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SCFβ-TrCP-mediated degradation of TOP2β
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to chemotherapeutic drugs targeting
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Abstract
Topoisomerase II (TOP2)-targeting anticancer chemotherapeutic drugs, termed TOP2 poisons, are widely used and
effective in the clinic by stabilizing TOP2-DNA covalent complexes to induce DNA double-strand breaks (DSBs) and
ultimately, cause cell death. The stabilized TOP2-DNA complex is known to be degraded by proteasome, whereas the
underlying mechanism for instant TOP2β degradation in response to TOP2 poisons and the subsequent biological
consequence remain elusive. Here, we reported that TOP2 poison-induced TOP2β degradation is mediated by
SCFβ-TrCP ubiquitin ligase. Specifically, DNA damage signal, triggered by teniposide (VM-26) treatment, activates ATM,
cooperating with CK1 to phosphorylate TOP2β on Ser1134 and Ser1130, respectively, in a canonical degron motif to
facilitate β-TrCP binding and subsequent degradation. Inactivation of ATM, CK1 or SCFβ-TrCP by small molecular
inhibitors or genetic knockdown/knockout abrogates TOP2β degradation. Biologically, blockage of TOP2β degradation
in combination with VM-26 treatment impairs DNA damage response and repair, leading to an accelerated cell death
via apoptosis. Thus, it appears that TOP2β degradation is a cellular defensive mechanism to facilitate the exposure of
DSBs to trigger DNA damage response and repair. Collectively, our findings reveal a new strategy to improve the
efficacy of TOP2 poisons in combination with small-molecule inhibitors against TOP2β degradation.

Introduction
Type II DNA topoisomerase (TOP2) modulates DNA

topology during DNA replication, transcription, repair,
recombination, and chromosome remodeling and segre-
gation1–3. TOP2 covalently binds to DNA, forming
TOP2-DNA cleavable complexes, generates transient
double-strand breaks (DSBs), which enables another
duplex DNA to pass through the breaks, and finally,
reseals the broken DNA strands3,4. Mammalian cells
express two TOP2 isoforms, known as TOP2α and

TOP2β. These two TOP2 isozymes share ~70% sequence
identity and have similar catalytic activities and structural
features but play distinct roles in biological processes1,3.
TOP2α is primarily involved in regulating cell prolifera-
tion, whereas TOP2β is mainly associated with cell dif-
ferentiation and transcription5. Both TOP2 isozymes have
been shown to be cellular targets by numerous TOP2-
targeting anticancer drugs in clinical use6,7.
A class of anticancer drugs that target TOP2, termed

TOP2 poisons, including etoposide (VP-16)8, teniposide
(VM-26)6, doxorubicin (DOX)9, and mitoxantrone10, are
widely used and rather effective in clinical cancer treatment.
TOP2 poisons stabilize TOP2-DNA complexes to disrupt
TOP2-mediated religation of the broken strands, which
blocks DNA replication and transcription and induces DNA
DSBs and ultimately causes cell death7. However, to repair
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DSBs induced by TOP2 poisons, cancer cells have devel-
oped mechanisms by which TOP2 is removed from the
TOP2-DNA adducts to expose TOP2-concealed DNA
DSBs, thereby triggering DNA damage response and DNA
repair, leading to enhanced survival7,11. Previous studies
have shown that TOP2 poisons lead to TOP2 degradation
in a ubiquitin-proteasome dependent manner12–15, and
TOP2β is preferentially degraded over TOP2α14. However,
which E3 ligase is responsible for TOP2β ubiquitination and
degradation in response to TOP2 poisons, and what is the
biological consequence of TOP2β degradation, are pre-
viously unknown.
Cullin-RING ligase E3 ubiquitin ligases (CRLs) are the

largest family of E3 ubiquitin ligases and are responsible
for the ubiquitination of approximately 20% of cellular
proteins that are degraded through the ubiquitin-
proteasome system16. Of all CRL ligases, CRL1, also
known as SCF (SKP1-Cullin 1-F box protein), is the best
studied member, in which Cullin 1 (CUL1) acts as a
scaffold protein to bring together other components,
including the adaptor protein SKP1, the substrate recog-
nition receptor F-box protein, and the RING subunit
RBX116. β-TrCP, one of well-established F-box proteins
that recognize and specifically bind to their substrates,
promotes the polyubiquitination and degradation of many
key signal proteins, such as CDC25A, WEE1, IκBα,
β-catenin, DEPTOR. Thus, β-TrCP plays a critical role in
the regulation of a vast array of cellular processes,
including cell cycle regulation, signal transduction, gene
transcription and translation, apoptosis, migration, etc.17–19

However, whether and how SCFβ-TrCP ubiquitin ligase
regulates DNA damage response and DNA repair by
modulating TOP2β levels is previously unknown.
In this study, we demonstrated that VM-26-induced

TOP2β degradation is mediated by SCFβ-TrCP E3 ubiqui-
tin ligase. Upon VM-26 stimulation, CK1 and activated
ATM mediate TOP2β phosphorylation at Ser1130 and
Ser1134, respectively, within its consensus β-TrCP degron
motif, which facilitates β-TrCP-TOP2β binding and sub-
sequent polyubiquitination for targeted degradation.
Inactivating β-TrCP via genetic depletion and pharma-
cological approaches not only extends the protein half-life
of TOP2β but also impairs DNA damage response.
Consequently, depletion of β-TrCP or ectopic expression
of β-TrCP-resistant TOP2β mutants sensitizes cancer
cells to VM-26 by promoting cell apoptosis. Our study
provides a new strategy to improve the efficacy of TOP2-
targeted anticancer drugs by combination with small-
molecule inhibitors against TOP2β degradation.

