
tissues (Supplementary Fig. S4C). Notably, miR34a was
negatively correlated with MYCN (Fig. 6g), while positive
correlation was detected between CUL4B and MYCN as
well as CD44 (Fig. 6h, i). Collectively, these results sup-
port that CUL4B promotes tumorigenesis by regulating
miR34 and its target genes.

Discussion
CRC is highly lethal and has high rate of recurrence, in

part because of CCSCs features30,31. CSCs appear to serve
as critical drivers of tumor heterogeneity and malignancy
in multiple solid tumors. In this study, we demonstrated
that CUL4B acts to maintain CCSCs features through
miR34a regulation. CUL4B promotes sphere formation
from CRC cells and maintains CCSCs self-renewal.
CUL4B promotes tumor expansion and metastasis capa-
city in xenograft. Mechanistically, CRL4B complex coor-
dinates with PRC2 complex to repress miR34a expression
thus upregulates miR34a target genes including MYCN.
CUL4B upregulation is associated with miR34a down-
regulation and upregulation of miR34a targets in CRC
tissues and poor survival rates, suggesting that elevated
CUL4B expression can serve as predictive markers for
patients with CRC.
miR34a is well-known tumor suppressor and tightly

associated with cancer stem cell function32. miR34a
expression leads to differentiation while its reduction to
CCSC proliferation via symmetric self-renewal11. Loss of
p53 function leads to downregulation of miR34a14. Also,
miR34a tends to be silenced due to aberrant CpG
methylation or histone modification by epigenetic
mechanism by DNMT or PRC2 complex15,16. Although
p53 could be downregulated by CUL4B in normal human
fibroblasts under stress33, p53 protein level remained
unchanged in CRC cells after CUL4B ablation. CpG
methylation of miR34a promoter was not altered by
knockdown of CUL4B. Instead, our results demonstrated
an important role of CRL4B and PRC2 complexes in the
transcriptional regulation of miR34a.
MYCN, a member of the MYC family of basic helix-

loop-helix-zipper transcription factors, is well-established
oncogene in several pediatric tumors34,35. MYCN has

been shown to promote HCC proliferation and is posi-
tively associated with CSC markers36. MYCN down-
regulation broadly reverses tumor stem-like phenotypes
and aberrant cell cycle in a variety of neuroblastoma
models37,38. EZH2 is physically associated with MYCN
with increased H3K27me3 at PRC2 target genes in
pediatric cancers35. Besides, MYCN has also been repor-
ted to interact with EZH2 and its overexpression aug-
ments PRC2 signaling thus leading to the development of
poorly differentiated and invasive prostate cancer38. Our
results indicate that CRL4B complex coordinates with
PRC2 complex to promote carcinogenesis39 and CCSCs
features, it remains to be determined whether MYCN
plays a role in recruiting CRL4B and thus forming a
positive feedback loop.
In addition, CUL4B might promote CRC tumorigenesis

by regulating other six genes we identified. Among them,
NRCAM, the cell surface glycoprotein, has been reported
to be significantly associated with nodal and distant
metastasis in colon cancer. NRCAM is also an indepen-
dent marker of poor prognosis among advanced CRC
patients40. UPK3A, FAM3D, and LCN2, which participate
cancer cell metabolisim, were also downregulated in all
PDOs after CUL4B ablation. Further investigations are
needed to understand whether CUL4B promotes tumor-
igenesis through other six genes by using more PDOs and
specimens.
In conclusion, our study shows CRL4B complex coor-

dinates with PRC2 complex to repress miR34a expression,
thus upregulates the oncogenic miR34a targets, and
consequently sustaining CCSCs features. This CUL4B-
miR34a axis may have implications in CSC-targeting
therapy of CRC.

Materials and methods
Tissue specimens
Three sets of tissue microarrays were used in this study.

Two commercial tissue microarrays were purchased from
Zuocheng (Shanghai, China). One microarray (CO150C01)
containing 75 pairs of CRC and normal adjacent tissues was
used to examine CUL4B expression. Three hundred cells
from three randomly selected fields of each sample were
analyzed for CUL4B-positive staining, and percentage of
CUL4B-positive cells was calculated. The second

