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Histoepigenetic analysis of the mesothelin network
within pancreatic ductal adenocarcinoma cells
reveals regulation of retinoic acid receptor gamma
and AKT by mesothelin
Eugene Lurie 1,5, Dongliang Liu2, Emily L. LaPlante 1, Lillian R. Thistlethwaite1,3, Qizhi Yao 2,4 and
Aleksandar Milosavljevic 1,3

Abstract
To enable computational analysis of regulatory networks within the cancer cell in its natural tumor microenvironment,
we develop a two-stage histoepigenetic analysis method. The first stage involves iterative computational
deconvolution to estimate sample-specific cancer-cell intrinsic expression of a gene of interest. The second stage
places the gene within a network module. We validate the method in simulation experiments, show improved
performance relative to differential expression analysis from bulk samples, and apply it to illuminate the role of the
mesothelin (MSLN) network in pancreatic ductal adenocarcinoma (PDAC). The network analysis and subsequent
experimental validation in a panel of PDAC cell lines suggests AKT activation by MSLN through two known activators,
retinoic acid receptor gamma (RARG) and tyrosine kinase non receptor 2 (TNK2). Taken together, these results
demonstrate the potential of histoepigenetic analysis to reveal cancer-cell specific molecular interactions directly from
patient tumor profiles.

Introduction
The study of oncogene expression in unperturbed

cancer cells within their tumor microenvironment pro-
vides insights that may not be gained from other more
accessible models that may not reflect as closely the
tumor biology in vivo. The lack of correspondence of
experimental models with tumor biology in vivo may lead
to only partial understanding of oncogenic mechanisms,
ultimately resulting in failures of experimental therapies
targeting the oncogene. One illustrative example is the
glycosylphosphatidylinositol-anchored cell-surface pro-
tein mesothelin (MSLN), whose expression is elevated in

many pancreatic ductal adenocarcinoma (PDAC) cases1

and is associated with shorter overall survival2. Most of
the current knowledge about MSLN’s function in the
context of PDAC comes from mouse or cell-line models,
which have shown its upregulation increases cancer cell
proliferation, cell cycle progression, and cell survival3–5;
while its interaction with MUC16 contributes to cell
motility and invasion6,7. These models have shown limited
utility for developing therapies targeting MSLN: while
preclinical studies targeting MSLN in pancreatic cancer
cell lines and patient-derived xenograft mouse models
have resulted in inhibition of cancer growth8,9, early-stage
clinical trials have shown stabilized disease or increase in
survival for only a few patients10,11, with partial and
overall responses being mostly low or absent12,13.
One obvious step toward addressing this problem is to

study the oncogene and its network within its natural
tumor microenvironment. However, transcriptional
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profiling of tumors is confounded by sample-to-sample
differences in tumor purity and cell-type composition14,15.
This is a particularly important concern for PDAC tumors
as they can show an abundant and highly variable stromal
component, leading to ambiguous interpretation of bulk
expression profiles16. For example, a sample with higher
bulk expression of MSLN may either contain cancer cells
with higher intrinsic expression of MSLN or the expres-
sion of MSLN may be constant and the sample may just
have higher purity (proportion of cancer cells), resulting
in higher bulk expression of the gene. This ambiguity
hampers not only cancer-cell intrinsic differential gene
expression analysis, but also the analysis of genes of
interest in the context of their cancer-cell-specific reg-
ulatory networks.
One approach toward addressing this problem would be

to computationally tease apart the associated cancer cell-
type-specific differences between groups of tumors.
Numerous computational methods have been developed
to account for tumor purity differences14, but cannot
explicitly trace differential expression to specific cell types
nor place the gene within its network module. Our pre-
viously developed Epigenomic Deconvolution (EDec)
method17 partially addresses this problem by comparing
cell-type-specific profiles starting from two groups of
predefined groups of samples. One obvious limitation of
EDec is the requirement that the two groups be pre-
defined. This limitation precludes grouping by cell-
intrinsic expression of genes of interest such as MSLN.
To address this “chicken and egg” problem, we develop a
histoepigenetic analysis method that expands on the EDec
method in two ways: (1) It integrates within an iterative
procedure a two-way clustering step with deconvolution
to separate PDAC tumors based on cancer-cell-specific
expression of a gene of interest such as MSLN; (2) It
estimates a network of genes potentially interacting with
the gene of interest. We here validate the method in
simulation experiments, compare it to alternative
approaches, and apply it to elucidate MSLN’s network
within PDAC cancer cells.