Results
TOP2β is a novel substrate of CRL E3 ligases
Several studies have demonstrated that TOP2 poisons

induce TOP2β degradation via the 26S proteasome12–15.

However, the mechanism by which TOP2β protein sta-
bility is regulated in vivo remains poorly understood.
Consistent with previous studies, we also found that the
proteasome inhibitor MG132 caused an accumulation of
TOP2β protein in a time-dependent manner (Fig. S1A).
TOP2 poisons, including VP-16, VM-26, m-AMSA, and
DOX, indeed induced significant degradation of TOP2β
with minimal, if any, effect on TOP2α (Fig. S1B). More-
over, MG132 blocked VM-26-induced TOP2β degrada-
tion, indicating 26S proteasome-mediated degradation
(Fig. S1C).
Given that CRLs are the largest family of E3 ubiquitin

ligases, to determine whether CRL E3 ubiquitin ligases are
involved in TOP2 poison-induced TOP2β degradation,
we treated cells with VM-26 in combination with
MLN4924, a small-molecule inhibitor of the NEDD8-
activating enzyme (NAE) that inactivates cullin neddyla-
tion to block CRL activation20. We found that the
downregulation of TOP2β levels upon VM-26 treatment
was abrogated by MLN4924 in human breast cancer SK-
BR3, MDA-MB231, and MCF7 cells (Fig. 1a). Moreover,
MLN4924 caused a dose-dependent accumulation of
TOP2β in all tested cells (Fig. 1b). Similar to MG132,
MLN4924 also significantly extended the protein half-life
of TOP2β upon VM-26 treatment (Fig. 1c and Fig. S1C).
Consistently, the polyubiquitination of TOP2β induced by
VM-26 was remarkably inhibited by MLN4924 treatment
(Fig. 1d). To further demonstrate that CRLs are involved
in TOP2β degradation, we overexpressed FLAG-RBX1,
one of two RING components in CRL ligases16, in
HEK293 cells and found that RBX1 bound to endogenous
TOP2β (Fig. 1e). As expected, CUL1 and β-TrCP1, two
components of CRL1 ligase, were also pulled down by
RBX1 (Fig. 1e). Together, these results suggest that
TOP2β is targeted by CRL E3 ubiquitin ligase for ubi-
quitination and degradation upon VM-26 treatment.

β-TrCP binds to TOP2β and negatively regulates TOP2β
levels
We next determined whether CRL1 is the E3 ligase that

mediated VM-26-induced TOP2β degradation by measur-
ing the protein half-life of TOP2β upon CUL1 knockdown
via siRNA oligos and found that CUL1 silencing extended
the protein half-life of TOP2β upon VM-26 treatment
(Fig. S2A), suggesting that CRL1/SCF ubiquitin ligase is
responsible for TOP2β degradation.
To further define which F-box protein specifically binds

to TOP2β and targets it for ubiquitination, we examined the
TOP2β protein sequence for the consensus binding motifs
required for F-box protein binding, and identified two
evolutionarily conserved putative binding motifs
(1129DSGTPS1134 and 1315SSGKPS1320) for β-TrCP (DSGxxS)
(Fig. 2a)17. Knocking down β-TrCP by siRNA oligos sup-
pressed VM-26-induced TOP2β degradation (Fig. 2b) and
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caused a time-dependent accumulation of TOP2β with
minimal, if any, effect on TOP2α (Fig. 2c). Consistently,
β-TrCP silencing by siRNA oligos or by CRISPR-Cas9-
mediated β-TrCP1 knockout significantly extended the
protein half-life of TOP2β in all tested cells (Fig. 2d and
Fig. S2B), suggesting that TOP2β degradation induced
by VM-26 is mediated by β-TrCP. In addition, a co-
immunoprecipitation assay using ectopically expressed
FLAG-β-TrCP1 confirmed an interaction between β-TrCP1
and TOP2β, which was increased upon VM-26 treatment
(Fig. 2e). Moreover, polyubiquitinated TOP2β can be
readily detected in immune precipitates by β-TrCP1 (Fig.

2f). In addition, an in vivo ubiquitination assay further
confirmed that β-TrCP1 markedly promoted TOP2β
polyubiquitination induced by VM-26 treatment (Fig. 2g).
Taken together, these results clearly demonstrate an inter-
action between TOP2β and β-TrCP1 in vivo and suggest
that SCFβ-TrCP E3 ligase mediates ubiquitination and
degradation of TOP2β induced by VM-26 treatment.