(see figure on previous page)
Fig. 6 CUL4B upregulates miR34a targets in CCSCs, and its expression correlates with miR34a network in human colon cancer specimens.
a Western blotting analysis to detect CD44, NOTCH1, and NUMB protein level in CUL4B knockdown and its control CCSCs. b Decreased NOTCH1 and
NUMB expression in CUL4B knockdown HCT116 cells was rescued by miR34a repression. c Knockdown of CUL4B in HCT116 cells decreased wild-type,
but not mutated, NOTCH1 3′UTR luciferase activity. Data represent mean ± SEM (n= 4). *p < 0.05; ns no significance. d Decreased luciferase activity of
wild-type, but not mutated, NOTCH1 3′UTR was rescued by miR34a repression in CUL4B knockdown HCT116. Data represent mean ± SEM (n= 4).
**p < 0.01; ns no significance. e Western blotting analysis shows CD44, NOTCH1, and Numb protein level in CUL4B knockdown or overexpressed
PDOs. Distribution of CUL4B protein and miR34a (f), MYCN protein and miR34a (g), CUL4B protein and MYCN protein (h), CUL4B protein and MYCN
protein (i) levels of 38 colorectal cancer samples; up or downregulation is relative to adjacent nontumor tissues.
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microarray (CO180S10) included 100 CRC samples, 80 of
which have paired adjacent tissues. The samples on
C0180S10 microarray were collected in 2008. A follow-up
survey of survival status was conducted in 2015. We used
CO180S10 to examine the association of CUL4B expres-
sion with survival rates. The third microarray included 82
CRC patients who underwent surgery from 2013 to 2015
at Qilu Hospital of Shandong University (Jinan, China).
None of the patients had received radiotherapy or che-
motherapy prior to surgery. For RNA and protein analy-
sis, a total of 38 pairs of human CRC and normal adjacent
tissues were also obtained. This study was approved by
School of Basic Medical Sciences Ethics Committee of
Shandong University and informed consent was obtained
from patients.

IHC staining and analysis
IHC was performed according to the manufacture’s

protocol as described before41. The stained sections were
reviewed and scored independently by two pathologists
from Qilu hospital of Shandong University.

Generation of patient-derived organoids
Freshly collected tumor tissues were cultured into

organoids as previously reported42,43. Briefly, isolated
tissues were shortly incubated in 10ml Ad-F+++ in
Falcon tube. Advanced DMEM/F12 (Gibco) was supple-
mented with penicillin/streptomycin (Gibco), 10 mM
HEPES (Gibco), and 2mM GlutaMAX (Gibco). The tissue
was cut into small pieces, washed with ice-cold type I
solution at least five times, and subsequently digested with
500mM EDTA for 25min on the shaker. The supernatant
was filtered, collected, and centrifuged. The cell pellet was
suspended with matrigel (BD) and dispensed into two 24-
well culture plates. The basal culture medium for orga-
noids was prepared as following (50 ml): Ad-F+++ was
supplemented with 1 ml B27 (Gibco), 500 μl N2 (Gibco),
10 nM gastrin I (RD), and 1.25 mM N-acetylcysteine
(Sigma), 50 ng/ml recombinant EGF (Peprotech), 15%
Noggin-conditioned medium, 30% R-spondin-1-
conditioned medium, 50% Wnt3A-conditioned medium,
500 nM A83-01 (Sigma), 3 mM SB202190 (Sigma), and
10 nM Y-27632 2HCl (Selleck).

Tumor organoid-forming assay
The tumor organoids were collected from matrigel by

incubation with Cell Recovery Solution (Corning). Orga-
noids were digested with Trypsin-EDTA (0.25%). Single
cells were counted and resuspended in 500 μl of culture
medium with 4–8 MOI of CUL4B knockdown or control
virus, and 8 μg/mL Polybrene. Cells were transferred into
one well of a 24-well plate and were incubated at 37 °C 5%
CO2 for 24 h. Cells were collected and resuspended in
Matrigel and were replated in 60 μL droplets in each well of

24-well plates. A total of 2 μg/ml puro (Invivogen) were
added to culture medium on day 5 for selection. After
3–5 weeks culture, the same number of single cells (15,000)
from CUL4B knockdown/overexpression or control orga-
noids were resuspended in 60 μl of Matrigel and replated
per well. After 7–14 days, the number of re-formed tumor
organoid (≥50 μm) was counted and analyzed.