Results
Deconvolution of TCGA PDAC datasets identifies four
constituent cell types
We first applied the original EDec method to the DNA

methylation and gene expression profiles of 150 PDAC
tumors and 2 adjacent normal tissues within The Cancer
Genome Atlas (TCGA) collection. EDec estimated four
distinct cell type profiles, provided their per sample pro-
portions, and provided estimates of cell-type-specific
DNA methylation and expression profiles. Based on
expression of known cell-type-specific marker genes, the
profiles could be unambiguously recognized as belonging
to stromal, immune, normal epithelial/acinar, and cancer

cell types (Fig. 1a). Comparisons of deconvoluted tumor
tissue to deconvoluted paired adjacent normal tissue
showed a larger proportion of the predicted cancer cell
type in the tumors compared to the normal tissues (Fig.
1b). The predicted cancer cell proportion in the normal
tissue of patient TCGA.YB.A89D is consistent with pre-
vious central pathology review that noted “~10% neo-
plastic cellularity”15. Per sample estimates of cancer cell
proportions for these 150 tumors showed high Spear-
man’s correlation with previous tumor purity estimates
calculated using InfiniumPurify18 (r= 0.98, p < 2.2 × 10
−16) and ABSOLUTE15 (r= 0.89, p < 2.2 × 10−16) (Fig.
1c). Likewise, precalculated leukocyte proportion esti-
mates15 showed high correlation with immune cell pro-
portion estimates (r= 0.96, p < 2.2 × 10−16) (Fig. 1c).
These results suggest EDec properly estimated con-
stituent cell types, their proportions within individual
samples, and cell-type-specific expression profiles.

Grouping tumor samples by cancer-cell intrinsic
expression of MSLN
The goal at the first stage of histoepigenetic analysis (see

“Materials and methods” and Fig. 2a) was to group tumor
samples based on cancer cell intrinsicMSLN expression—
addressing complications introduced by tumor purity
differences (Supplementary Fig. 1)—and to compare those
with high vs. low expression. To test the performance of
the method, we ran several simulations on mock pan-
creatic sample profiles containing reference cancer cell
profiles with either high or low MSLN expression. Simu-
lated mixing showed high correlation between estimated
proportions and known mixed proportions (Supplemen-
tary Fig. 2a) and stable clustering into MSLN high vs
MSLN low tumors (Supplementary Fig. 2b). Moreover,
deconvoluted cell-type-specific gene expression profiles of
these groups were also accurate (Supplementary Fig. 2c).
Taken together, the results suggest that the method per-
formed accurately. We next applied the method to the
PDAC tumors in the TCGA dataset to identify and
compare those with high vs. low cancer cell-intrinsic
expression of MSLN. The first split yielded one group of
PDACs with high cancer cell intrinsic MSLN expression
and the other with lower expression. In the second step,
the latter was further split into two groups (Supplemen-
tary Fig. 3a). The group with the lowest MSLN expression
was then compared to the one with the highest (Fig. 2b).
We next compared the result of iterative grouping to

grouping based on bulk profiles. For this purpose, we split
samples into three quartiles for each method and com-
pared the samples in the top (first) and bottom (third)
quartile for each method. While the overlap was high (Fig. 2c),
the exceptions could be explained by the confounding
effect of tumor purity: bulk grouping incorrectly assigned
8 samples with low cancer cell MSLN levels but high
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Fig. 1 EDec deconvolution of TCGA PDAC dataset. a Bar plots showing assignment of mean expression, with standard error, of 8 marker genes to
the 4 predicted cell types (CT) from the gene expression deconvolution of 150 TCGA samples. Colors represent different constituent cell types. b Pie
charts showing estimated composition of tumor samples and paired adjacent normal samples for two patients from the TCGA collection. c Scatter
plots showing Spearman’s correlations between EDec estimates of cancer cell proportions and previously generated tumor purity estimates by
InfiniumPurify (left) and ABSOLUTE (center) and EDec estimates of immune cell proportions with those also previously generated (right).