Turnover of TOP2β is dependent on its β-TrCP degron
motif
It is well established that the phosphorylation of the

key residues on the degron motif is a prerequisite for the
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Fig. 1 TOP2β is a novel substrate of CRL E3 ligases. a MLN4924 treatment blocks VM-26-induced TOP2β degradation. Cells were left untreated or
treated with VM-26 (100 μM) or in combination with MLN4924 (1 μM) for 2 h. Cells were then harvested, and immunoblotting (IB) was undertaken
using the indicated antibodies (Abs). b MLN4924 increases TOP2β levels in a dose-dependent manner. Cells were treated with various concentrations
of MLN4924 for 24 h, and then, IB was undertaken with the indicated Abs. c MLN4924 treatment extends the protein half-life of TOP2β upon VM-26
treatment. Cells were treated with CHX (100 μg/ml) and VM-26 (100 μM) or in combination with MLN4924 (1 μM) for the indicated time periods, and
then, IB was undertaken with the indicated Abs (top). Densitometry quantification was performed with ImageJ, and the decay curves are shown
(bottom). d MLN4924 treatment suppresses the polyubiquitination of TOP2β induced by VM-26 treatment. HEK293 cells transfected with the
indicated plasmids were treated with VM-26 (100 μM) and MG132 (20 μM) or in combination with MLN4924 (1 μM) for 5 h, and then, IP was
conducted with anti-HA beads (top), and direct IB was undertaken with the indicated Abs (bottom). WCE: whole-cell extract. e RBX1 binds to
endogenous TOP2β. HEK293 cells transfected with the indicated plasmids were harvested for IP with anti-FLAG beads (top) and direct IB with the
indicated Abs (bottom).
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binding of a substrate to an F-box protein for subsequent
ubiquitination and degradation by SCF ubiquitin liga-
ses21. Specifically, the two serine residues of the β-TrCP
degron motif (DSGxxS) must be phosphorylated. To
determine whether the two putative β-TrCP degron
motifs affected TOP2β-β-TrCP binding and TOP2β
stability, we generated three TOP2β mutations in the
β-TrCP degron motifs. Specifically, three serine residues
were replaced with alanine, which cannot be phos-
phorylated: S1130A, S1134A, and S1316A (Fig. 3a).
Immunoblotting assays revealed that the half-lives of
proteins with the S1130A and S1134A mutations in
degron motif-1 (1129DSGTPS1134) were obviously
extended compared with that of wild-type TOP2β,
whereas the S1316A mutation in degron motif-2

(1315SSGKPS1320) was not, but shortened the TOP2β
protein half-life (Fig. 3b). These results indicated that
β-TrCP degron motif-1 may be subjected to β-TrCP
recognition and interaction. Indeed, an IP-based pull-
down assay confirmed that S1130A and S1134A muta-
tions disrupted the interaction between TOP2β and
β-TrCP1 (Fig. 3c). Consequently, these two mutations in
degron motif-1 significantly inhibited the poly-
ubiquitination of TOP2β induced by VM-26 treatment
in an in vivo ubiquitination assay (Fig. 3d). Thus, β-TrCP
binds to and targets TOP2β for ubiquitination and
degradation in a manner dependent on the phosphor-
ylation of both serine residues in the β-TrCP degron
motif-1, suggesting that TOP2β is a bona fide substrate
of SCFβ-TrCP ubiquitin ligase.
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Fig. 2 β-TrCP binds to TOP2β and negatively regulates TOP2β levels. a Evolutionary conservation of the β-TrCP degron motifs of TOP2β.
b β-TrCP silencing abrogates TOP2β reduction by VM-26 treatment. Cells transfected with siRNA oligos targeting both β-TrCP1 and β-TrCP2
(siβ-TrCP1+ 2) or scrambled control siRNA (siCtrl) were left untreated or treated with VM-26 (100 μM) for 2 h, and then, IB was undertaken with the
indicated Abs. c β-TrCP silencing suppresses the TOP2β degradation by VM-26 treatment in a time-dependent manner but has no effect on TOP2α.
Cells transfected with siRNA oligos targeting β-TrCP or scrambled control siRNA were treated with VM-26 for the indicated time periods, and then, IB
was undertaken with the indicated Abs. d β-TrCP silencing extends TOP2β protein half-life upon VM-26 treatment. Cells transfected with the
indicated siRNA were treated with CHX and VM-26 for the indicated time periods and then subjected to IB with the indicated Abs. Densitometry
quantification was performed with ImageJ, and the decay curves are shown (bottom). e Ectopically expressed β-TrCP1 binds to endogenous TOP2β.
HEK293 cells transfected with the indicated plasmids were left untreated or treated with VM-26 and MG132 (20 μM) for 5 h. Cells were then harvested
for IP with anti-FLAG beads (top) and direct IB with the indicated Abs (bottom). f β-TrCP1 binds to endogenous TOP2β. HeLa cells were lysed and
subjected to IP with β-TrCP1 antibody or normal rabbit immunoglobulin (IgG), and then, IB was undertaken with anti-TOP2β Ab (top). Cell lysate was
also directly immunoblotted with the indicated Abs (bottom). g β-TrCP1 promotes TOP2β polyubiquitination in vivo. HEK293 cells transfected with
the indicated plasmids were treated with MG132 and VM-26 for 5 h, and then, IP was conducted with anti-HA beads (top), and direct IB was
undertaken with the indicated Abs (bottom).
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ATM binds to and phosphorylates TOP2β at Ser1134 to
promote TOP2β degradation
It is well known that chemotherapeutic drugs targeting