Cell culture and manipulation
The HCT116 and HT29 CRC cell lines were purchased

from the Shanghai Cell Collection (Chinese Academy of
Sciences). All cell lines were cultured according to the
manufacturer’s specifications in RPMI 1640 medium
(Gibco) supplemented with 10% FBS (AusGeneX). Cells
were maintained at 37 °C in a humidified atmosphere with
5% CO2. HCT116 and HT29 cell lines were tested for STR
and mycoplasma.
CUL4B knockdown (shCUL4B) and its control cells

(shNC), or CUL4B overexpression (CUL4B), and its
control cells (con) were generated as described pre-
viously22, the constructs are shown in Supplementary Fig.
S5. We plated shNC or purified shCUL4B CRC cells 24 h
before transfection. Cells were transfected with 20 nM of
miR34a inhibitor or non-targeting inhibitor negative
control miRNA oligos purchased from RiboBio
(Guangzhou, China) by using lipofectamine 2000 (Invi-
trogen). Alternatively, we transfected con or CUL4B CRC
cells with 20 nM of miR34a mimics or mimics negative
control miR-NC purchased from RiboBio (Guangzhou,
China). The cells were harvested 48 h post transfection.

CCSC enrichment, culture and sphere formation
CCSC sphere formation, enrichment and culture were

performed as described previously11,44,45. We generated
spheroid-derived CCSCs from HCT116 and HT29 CRC
cells. Briefly, cells were dissociated using 0.25% trypsin-
EDTA. 5 × 106 single cells were plated on 10 cm Costar
ultralow attachment flasks (Corning) in DMEM/F12 stem
cell medium containing N2 supplement (Invitrogen),
B27 supplement (Invitrogen), EGF (40 ng/ml), and bFGF
(20 ng/ml). Cells were cultured at 37 °C at 5% CO2 for
5–7 days to form spheres. Spheres were then collected at
500 rpm for 3 min and dissociated using 0.25% trypsin-
EDTA. Single cells were passaged at a ratio of 1:3. CCSCs
were further enriched by passaging 7–10 generations. All
CCSCs we used in our experiments were over eight
passages.

Spheroid formation assays
Single cells of CUL4B wild-type or knockdown HCT116

and HT29 were counted and cultured in serum-free stem
cell medium in Costar ultralow attachment flasks (Corn-
ing) for 5–7 days. Spheres with a diameter over 50 μm
were counted as generation one (G1). Then these spheres
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were digested into single cells and passaged. After two
passages, the same number of single cells from CUL4B
wild-type and knockdown HCT116 and HT29 spheres
were seeded and allowed to re-form spheres. Re-formed
spheres with a diameter over 50 μm were counted as
generation three (G3).

Tumor xenografts
BALB/c nude mice (male) were purchased from the

Model Animal Resource Information Platform (Nanjing,
China). The mice were randomly divided into two groups.
HCT116 CSCs or HT29 CSCs stably transfected with
CUL4B or control shRNA were collected. A total of 1 ×
106 viable cells in 200 ul PBS were injected sub-
cutaneously into 6-week-old BALB/c male nude mice.
Visible tumors were measured every 2 days using a vernier
caliper, and the volume was calculated according to the
formula: 1/2 length × square width. All animal experi-
ments were carried out upon approval of the Animal Care
and Use Committee of the School of Basic Medical Sci-
ences, Shandong University.

Organoid xenotransplantation
Organoid xenotransplantation assay was performed as

described previously42,46. NOD-Prkdcem26Il2rgem26/Nju
mice (NCG, male, 6 weeks old) were purchased from the
Model Animal Resource Information Platform (Nanjing,
China). The mice were randomly divided into two groups.
The expanded organoids were harvested. A total 25 ul (1 ×
106 cells) of Matrigel-organoid suspension were injected
into the spleens of NCG mice. The mice were euthanized
3 months after transplantation. The livers and lungs were
collected, and tumor numbers were calculated. Each PDO
was transplanted into five independent NCG mice. Tissue
samples were then formalin-fixed and embedded in paraffin
for subsequent immunohistochemical analysis.

Cell migration assay
Transwell inserts for 24-well plates with porous filters

without coating (the pore size was 8 μm) were used for the
evaluation of cell migration. A total of 1.5 × 105 cells in
200 μl serum-free RPMI 1640 (Gibco) were seeded into
the inserts. And then 600 μl RPMI 1640 (Gibco) with 10%
FBS was added in the lower portion of the chamber as a
chemoattractant. After 35 h of incubation the cells that
transferred to the lower well of the chamber were stained
using crystal violet.