Lurie et al. Oncogenesis            (2020) 9:62 Page 3 of 12

Oncogenesis



tumor purity and missed 3 samples with high cancer cell
MSLN levels but low tumor purity. Consistent with this
finding, no significant differences were observed in the
predicted cell-type proportions between the MSLN high
vs MSLN low quartiles generated by the iterative method
(Supplementary Fig. 3b), while the quartiles obtained

from bulk profiling showed significant (p < 0.05, Wilcoxon
rank-sum test) differences in several cell-type proportions
—notably cancer—between groups (Supplementary Fig.
3c). Moreover, we also observed smaller survival differ-
ences between high and low groups based on cancer-cell
intrinsic expression of MSLN compared to bulk

Fig. 2 Histoepigenetic analysis method. a EDec stage 1 identifies constituent cell types and produces a matrix (yellow, center) of proportions of
cell types per samples. In the first stage of histoepigenetic analysis, the matrix is used for iterative computational deconvolution to estimate sample-
specific cancer-cell intrinsic expression of a gene of interest (arrows from the yellow matrix to the left and right). In the second stage, a network is
constructed and pruned to eliminate confounding due to variation in cell-type composition (arrow from the yellow matrix down) to place the gene
within a network module. b Bar plot of mean cell-type specific MSLN expression within “MSLN high” and “MSLN low” tumors identified by
histoepigenetic analysis. c Comparison of “MSLN high” vs “MSLN low” tumor classification from bulk profiles vs. histoepigenetic analysis. Euler
diagrams show overlap of samples grouped into the first (red) and third (blue) quartiles by the two methods. The callout shows boxplots of tumor
purity for the 8 non-overlapping samples. Note that the samples classified as having high MSLN based on bulk levels (red) show much higher purity
(cancer cell proportion) than the 3 non-overlapping samples classified as high MSLN based on histoepigenetic analysis but not by bulk profile
comparison.
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expression levels of MSLN (Supplementary Fig. 4a). This
observation suggests that survival differences observed
from bulk profiling may be due to confounding effects of
cell-type composition and tumor size19 evident in bulk
comparisons (Supplementary Fig. 4b, c).
For the purpose of subsequent analyses, we focused on

the sample set showing concordant MSLN high expres-
sion by both groupings and the sample set showing con-
cordant MSLN low expression also by both groupings (30
and 35 samples respectively, indicated within circle
overlaps in Fig. 2c).

Regulation of RARG by MSLN
We next examined genes whose cancer-cell intrinsic

expression correlates with MSLN. Comparing cancer cell
profiles between groups, 33 genes showed higher
expression in the MSLN-high group and 55 showed lower
expression (Supplementary Table 1). In addition to MSLN
itself20, several of the 33 genes with higher expression
within the MSLN-high group of tumors are associated
with poor prognosis and tumor progression in PDAC
patients, including KCNN4 (ref.21), TNK2 (ref.22),
CAPG23, and MUC1 (ref.24). Gene set enrichment ana-
lyses (GSEA) of these 33 genes identified a highly enriched
subset of 11 genes bound by retinoic acid receptor gamma
(RARγ/ RARG) in mice25, including MSLN and RARG
itself (Supplementary Table 2). This enrichment is bio-
logically significant because RARγ is expressed in human
pancreatic carcinomas26 and plays a role in pancreatic
duct differentiation27. Notably, RARG was one of 22 genes
not detected as being differentially expressed by bulk
expression comparisons (Supplementary Table 1).
To explore the mechanistic link between MSLN and

RARG expression, we utilized a panel of pancreatic cancer
cell lines with a range of MSLN levels4. Cancer cell lines
with higher levels of MSLN indeed showed a trend toward
higher levels of RARG (Fig. 3a). Upon MSLN knockdown,
2 of 3 cell lines with high MSLN levels showed sig-
nificantly (p < 0.05, two-tailed unpaired Student’s t-test)
reduced RARG transcription (Fig. 3b). Conversely, upon
overexpression ofMSLN, the cell lines with lowMSLN did
not show an increase in RARG levels (Fig. 3b), suggesting
that MSLN may be necessary, but not sufficient for RARG
expression.

Activation of the AKT pathway by MSLN
Among the 33 genes in the MSLN-high group, RARG

and the non-receptor tyrosine kinase TNK2 (or ACK1)
stood out for their previously demonstrated ability to
phosphorylate and activate AKT. Specifically, ACK1
activates AKT in pancreatic cancer where it also promotes
cell survival and correlates with disease progression22. On
the other hand, RARγ is known to activate AKT in
hepatocellular carcinoma28. These findings were

intriguing in light of the previous results implicating
MSLN in the activation of AKT in PDAC cell lines via
phosphorylation5 by an unknown mechanism.
We next asked if RARγ and ACK1 are the mediators of