topoisomerases induce DNA damage7 and the three key
kinases, including ATM, ATR, and DNA-PK, activated
by DNA damage signals mediate DNA damage response
to induce cell cycle arrest, DNA repair, and apoptosis22.
To determine which VM-26-activated kinase (or kinases)
mediates the phosphorylation of TOP2β at the serine
residues of the consensus binding motif, thereby leading
to its degradation, we used small-molecule inhibitors to
inactivate ATM, ATR, or DNA-PK, respectively, and
determined their effects on TOP2β protein levels. We
found that VM-26-induced TOP2β reduction was

significantly abolished by KU60019, an ATM inhibitor23,
but not by the ATR inhibitor AZD673824 or the DNA-
PK inhibitor LTURM3425 (Fig. 4a). Consistently, VM-26,
indeed, significantly activated ATM in a time-dependent
manner, as reflected by the increase in the phosphor-
ylation of ATM at Ser1981 (Fig. S3A). Moreover, the
protein half-life of TOP2β was significantly extended in
the presence of KU60019 but not AZD6738 or
LTURM34 (Fig. 4b and Fig. S3B, C). More specifically,
ATM knockdown via siRNA oligos in breast cancer SK-
BR3 and MDA-MB231 cells (Fig. 4c) or ATM knockout
in mouse embryonic fibroblasts (MEFs) (Fig. 4d) exten-
ded TOP2β protein half-life upon VM-26 treatment
(Fig. 4c, d). In addition, ATM was readily detected in
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Fig. 3 The turnover of TOP2β upon VM-26 treatment is dependent on the β-TrCP degron motif of TOP2β. a Diagram of mutants of two
potential β-TrCP degron motifs in TOP2β. b TOP2β S1130A and S1134A mutants, but not the S1316A mutant, have longer protein half-lives. HEK293
cells transfected with wild-type or indicated mutants of FLAG-TOP2β were treated with CHX and VM-26 for the indicated time periods, and then, IB
was undertaken using the indicated Abs (left). Densitometry quantification was performed with ImageJ, and the decay curves are shown (right).
c Reduction in β-TrCP-TOP2β binding by degron site mutations. HEK293 cells transfected with the indicated plasmids were treated with MG132 and
VM-26 for 5 h, and then, IP was conducted with anti-FLAG beads (top), and direct IB was undertaken with the indicated Abs (bottom). d Reduction in
TOP2β ubiquitination by degron site mutations. HEK293 cells transfected with the indicated plasmids were treated with MG132 and VM-26 for 5 h,
and then, IP was conducted using anti-HA beads (top), and direct IB was undertaken using the indicated Abs (bottom).
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immune precipitates by FLAG-tagged TOP2β (Fig. 4e),
indicating that ATM can bind to and phosphorylate
TOP2β.
To identify which residue is phosphorylated by ATM,

we examined the TOP2β protein sequence and found two
putative ATM phosphorylation sites close to the con-
sensus β-TrCP degron motif, Thr1119 and Ser1134, as
predicted by computer-aided algorithms in GSP 2.0
(http://gps.biocuckoo.org) and KinasePhos 2.026, respec-
tively (Fig. 4f). Although both Ser/Thr residues are evo-
lutionarily conserved (Fig. 4f), only the S1134A mutant
significantly abrogated the phosphorylation of TOP2β,
whereas the phosphorylation-dead mutations of Thr1119
or Ser1130, the other key serine residue in the β-TrCP
degron motif, had no effects on the phosphorylation levels
of TOP2β, as shown by the phosphorylation levels of
immune precipitates by FLAG-tagged TOP2β using p-S/T
antibody (Fig. 4g). Together, our results demonstrate that
ATM binds to TOP2β and phosphorylates Ser1134 for
targeted TOP2β degradation.

CK1 phosphorylates TOP2β at Ser1130 to promote its
degradation induced by VM-26
Given that ATM is unable to phosphorylate TOP2β at

Ser1130, which is essential for its degradation, we next
explored other possible kinases involved in regulating
TOP2β degradation with the focused on GSK3, CK1, and
CK2, which often play roles in β-TrCP-mediated protein
degradation27. Notably, inactivation of CK1 by D4476, a
CK1 inhibitor28, blocked the degradation of TOP2β in
response to VM-26 treatment, whereas inactivation of CK2
and GSK3 by CK2 inhibitor CX-494529 and GSK3 inhibitor
GSK3i-IX30, respectively, had no such effect (Fig. 5a).
Consistently, the protein half-life of TOP2β was extended
by D4476 treatment but not by CX-4945 or GSK3i-IX
treatment (Fig. 5b and Fig. S4A, B). Furthermore, we
determined that the δ isoform, and ε isoform to a lesser
extent, but not α isoform, of CK1 were involved in
degrading TOP2β, as evidenced by the blockage of TOP2β
degradation and the extension of its protein half-life upon
CK1δ silencing via siRNA oligos (Fig. 5c, d, and Fig. S4C, D).
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Similar to ATM, we found an interaction between CK1δ
and TOP2β, implying that CK1δ can directly bind to and
phosphorylate TOP2β. Furthermore, this interaction was
significantly increased in response to VM-26 treatment
(Fig. 5e), suggesting that phosphorylation of TOP2β at
Ser1134 induced by VM-26-activated ATM may promote
CK1δ to phosphorylate TOP2β at Ser1130. Indeed,
overexpression of CK1δ promoted the phosphorylation of
TOP2β but had no effect on the S1130A mutant (Fig. 5f).
Additionally, several studies showed that upon DNA