Western blot
Total proteins were extracted from the cells using RIPA

buffer (Keygen) with 1 mM proteinase inhibitor PMSF
(Keygen) and cocktail (Roche). Forty micrograms of pro-
tein were separated on a polyacrylamide gel and trans-
ferred to a nitrocellulose membrane. The membranes

were blocked for 1 h at room temperature in TBST con-
taining 5% BSA, and then incubated overnight at 4 °C in
TBST containing 5% BSA and following antibodies:
CUL4B (Sigma, C9995); CD44 (Sigma, HPA005785 or
Abcam, ab157107); NOTCH1 (CST, 3608S); NUMB
(Abcam, ab4147); MYCN (Genetex, GTX133721); and
GAPDH (CST, 5174S). Membranes were washed in
TBST, incubated with a secondary antibody and con-
jugated with horseradish peroxidase for 1 h at room
temperature. After washes with TBST, bands were
detected using a SuperSignal Chemiluminescence kit
(Thermo). Intensity of bands was qualified with GAPDH
as the reference by Quantity One software.

RNA extraction and quantitative real-time PCR
Total RNA extraction, reverse transcription PCR, and

qRT-PCR assay were performed as described previously21.
Total RNA was extracted with Trizol reagents (Thermo)
following the manufacturer’s instructions. The mRNA
levels of genes and mature miRNA were assayed by SYBR
Green PCR kit (Roche). Actin and U6 were used as the
endogenous control for mRNA and miRNA, respectively.
The primer sequences were listed in Supplementary Table
S2. Primers used for miRNA qRT-PCR were purchased
from GenePharma (Shanghai, China).

Pair–cell assay
Pair–cell assay was performed as described previously11.

Briefly, CCSCs (enrichment over ten passages from tumor
cells) were dissociated from spheres using trypsin-EDTA.
Single cells were plated at 1.8 × 105 cells/mL on 60mm
glass culture slide (pre-coated with poly-lysine or BD,
Falcon 354114) and allowed to progress through one cell
division for 24 h. After being fixed in 4% paraformalde-
hyde, the cells were blocked in 10% normal goat serum for
1 h at room temperature. The cells were incubated with
antibodies against ALDH1 (Santa, sc-374149), and
CUL4B (Sigma, C9995) overnight at 4 °C. Then, the cells
were incubated with labeled secondary antibody (Invi-
trogen) for 1 h at room temperature. After being coun-
terstained with DAPI (Sigma), the slide was observed
under a fluorescent microscope (Olympus). Cells were
analyzed for CUL4B and ALDH1 costaining (coexpressed)
or single staining (exclusive).

RNA sequencing
Total RNA of PDOs was extracted with Trizol reagents

(Thermo) following the manufacturer’s instructions. A
total of eight RNA samples were processed using an
Illumina Hiseq 2500 platform (Novogene, Beijing, China).
RNA-seq generated ~6.0 Gb of sequencing data with
150-bp paired-end reads for each sample. miRNA-seq
generated ~0.5 Gb of sequencing data with 50-bp single
reads for each sample. All RNA-seq and miRNA-seq data

Li et al. Oncogenesis            (2020) 9:20 Page 12 of 14

Oncogenesis



supporting this article are accessible through NCBI’s gene
Expression Omnibus accession number GSE143505.

Luciferase assays
MYCN 3′UTR or NOTCH1 3′UTR were cloned into the

pmir-GLO vector. The pmir-GLO-MYCN 3′UTR vector or
pmir-GLO-NOTCH1 3′UTR vector containing mutated
miR34a binding site was generated by site-directed muta-
genesis using overlap extension PCR. The reporter lucifer-
ase assays were performed as previously described19. The
primer sequences were listed in Supplementary Table S3.

Chromatin immunoprecipitations (ChIPs)
ChIPs were performed as described previously19. The

Antibodies are CUL4B (Sigma, C9995), DDB1 (Santa, sc-
137132), H3K27me3 (CST, 9733S), H3K4me3 (CST,
9751S), EZH2 (CST, 5246S), H2AK119ub1 (CST, 8240S),
and H3 (Abcam, ab1791). The primer sequences are listed
in Supplementary Table S4.

DNA isolation and methylation analyses
Genomic DNA from CCSCs was isolated using the

DNeasy Blood and Tissue Kit (Qiagen). Bisulfite mod-
ification was performed with the EpiTect Bisulfite Kits
(Qiagen) according to the manufacturer’s instructions.
We detected methylation of miR34a CpG island
(GGCGCGCCCCGCGACCCAGCGGCGGCGTGGGC-
GAGGGGCGCTGCG). Methylation analyses were done
by Gene Tech (Shanghai, China). The primer sequences
are listed in Supplementary Table S4.

Statistical analysis
Statistical analysis was performed using unpaired Stu-

dent’s t test to calculate a two-tailed P value between two
groups. Differences were considered significant at P <
0.05. The data are recorded as the mean ± SEM.
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