AKT activation. To answer this question, we knocked
down MSLN in the cell lines with high MSLN expres-
sion. As predicted, the knockdown reduced RARγ and
ACK1 levels (Fig. 3c), as well as reduced phospho-AKT
levels (Fig. 3c) at both residues (S473 and T308) neces-
sary for AKT activation29. Upon MSLN overexpression
in cell lines with low MSLN expression, protein levels of
RARγ and ACK1 were increased (Fig. 3c), consistent
with their mediating role in AKT activation. Notably, in
contrast to the increase of protein levels of RARγ and
ACK1, MSLN overexpression did not alter their tran-
scriptional levels.
We next asked if the downstream effects of MSLN-

mediated activation of AKT observed in cell line studies5

also occurs in patient tumors. Toward this end, we per-
formed enrichment analysis on the genes that show
higher cancer-cell-specific expression in the MSLN-high
group of tumors. Indeed, a significant (p= 0.004, hyper-
geometric test) overlap was found with genes previously
shown to be activated by AKT in vitro, suggesting that the
in vitro cell line modeling indeed reflects the behavior of
cancer cells in vivo.

AKT activators RARG and TNK2 belong to the MSLN
network module
The goal of the next (second) stage of histoepigenetic

analysis (see “Materials and methods” and Fig. 2a) was to
directly construct the MSLN network module, validate
direct interactions of MSLN with TNK2 and RARG within
the module, and identify additional genes relevant for
understanding MSLN function in cancer cells. Toward
this goal, we inferred a Gaussian graphical model (GGM)
from the 150 bulk PDAC tumor expression profiles in the
TCGA collection (Materials and Methods). To eliminate
confounding due to variations in tumor purity, cell-type
proportions (inferred by deconvolution) were added as
covariates (Materials and Methods). The final GGM
included the 367 nodes corresponding to the genes dif-
ferentially expressed between MSLN-high and low tumors
within any of the four estimated cell types (Fig. 1) and
6,130 edges.
We next examined the 32 of 367 genes that were

directly connected with MSLN. Notably the 32 included
TNK2 and RARG (Fig. 4a), validating their direct inter-
actions with MSLN. Moreover, GGM also recapitulated
known interactions of RARγ, showing a significant (p <
1.98×10-12, hypergeometric test) enrichment of connec-
tions between RARG and genes with known motifs for
RARγ30 termed retinoic acid response elements (RAREs)
(Supplementary Table 3).
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We then focused on the 88 genes showing differential
cancer cell expression between MSLN-high and low
groups (33 showing higher expression in the MSLN-high
group and 55 showing lower expression, Supplementary
Table 1). We next applied CTD, an in-house developed
method (see “Materials and methods”), to analyze the
genes in a network context by figuratively “connecting the

dots” in the network. Briefly, CTD takes a set of genes and
a weighted graph (the network) and identifies any subsets
of the gene set that shows significant pattern of con-
nectedness within the graph together with a p value for
that pattern. CTD identified significant pattern of GGM
connections between some members of this set (p < 1.8 ×
10–47) (Fig. 4b). Moreover, seven differentially expressed

Fig. 3 Effects of MSLN modulation on upstream activators of AKT. a Bar plots showing real-time PCR results of MSLN and RARG expression across
a panel of PDAC cell lines. Cell lines with high MSLN expression are colored red, while the ones with low expression are colored blue. b Bar plots
showing real-time PCR results of MSLN and RARG expression in control (CT) MSLN high cell lines (red) compared to their counterparts with MSLN
knocked down (MSLN-KD) and control MSLN low cell lines (blue) compared to their counterparts with MSLN overexpressed (MSLN-OE). Mean and
standard deviations are shown for three independent experiments (*p < 0.05, **p < 0.01). c Immunoblot assays for the expression of full length/
precursor MSLN (MSLNf), cleaved/mature MSLN (MSLNc), RARγ, total ACK1, phosphorylated ACK1, total AKT, and phosphorylated AKT at two different
residues in control (CT) MSLN high cell lines (red) compared to their counterparts with MSLN knocked down (MSLN-KD) and control MSLN low cell
lines (blue) compared to their counterparts with MSLN overexpressed (MSLN-OE).