damage, CK1δ is translocated from cytoplasm to
nucleus31,32. Taken together, these results indicate that CK1
mediates TOP2β phosphorylation at Ser1130 to promote
subsequent degradation in response to VM-26 treatment.

Inactivation of SCFβ-TrCP ubiquitin ligase impairs DNA
damage response by concealing DSBs induced by VM-26
treatment
It has been reported that proteasome-mediated degra-

dation of TOP2 cleavage complexes transforms TOP2
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concealed DNA strand breaks into recognizable DSBs that
trigger DNA damage signals, including ATM autopho-
sphorylation at Ser1981 and the formation of γH2AX foci
to recruit DNA repair machinery7. To determine whether
SCFβ-TrCP ubiquitin ligase-mediated TOP2β degradation
plays a physiological role in the VM-26-induced DNA
damage response, we examined foci formation and the
levels of γH2AX, a marker for DNA damage signaling33, in
the presence of MLN4924 to block the activation of
SCFβ-TrCP ubiquitin ligase. As expected, VM-26 sig-
nificantly induced foci formation and increased the levels
of γH2AX in SK-BR3 (Figs. 6a, b) and MDA-MB231 cells
(Figs. S5A, B), indicating the induction of DNA damage
signaling by VM-26. Notably, co-treatment of MLN4924,
which inhibited TOP2β degradation (Fig. 6b and Fig. S5B),
remarkably attenuated the foci formation and levels of
γH2AX (Fig. 6a, b and Fig. S5A, B). Likewise, ATM
autophosphorylation at Ser1981 triggered by VM-26
treatment was also reduced in the presence of MLN4924
(Fig. 6b and Fig. S5B). In addition, similar results were
obtained when SCFβ-TrCP was specifically inactivated by
siRNA-based knockdown (Fig. 6c, d and Fig. S5C, D).
These results suggest that SCFβ-TrCP-mediated TOP2β
degradation plays vital roles in the transformation of
TOP2-DNA covalent complexes into DSBs that are
recognized by DNA damage signaling.
Next, to further support this notion, we used a neutral

comet assay34 to measure the amount of DSBs. Notably,
the comet tail moment identified by neutral comet assay
reflected the total levels of TOP2 concealed DSBs and
protein-free DSBs, as protease K was utilized in the lysis
buffer to digest TOP2 in TOP2β-DNA covalent com-
plexes to reveal DSBs concealed by TOP2β. As shown in
Fig. 6e–h, VM-26 treatment, indeed, significantly
increased the comet tail moment, indicating that DSBs
were induced by VM-26, a finding that is consistent with
the role of VM-26 in stabilizing TOP2β-DNA covalent
complexes to subsequently induce DSBs. Co-treatment
with MLN4924 (Fig. 6e, f) or β-TrCP1 depletion (Fig. 6g, h)
caused a significant increase in DSBs compared with the
treatment of VM-26 alone or with sgCtrl. This result
implied that 1) blocking TOP2β degradation by inacti-
vating SCFβ-TrCP stabilizes TOP2β-DNA covalent com-
plexes and conceals DSBs, which impairs the recognition
of damaged DNA to trigger DNA damage response and
subsequent DNA repair, resulting in the increased DSBs
observed in the neutral comet assay; 2) the attenuation of
DNA damage response upon inactivation of SCFβ-TrCP by
MLN4924 or β-TrCP depletion (Fig. 6a–d) was not
caused by the reduction in DSBs. Taken together, our
results clearly demonstrate that inactivation of SCFβ-TrCP

ubiquitin ligase blocks TOP2β degradation induced by
VM-26 treatment to conceal DSBs and subsequently
attenuates DNA damage response.

Depletion of β-TrCP or overexpression of β-TrCP-resistant
TOP2β mutants sensitizes cancer cells to VM-26 treatment
by promoting apoptosis
Several lines of evidence have shown that chemother-