Lurie et al. Oncogenesis            (2020) 9:62 Page 6 of 12

Oncogenesis



genes identified via GSEA to be bound by RARγ, includ-
ing MSLN and TNK2, also formed a significantly con-
nected GGM module (p < 5.9 × 10–7).
To further validate the accuracy of this method, we also

examined connectedness of the following two subsets of

the 88 genes known to be co-regulated: genes with
RAREs30 and those associated with parvin-beta (PARVB)
by GSEA. Significant connectedness was indeed found for
both sets (p < 4.5 × 10−3, p < 1.71 × 10−9, respectively),
suggesting that the method is sensitive. In contrast, as

Fig. 4 Network connectivity of MSLN to genes with differential expression. a Subgraph of the GGM network that includes MSLN and its first-
order neighbors that are differentially expressed in any cell type within PDACs. Line weights are scaled to the absolute value of the regularized partial
correlation between genes. b Subgraph showing the 88 genes differentially expressed in cancer cells; note that some, but not all of the genes are
first-order neighbors of MSLN. c Subgraph including RARG, TNK2 and all 12 genes (including MSLN) that are first-order neighbors of both RARG and
TNK2 within the GGM.
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expected, three random gene sets did not show significant
connectedness (Supplementary Table 3).
Taken together, these results support the hypothesis

that MSLN interacts with RARG and TNK2, though other
factors and feedback loops could not be ruled out. Indeed,
the first order neighbors with strong edges to MSLN,
RARG, and TNK2, such as PITX1, KCNN4, ALS2CL, and
TRAK1, could also play roles in the MSLN-induced
expression of RARG and TNK2 (Fig. 4c).

Discussion
The proposed histoepigenetic analysis method gen-

erates novel mechanistic hypotheses by detecting differ-
entially expressed genes within minimally perturbed
cancer cells in their tumor microenvironment and places
them in a network context. By eliminating artifacts asso-
ciated with physical separation of cells and their propa-
gation in vitro, the method produces hypotheses that are
testable in tractable models such as cell lines while
ensuring relevance of the knowledge gained for human
tumor biology in vivo. The method extends the previously
developed EDec method by extending the deconvolution
step with an iterative two-way clustering step to group
tumor samples based on cancer cell-type-specific
expression of a gene of interest. In the second stage, the
gene is placed in network context. Using the example of
MSLN in PDAC, we demonstrate how the method iden-
tifies potentially interacting genes and pathways asso-
ciated with MSLN within the cancer cell in its native
microenvironment. In contrast, most previous mechan-
istic studies of MSLN-associated pathways started with
cell lines or mouse models. This general approach can be
applied to patient tumor samples from other cancer types
to study other genes of interest.
We demonstrate the utility of the method by elucidating

interactions within the MSLN network in PDAC cancer
cells. The analysis identified the MSLN-associated net-
work module and interactions downstream of MSLN that
could be validated in cell line models. Given that our
results suggest that MSLN is necessary, but not sufficient
for RARG and TNK2 expression, future work is required
to fully understand the precise mechanisms of how MSLN
is acting upstream of these genes. The MSLN network
module contains a number of candidate genes that may
play a role in this mechanism.
Our findings complement current understanding of

RARγ and retinoids as important players in PDAC biology
and normal development. Because RARγ expression is
reduced upon MSLN knockdown in cell line experiments,
RARγ has the potential to act downstream of MSLN.
RARγ acts in the cytoplasm and nucleus to repress or
activate genes depending on the context, cofactors, and
abundance of its retinoid ligands (reviewed in ref. 31).
Specifically, RARγ regulates the balance of self-renewal

and differentiation31,32. In the developing pancreas, reti-
noids affect ductal versus acinar differentiation27. Treat-
ment of some pancreatic cancer cell lines with retinoids
induces apoptosis, epithelial differentiation, cell cycle
arrest, and reduces cell viability33–35. Some of these effects
are mediated by RARγ as observed in the BxPC3 and
Capan2 cell lines33, the same cell lines in which we
showed reduction of RARγ upon MSLN knockdown.
Conversely, cell lines with low RARγ appear resistant to
this effect33. Moreover, patient PDAC tumors show
reduced levels of retinoids compared to normal counter-
parts36. Thus, MSLN’s observed effect on pancreatic
cancer cell proliferation in vitro4 may partly be mediated
by RARγ and its ability to regulate the balance of self-
renewal and differentiation depending on the concentra-
tions of retinoids present.
Another important member of the MSLN network is

AKT. There are conflicting reports in the literature
regarding the ability of MSLN to affect the phosphoryla-
tion and activation of AKT in PDAC cell lines5,7, which is
associated with worse prognosis in PDAC patients37.
Similar to the effects of MSLN in PDAC cell lines3–5,
activated AKT inhibits apoptosis, is involved in cell cycle
progression, and mediates cell proliferation22,38. Our
results expand upon the notion that MSLN may activate
AKT, suggesting that this activation may be mediated
through RARγ or ACK1. Moreover, because MSLN
inhibition decreases phospho-AKT levels in other cancers
with elevated MSLN levels39, our results may also be
relevant for cancers other than PDAC.
The interactions within the MSLN network have sig-

nificant implications for current PDAC drug discovery
efforts targeting MSLN, RARγ, and their network neigh-
borhood. Specifically, the limited benefit of targeting
MSLN may be examined in the context of the tumor-
specific state of the downstream mediators suggested by
our study. Moreover, the pattern of interactions within
the MSLN module has implications for utilizing retinoids
and ACK1 inhibition as therapeutic strategies. Pilot clin-
ical trials utilizing retinoids—most not selective for RARγ
—have shown limited or no effects, with only some pan-
creatic cancer patients showing prolonged stable dis-
ease40,41. Preclinical trials showing that inhibition of
ACK1 in PDAC cell lines has resulted in AKT suppression
and subsequent decrease in cell proliferation, cell cycle
arrest, and induction of apoptosis22. Our results suggest
that these therapeutic targets should not be viewed in
isolation but rather in relation to one another. In addition
to the already tested targets, the MSLN network module
includes new candidates that may play important roles.
Finally, the suggested interactions within the MSLN net-
work can be utilized to identify candidate biomarkers for
stratification of patients or as targets for combination
therapies.
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Materials and methods
Processing of the TCGA PDAC dataset
Level 3 DNA methylation, RNA-seq (HiSeqV2), and

clinical metadata datasets from the TCGA Pancreatic
Cancer cohort (PAAD), not flagged during previous
review15, were downloaded from UCSC Xena42. For the
methylation dataset, probes with a missing beta value for
any individual sample or falling on sex chromosomes
were removed. Problematic 450 K probes43 were filtered
using the mapping, typeINextBaseSwitch, snp5.common,
extBase, and sub30.copy masks from http://zwdzwd.io/
InfiniumAnnotation/current/hm450/hm450.hg38.manifest.
tsv.gz and multi-mapping, cross-reactive, and probes con-
taining common SNPs from https://github.com/sirselim/
illumina450k_filtering. Probes associated (FDR < 0.01) with
gender, radiation therapy history, history of diabetes,
history of pancreatitis, smoking status, and history of
targeted molecular therapy were determined by fitting an
analysis of variance model using R’s aov function and
removed. As were those associated with age and weight,
determined by fitting linear models using R’s lm function.

Deconvolution of TCGA datasets using EDec
The EDec R package was used to infer cell-type-specific

methylation and gene expression profiles as previously
described17. 500 informative probes were chosen by
running the run_edec_stage_0 command with the “one.vs.
rest” option and p value < 0.00001 for six selected refer-
ence groups using available methylation profiles from
NCBI’s Gene Expression Omnibus44 (GEO) (Supple-
mentary Table 4). Only probes present in the processed
TCGA PDAC methylation dataset and with detection p <
0.01 across all reference profiles were retained. The
appropriate number of cell types for deconvolution was
determined with EDec’s estimate_stability function as
previously described17 using reproducibility of stage 1
estimated matrices as the criterion. Estimated mean gene
expression values and standard errors were used to con-
struct bar plots using the ggplot2 package in R.

The first stage of histoepigenetic analysis: iterative
computational deconvolution centered on a gene of
interest
As illustrated in Fig. 2a, the matrix of cell proportions

derived by stage 1 EDec deconvolution (yellow matrix in
Fig. 2a) is used for iterative computational deconvolution
to estimate sample-specific cancer-cell intrinsic expres-
sion of a gene of interest (arrows from the yellow matrix
to the left and right in Fig. 2a). Specifically, the matrix of
bulk gene expression profiles of all 150 TCGA samples
were randomly split into two submatrices and indepen-
dently input into stage 2 of EDec to estimate the cell-type-
specific expression matrix for each group using the

proportion matrix estimated from stage 1. For each
sample, the linear combinations of its composition esti-
mate with each of the two groups’ cell-type-specific
expression profiles are calculated. The Euclidean dis-
tances were compared between each group’s combination
and the sample’s bulk expression ofMSLN and the sample
was assigned to the group with shorter distance. The
grouping and deconvolution steps were iterated until
samples were no longer reassigned between groups. Three
complete rounds of this iterative procedure were per-
formed to test stability of final groupings. Groupings were
formed on the consensus of these 3 runs.