apeutic drugs targeting topoisomerases induce DNA
DSBs, leading to rapid TOP2β degradation and apoptotic
cell death7. However, it is unknown whether TOP2β
degradation induced by these chemotherapeutic drugs
contributes to the killing of tumor cells. To this end, we
determined the biological consequence of disrupting
SCFβ-TrCP-mediated TOP2β degradation triggered by
VM-26 treatment. We first determined whether
MLN4924, a small-molecule inhibitor of neddylation
currently at the Phase I/II clinical trials against a number
of human malignancies that inactivates all CRL ligases20,
would enhance the killing of tumor cells by VM-26
treatment. We used an IC20 concentration of MLN4924
(Fig. S6A) in combination with various concentrations of
VM-26 to determine the IC50 values of VM-26 with or
without MLN4924. The ATPlite cell viability assay
showed that MLN4924 caused a significant decrease in
the IC50 values of VM-26 in SK-BR3 and H1299 cells from
107.1 nM to 49.9 nM and from 84.9 nM to 42.2 nM,
respectively (Fig. S6B). More specifically, β-TrCP1
depletion caused a significant decrease in the IC50 values
of VM-26 in SK-BR3 and H1299 cells from 255.6 nM to
124.2 nM and from 94.4 nM to 58.6 nM (Fig. 7a and Fig. S7A),
respectively, indicating that cancer cells are more sensitive
to VM-26 treatment after β-TrCP1 depletion. Mechan-
istically, the percentage of apoptotic cells, as reflected by
Annexin V+ cells assessed by flow cytometry, was sig-
nificantly increased when VM-26 treatment was com-
bined with β-TrCP1 depletion (Fig. 7b and Fig. S7B).
Likewise, VM-26 treatment markedly increased the clea-
vage of caspase-3 and PARP, two hallmarks of apoptosis,
in β-TrCP1-depleted cells (Fig. 7c and Fig. S7C), sug-
gesting that β-TrCP depletion sensitizes cancer cells to
VM-26 by promoting apoptosis. Concomitantly, VM-26-
induced TOP2β degradation and H2AX phosphorylation
were also reduced in β-TrCP1-depleted cells, which sug-
gested that blocking TOP2β degradation attenuates DNA
damage response and DNA repair, ultimately leading to
apoptosis induction (Fig. 7c and Fig. S7C).
To rule out the possible involvement of other β-TrCP

substrates in VM-26 sensitization, we stably expressed
wild-type (WT) TOP2β or TOP2β (S1130A) and TOP2β
(S1134A), two TOP2β mutants resistant to SCFβ-TrCP-
mediated degradation, in cells with depletion of endo-
genous TOP2β by the CRISPR-Cas9 approach. We found
that ectopic expression of β-TrCP-resistant TOP2β
mutants sensitized cells to VM-26 treatment, as evidenced
by (1) the decrease in IC50 values (Fig. 7d and Fig. S7D)
and clonogenic cell survival (Fig. 7e and Fig. S7E), and (2)
the increase in apoptosis (Fig. 7f and Fig. S7F) in cells
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expressing TOP2β-S1130A or TOP2β-S1134A compared
to those in cells expressing TOP2β-WT. Taken together,
our results demonstrate that blocking β-TrCP-mediated
TOP2β degradation attenuates DNA damage response to
impair DNA repair, leading to enhanced apoptosis and
greater sensitivity to VM-26 treatment.

Discussion
In this study, we identified and characterized TOP2β, a

type II topoisomerase, as a physiological substrate of
SCFβ-TrCP E3 ubiquitin ligase. Our conclusion is

supported by the following lines of evidence: (1) inacti-
vating SCF E3 ubiquitin ligases by MLN4924 blocks
TOP2β degradation induced by VM-26 treatment,
extends the TOP2β half-life, and reduces TOP2β poly-
ubiquitination; (2) TOP2β binding to β-TrCP, which is
dependent on an evolutionarily conserved β-TrCP bind-
ing motif on TOP2β, is enhanced significantly upon VM-
26 treatment, leading to TOP2β polyubiquitination; (3)
inactivating SCFβ-TrCP E3 ubiquitin ligase by silencing
CUL1 or β-TrCP blocks TOP2β degradation and extends
its protein half-life; (4) ATM and CK1 phosphorylate
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TOP2β at Ser1134 and Ser1130 within the β-TrCP
binding motif, respectively; and (5) inactivating ATM or
CK1 by siRNA knockdown, gene knockout and small-
molecule inhibitor blocks TOP2β degradation and
extends its protein half-life. Biologically, we demonstrated
that SCFβ-TrCP-mediated TOP2β degradation promotes
cancer cell survival by promoting DNA damage signals
that facilitate DNA repair, whereas blockage of this
degradation promotes cell killing via enhancing apoptosis
(Fig. 7g).
A previous study showed that proteasomal inhibitors

significantly enhance the growth inhibition of drugs
targeting DNA topoisomerase II, indicating that blocking
TOP2 degradation is an attractive strategy to sensitize
cancer cells to TOP2-targeting chemotherapeutic drugs
(TOP2 poisons)35. Although TOP2 poisons induce the
degradation of both TOP2α and TOP2β, the rate and
extent of degradation are much greater for TOP2β than
for TOP2α (Fig. 2c and Fig. S1B)13, a finding that pro-
vides novel insight that may explain why the cytotoxic
effects of most TOP2 poisons in tumor cells appear to be
mainly TOP2α-dependent. Therefore, specifically
blocking the degradation of TOP2β would be a better
choice for effectively enhancing the anticancer efficacy of
TOP2 poisons. However, the proteasomal inhibitors
used in a previous study are associated with high normal
cell toxicity, as a result of the global inhibition of protein
degradation through the 26 S proteasome35. In this
study, we revealed the precise mechanism by which
TOP2 poisons induce TOP2β degradation and demon-
strated that specifically blocking TOP2β degradation
remarkably sensitizes cancer cells to VM-26 treatment
(Fig. 7). Thus, our study suggests a novel strategic drug
combination of TOP2 poisons with an inhibitor targeting
TOP2β degradation for maximal killing efficiency of
tumor cells.
Chemotherapeutic drugs targeting topoisomerases are