Simulating methylation and RNA-seq mixtures
Methylation datasets for four cell types (B-cell, Fibro-

blast, Capan2, and MIA Paca2) were downloaded from
GEO (GSM861675, GSM1669664, GSM1670109,
GSM2420490). Noisy profiles were generated for each
dataset and then the immune, fibroblast, and one of two
cancer profiles were mixed in random proportions as
previously described17. Each cancer profile was used in
fifty mixtures. These 100 simulated methylation mixtures
were deconvoluted using EDec. The estimated propor-
tions and methylation profiles were compared to the
known true proportions and original methylation profiles
using Pearson’s correlation. For simulated RNA-seq pro-
files, FASTQ files for four publicly available RNA-seq
profiles (GSM1576391, GSM2100912, GSM3133134,
GSM3430680) were downloaded from GEO, QC’d using
FastQC, processed using Trim Galore, and aligned using
RSEM. The RNA-seq profiles were multiplied by the same
proportions as their matched methylation mixtures for all
100 mixtures and reads for each gene per mixture summed
to create the mixture’s bulk profile. The iterative group fit
method was used to group the RNA-seq mixtures around
MSLN expression. Splitting was performed 20 times to
check stability and all possible pairwise correlations of the
final group members across these runs were compared.
Groups were then deconvoluted separately.

Comparison of differential expression methods
For the TCGA samples,MSLN high (n= 30) and low (n=

35) groups were determined by overlapping samples
classified by both the bulk MSLN and the iterative group
fit models. The deconvoluted cancer cell profiles for the
groups were compared for differential expression using t-
tests with the estimated means and standard errors of
genes as previously described and with the same caveats17.
Bulk differential expression between groups was done
with raw (non-normalized) RSEM gene counts down-
loaded from NCI’s GDC Legacy Archive (https://portal.
gdc.cancer.gov/legacy-archive/search/f) using the DESeq2
R package45 with groups (MSLN high or low) with or
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without EDec-predicted cancer cell proportions as factors.
All comparisons used a fold change ≥ 2 and false dis-
covery rate (FDR) q value < 5%.

Gene set enrichment analyses on cancer genes with higher
expression in MSLN high group
The 33 genes with higher expression in the cancer cell

profile of the MSLN high group were used for gene set
enrichment analysis using the Molecular Signatures
Database (MsigDB) web site version 6.3 (ref. 46). The top
ten overlaps of these genes were computed against each of
the C1–C6 gene set collections using an FDR q value <
0.05. The 689 genes that showed higher expression in the
MSLN high group at a p value < 0.05 were compared to
the gene list AKT_expression_UP from MsigDB. Enrich-
ment for the 13 gene overlap with the 172 AKT genes was
computed using a hypergeometric test.

The second stage of histoepigenetic analysis: construction
of the gene network
As illustrated in Fig. 2a, in the second stage of histoe-

pigenetic analysis a network is constructed and within it a
module is identified that contains the gene of interest. The
network is constructed as a GGM. To select which GGM
learner to use, two methods were evaluated over three
criteria: (1) The ability to form highly connected modules
of previously known interactors, (2) the lack of modules
from randomly selected gene sets, and (3) directionality of
edges (positive or negative) matching biological predic-
tions. R packages huge47 (graphical lasso method) and
GeneNet48 (empirical Bayes method) were used to build
networks over log2 transformed RNA-seq values for all
150 TCGA tumor samples on the 367 differentially
expressed genes and the proportions of each cell type per
sample. Positive controls were a set of 7 RARG related
genes and a set of 21 genes related to PARVB expression
and negative controls were randomly selected gene sets of
size 7, 21, and 88 (Supplementary Table 5).
The huge network was trimmed using the Stability

Approach to Regularization Selection49 (StARS) method
(λ= 0.125). GeneNet created two networks, one with all
edges and one with the same number of edges present in
the huge network. To eliminate confounding due to var-
iation in cell type composition, a node representing cell
proportion was added (arrow from the yellow matrix
down in Fig. 2a). After network construction, this node
and its adjacent edges were removed for the purpose of
subsequent analyses.
The R package CTD was used to quantify the mod-

ularity of the positive and negative control gene sets
(Supplementary Table 3). CTD quantifies the relative level
of connectedness (i.e. modularity) of a subset of nodes in a
network, giving highly connected subsets in the network

stronger significance compared to sparsely connected
node subsets.
To assess the directionality of the edge weights, two sets