widely used in anticancer treatment in the clinic6. For
example, etoposide (VP-16) is approved to treat lym-
phomas, nonlymphocytic leukemia, and solid tumors8;
teniposide (VM-26) is used in the treatment of acute
lymphoblastic leukemia (ALL) in children, lymphoma,
and brain cancer6; and doxorubicin acts as a potent
anticancer drug and is approved for the treatment of
many human cancers, including solid tumors (such as
breast, lung, ovarian, bladder, liver, and thyroid), lym-
phomas, and ALL9. Unfortunately, these drugs are asso-
ciated at a high incidence with development of secondary
malignancies. For example, a specific type of leukemia was
developed in patients treated with etoposide or doxor-
ubicin, likely due to induced chromosomal transloca-
tions36. Recent studies have shown that TOP2β-DNA
cleavage complexes have a preferential role in the gen-
eration of leukemia chromosomal break points14,36. Thus,

at least in theory, small inhibitors targeting TOP2β
degradation will reduce the leukemogenic potential of
TOP2 poisons. Therefore, the mechanism underlying
TOP2β degradation elucidated in our study may help to
uncover a new way to decrease the incidence of secondary
malignancies induced by the treatment of TOP2 poisons,
while enhancing their anticancer efficacy.
Few recent studies have shown that TOP2β-mediated

DNA DSBs that subsequently induce DNA damage sig-
nals contribute to the cardiotoxicity induced by doxor-
ubicin37,38. Proteasomal degradation of TOP2β exposes
the TOP2β-concealed DNA DSBs that results in genomic
instability, which could play an important role in the
development of this side effect. Thus, proteasome inhi-
bitors that block TOP2β degradation to reduce DNA
damage signals or a knockout of TOP2β would likely
prevent doxorubicin-induced cardiotoxicity. Indeed, mice
carrying cardiomyocyte-specific deletion of Top2β were
found to be significantly protected from the development
of doxorubicin-induced progressive heart failure38, indi-
cating that TOP2β is a promising molecular target for
preventing cardiotoxicity induced by doxorubicin or other
TOP2 poisons39–41. Our findings reported in this study,
therefore, have a translational implication by providing a
more precise strategy to prevent doxorubicin cardiotoxi-
city through blockage of TOP2β degradation.
In summary, our study established a feed-forward loop by

which TOP2 poisons trigger DNA damage signal for
instant TOP2β degradation, which then fully expose
damaged DNA to triggers more DNA damage response
and repair. Specifically, upon exposure to TOP2 poisons,
TOP2β-DNA complexes were stabilized which disrupted
TOP2-mediated religation of the broken strands, leading to
ATM activation. Activated ATM then phosphorylated
TOP2β at Ser1134 to trigger CK1 phosphorylation of
TOP2β at Ser1130 on the β-TrCP degron motif, which is
then recognized by β-TrCP for binding and subsequent
ubiquitination by SCF E3 ligase for proteasomal degrada-
tion. The degradation of TOP2β exposes TOP2β-concealed
DNA DSBs to enhance DNA damage signals that further
activates ATM and initiates DNA repair for cell survival.
Thus, the small molecules that inhibit TOP2β degradation
would disrupt this feed-forward loop to reduce DNA
damage response and repair for enhanced cancer cell kill-
ing. At the same time, termination of this feed-forward
loop may also reduce cardiotoxicity and secondary malig-
nancies induced by TOP2 poisons (Fig. 7g).

Materials and methods
Cell lines and chemicals
All cell lines, SK-BR3, MDA-MB231, MCF7, HEK293,

and H1299 were obtained from American Type Culture
Collection (ATCC), and maintained in Dulbecco’s mod-
ified Eagle’s medium, supplemented with 10% (v/v) fetal
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bovine serum (FBS) and 1% penicillin/streptomycin at
37 °C in a humidified incubator with 5% CO2. The fol-
lowing chemicals were obtained from commercial sour-
ces: MLN4924 (Apexbio), MG132 (Cayman), CHX
(Sigma), VM-26 (Sigma), KU60019 (MCE), AZD6738
(MCE), LTURM34 (MCE), D4476 (Selleck), GSK3i-IX
(Selleck), and CX-4945 (Selleck).

Cell transfection and siRNA silencing
For cell transfection, sub-confluent cells were trans-

fected with the corresponding plasmids or siRNA oligos
using Lipofectamine 3000 (Invitrogen), according to the
manufacturer’s instructions. The sequences of siRNA
oligos are as follows: siCtrl: 5′-ATT GTA TGC GAT CGC
AGA C-3′; siCUL1: 5′-GGT CGC TTC ATA AAC AAC
A-3′; siβTrCP1+ 2: 5′-AAG TGG AAT TTG TGG AAC
ATC-3′; siATM: 5′-AAC ATA CTA CTC AAA GAC A
TT-3′; siCK1α: 5-GGC TAA AGG CTG CAA CAA A-3′;
siCK1δ: 5′-CCA AGA GAC AGA AAT ACG AA
A-3′; siCK1ε: 5′-GCG ACT ACA ACG TGA TGG T-3′.

CRISPR/Cas9-mediated knockout
Human breast cancer SK-BR3 and MDA-MB231 cells

and human lung cancer H1299 cells with β-TrCP1 or
TOP2β knockout were generated by the CRISPR-Cas9
system. Briefly, single-guide RNA (sgRNA) against
β-TrCP1 or TOP2β was subcloned into the plasmid
pSpCas9(BB)-2A-Puro (PX459). Cells were transfected
with the construct and selected with puromycin for 3 days,
and single clones were selected under a microscope.

Immunoblotting and immunoprecipitation
For immunoblotting (IB), cells were lysed in buffer

supplemented with phosphatase inhibitors and protease
inhibitors, followed by ultrasound. The lysates were then
separated on SDS-PAGE and immunoblotted with the
indicated antibodies (Abs). For immunoprecipitation (IP),
whole-cell extract was incubated with the corresponding
antibody in a rotating incubator for 3–5 h at 4 °C, to
which Protein A/G Sepharose beads were added, and the
incubation continued for an additional 2–4 h. The
immunoprecipitates were then washed four times with
lysis buffer and subjected to IB with the indicated Abs, as
previously described42.
The following antibodies were used: TOP2β (611493, BD

Biosciences, 1:1000), TOP2α (12286, Cell Signaling Tech-
nology, 1:1000), CUL1 (sc-11384, Santa Cruz, 1:1000),
ACTIN (A5441, Sigma, 1:10000), NEDD8 (ab81264,
Abcam, 1:4000), β-TrCP1 (4394, Cell Signaling Technology,
1:1000), FLAG (F1804, Sigma, 1:2000), p-AKT (4060, Cell
Signaling Technology, 1:2000), AKT (4691, Cell Signaling
Technology, 1:2000), p-ATR (2853, Cell Signaling Tech-
nology, 1:1000), p-ATM (200-301-400S, Rockland, 1:1000),
ATM (2873, Cell Signaling Technology, 1:1000), β-Catenin

(9582, Cell Signaling Technology, 1:1000), CK1δ (12417,
Cell Signaling Technology, 1:500), γH2AX (05-636, Milli-
pore, 1:10000), PARP (9542, Cell Signaling Technology,
1:1000), Caspase 3 (9665, Cell Signaling Technology,
1:1000), p-CHK1 (2348, Cell Signaling Technology, 1:2000),
CHK1 (sc-8408, Santa Cruz, 1:1000), and p-S/T (9631, Cell
Signaling Technology, 1:1000).

Flow cytometry
Cells were treated with VM-26 for various time periods

and then stained with an annexin V-FITC/propidium
iodide (PI) apoptosis detection kit (Beyotime Biotechnol-
ogy, Shanghai, China), according to the manufacturer’s
instructions, and then counted by flow cytometry, as
described previously43.

In vivo ubiquitination assay
HEK293 cells were transfected with various plasmids with

PolyJet (SignaGen Laboratories), according to the manu-
facturer’s instructions. After 48 h, cells were treated with
VM-26 or MLN4924, along with MG132, as described.
Cells were then lysed in buffer containing phosphatase
inhibitors and protease inhibitors, pulled down with HA
beads and subjected to direct IB using anti-TOP2β or anti-
FLAG antibody.

ATPlite assay
A total of 2000 cells were seeded in triplicate in 96-well

plates and treated with VM-26 at various concentrations
for 72 h and then assayed for viability with ATPlite,
according to the manufacturer’s instructions for use of the
ATPlite 1 step Luminescence Assay System (Perki-
nElmer), as previously described44. The results obtained
from three independent experiments were plotted.

Neutral comet assay
Neutral comet assays were performed as previously

described34. In brief, cells were cultured in 60-mm dishes
and treated with 2mM thymidine. Twenty-four hours later,
the cells were washed once with phosphate-buffered saline
(PBS) and incubated for additional 1 h with VM-26 or
MLN4924 alone or in combination. Cells were then har-
vested and coated onto the slide. For cellular lysis, slides
were immersed in neutral N1 lysis solution (0.5mg/ml
proteinase K, 0.5M EDTA, 2% sarkosyl, pH 8.0) overnight
at 37 °C. Then, the slides were stained with 10 μg/ml pro-
pidium iodide (PI) for 20min, and the cells were subjected
to electrophoresis at 15 V for 25min (0.6 V/cm) and viewed
using a fluorescence microscope. The comet tail moment
was analyzed by the CometScore software.

Immunofluorescence
Following treatment, cells were fixed and stained with

anti-γH2AX antibody and DAPI as previously described45.
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Cells were then photographed with a Nikon A1 Ti confocal
microscope (Nikon, Japan) using a ×60 oil objective lens.

Statistical analysis
The data from three independent experiments are pre-

sented as the mean ± SEM. A two-tailed Student’s t test
for statistical analysis was performed with the Prism
software (GraphPad). Statistical significance was deter-
mined for differences with p < 0.05.
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