of edge weights were evaluated between: (1) Genes pre-
dicted to be differentially expressed in MSLN high cancer
cells and MSLN and (2) 5 genes with RAREs in their
regulatory regions30 and RARG (Supplementary Tables 3
and6). The huge network did not agree with the expected
directionality, but was consistent with the evaluation of
relative modularity. In contrast, both GeneNet networks
showed more consistent directionality, but poor sensitiv-
ity of modularity. Because modularity was considered
more important than directionality, we selected the huge
network. Edges with weights exceeding the mean (µ=
−0.00492) by at least one standard deviation (σ= 0.0297)
were considered as being strong.
CTD was used to query the cancer, stromal, and

immune specific dysregulated genes, as well as the 3-gene
subset of MSLN, RARG, and TNK2 for modularity.
Enrichment of edges was computed using a
hypergeometric test.

Cell culture
PDAC cell lines were purchased from ATCC, authen-

ticated by short tandem repeat profiling, and propagated
for less than 6 months after authentication. MSLN over-
expression stable cell lines of Panc1, Panc28, and Panc48,
as well as MSLN shRNA knockdown cell lines of Capan2,
CFPAC1, and PL45 were established and maintained as
previously described50. ASPC1, BxPC3, and SU86.86 cells
were cultured in RPMI 1640 (Gibco, Thermo Fisher Sci-
ence, USA); CFPAC1, HPAF-2, MIA Paca2, Panc1,
Panc28, Panc48, and PL45 cells were cultured in DMEM
(Gibco, Thermo Fisher Science, USA); Capan2 cells were
cultured in McCoy’s 5 A medium (Gibco, Thermo Fisher
Science, USA). All cells were supplemented with 10% fetal
bovine serum (Gibco, Thermo Fisher Science, USA) and
cultured at 37 °C with a humidity of 90–95% and 5% CO2.

Real-time PCR
Total RNA for each cell line was extracted using TRIzol

reagent (Invitrogen, Thermo Fisher Science, USA)
according to the product’s manual. cDNA synthesis was
performed with a reverse transcription-PCR kit (Bio-Rad)
and real-time PCR was performed by standard procedures
as previously described51. RARG and MSLN measure-
ments were normalized to GAPDH in the PDAC cell
panel and relative to controls in the overexpression and
knockdown comparisons. Primer sequences (5′–3′):
Human MSLN forward CTATTCCTCAACCCAGAT

GCGT and reverse GCACATCAGCCTCGCTCA,
Human RARG forward CAAGTGCATCATCAAGATC

GTG and reverse GATACGCAGCATCAGGATATCT,
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Human GAPDH forward TCGACAGTCAGCCGCA
TCT and reverse CCGTTGACTCCGACCTTCA.

Immunoblotting assay
Cell lysates were prepared using RIPA lysis buffer with

protease and phosphatase inhibitor cocktail and were
quantitated for protein abundance using the Pierce BCA
Protein Assay Kit from Thermo Fisher Scientific. PVDF
membranes were blocked in 5% nonfat dry milk/TBST
solution and incubated at 1:1000 dilution with: MSLN
mAb (D9R5G), RARγ1 mAb (D3A4), AKT Ab #9272,
Phospho-AKT (Ser473) mAb (D9E), Phospho-AKT
(Thr308) mAb #2965, and Phospho-ACK1 (Tyr284)
Ab#3138 from Cell Signaling Technology and ACK1
antibody (A-11) from Santa Cruz Biotechnology. Anti-
β-actin Ab (A2228) was at 1:2,000 dilution (Sigma-
Aldrich). Immunodetection was performed using Super-
Signal West Pico (34577) and Femto (34095) Chemilu-
minescent Substrate according to the manufacturer’s
instructions (Thermo Fisher Scientifc, USA).

Statistical analyses
Unless otherwise noted, all statistical analyses and

bioinformatics were performed using the R programming
language version 3.4.0 (https://www.R-project.org/). P
values were adjusted for multiple comparisons using the
Benjamini & Hochberg method. Survival analyses were
done with the R package survival, including multivariate
Cox regression using variables (Supplementary Table 7)
with p values < 0.05 in univariate Cox regression. Real-
time PCR results were representative of three indepen-
dent experiments and compared with two-tailed unpaired
Student’s t-test with Welch correction when sample var-
iances were not equal as defined by the Brown–Forsythe
test using GraphPad Prism Software Version 6 and 7.
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