Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZG16 enhances the maturation of dendritic cells via induction of CD40 and contributes to the antitumor immunity in pancreatic cancer

Abstract

Dendritic cells (DCs) are critical mediators of antigen priming and T-cell activation. Zymogen granule protein 16 (ZG16) is demonstrated as an anti-oncogene in T-cell mediated antitumor immunity, but its effect on DCs is largely unknown. Herein, we wonder whether ZG16 affects the activation of DCs in pancreatic cancer. Firstly, the increased ZG16 expression was observed during the maturation of DCs derived from mouse bone marrow or human peripheral blood. Then, overexpression of ZG16 or exogenous introduction of recombinant ZG16 protein induced the expression of MHC II, CD86, CD84, and CCR7 on the surface of DCs, thereby facilitating the secretion of proinflammatory mediators IL-1β, IL-6, TNF-α, and IL-12/p70, supporting the promoting effect of ZG16 on DC maturation. By establishing the subcutaneous and orthotopic mouse models of pancreatic cancer, we confirmed that intraperitoneal injection of recombinant ZG16 protein (Re-mZG16) could induce tumor regression by stimulating DC maturation and enhancing antitumor responses of CD4 + , CD8 + , PD-1 + , and Ctla4+ cells. Besides, Re-mZG16 in combination with gemcitabine showed a synergistic effect in the treatment of pancreatic cancer. Mechanistically, we demonstrated that ZG16 inhibited the ubiquitination and degradation of CD40, which depended on the lectin domain of ZG16. In conclusion, this study provided a novel insight into the role of ZG16-CD40 axis in DC-based immunotherapy for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of ZG16 on the maturation of mouse DCs.
Fig. 2: Effect of ZG16 on the maturation of human DCs.
Fig. 3: Effect of ZG16 on the expression of CD40.
Fig. 4: Role of CD40 in ZG16-induced DC maturation.
Fig. 5: Effect of Re-mZG16 protein combined with gemcitabine (GEM) on the growth of pancreatic cancer cells in vivo.
Fig. 6: Effect of Re-mZG16 protein treatment on the growth of in situ pancreatic cancer cells in mice.
Fig. 7: Effect of intra-tumoral (i.t.) injection of Ad-mZG16-DCs combined with gemcitabine (GEM) on the growth of pancreatic cancer cells in vivo.

Similar content being viewed by others

Data availability

The data used in this study will be made available from the corresponding author upon reasonable request.

References

  1. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.

    Article  CAS  PubMed  Google Scholar 

  2. Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, et al. Recent progress in pancreatic cancer. Cancer J Clin. 2013;63:318–48.

    Article  Google Scholar 

  3. Brower V. Checkpoint blockade immunotherapy for cancer comes of age. J Natl Cancer Inst. 2015;107.

  4. Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N. et al. Advances in immunotherapeutics in pancreatic ductal adenocarcinoma. Cancers. 2023;15:4265.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou ZQ, Zhao JJ, Pan QZ, Chen CL, Liu Y, Tang Y, et al. PD-L1 expression is a predictive biomarker for CIK cell-based immunotherapy in postoperative patients with breast cancer. J Immunother Cancer. 2019;7:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kunk PR, Bauer TW, Slingluff CL, Rahma OE. From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer. 2016;4:14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut. 2014;63:1769–81.

    Article  CAS  PubMed  Google Scholar 

  8. Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4(+) T cell immunity. Cell. 2019;177:556–71.e516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Mingo Pulido Á, Gardner A, Hiebler S, Soliman H, Rugo HS, Krummel MF, et al. TIM-3 regulates CD103(+) dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell. 2018;33:60–74.e66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017;31:711–23.e714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol. 2018;9:3059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  Google Scholar 

  14. Shapir Itai Y, Barboy O, Salomon R, Bercovich A, Xie K, Winter E, et al. Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell. 2024;187:375–89.e318.

    Article  CAS  PubMed  Google Scholar 

  15. Kyi C, Roudko V, Sabado R, Saenger Y, Loging W, Mandeli J, et al. Therapeutic immune modulation against solid cancers with intratumoral Poly-ICLC: a pilot trial. Clin Cancer Res J Am Assoc Cancer Res. 2018;24:4937–48.

    Article  CAS  Google Scholar 

  16. Martins KA, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines. 2015;14:447–59.

    Article  CAS  PubMed  Google Scholar 

  17. Biederbick A, Licht A, Kleene R. Serglycin proteoglycan is sorted into zymogen granules of rat pancreatic acinar cells. Eur J Cell Biol. 2003;82:19–29.

    Article  CAS  PubMed  Google Scholar 

  18. Bergström JH, Birchenough GM, Katona G, Schroeder BO, Schütte A, Ermund A, et al. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proc Natl Acad Sci USA. 2016;113:13833–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meng H, Li W, Boardman LA, Wang L. Loss of ZG16 is associated with molecular and clinicopathological phenotypes of colorectal cancer. BMC Cancer. 2018;18:433.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meng H, Ding Y, Liu E, Li W, Wang L. ZG16 regulates PD-L1 expression and promotes local immunity in colon cancer. Transl Oncol. 2021;14:101003.

    Article  CAS  PubMed  Google Scholar 

  21. Meng H, Yao W, Yin Y, Li Y, Ding Y, Wang L, et al. ZG16 promotes T-cell mediated immunity through direct binding to PD-L1 in colon cancer. Biomark Res. 2022;10:47.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Wu H, An J, Ballantyne CM, Cyster JG. Critical role of integrin CD11c in splenic dendritic cell capture of missing-self CD47 cells to induce adaptive immunity. Proc Natl Acad Sci USA. 2018;115:6786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Divito SJ, Wang Z, Shufesky WJ, Liu Q, Tkacheva OA, Montecalvo A, et al. Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation. Blood. 2010;116:2694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laborde EA, Vanzulli S, Beigier-Bompadre M, Isturiz MA, Ruggiero RA, Fourcade MG, et al. Immune complexes inhibit differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol (Balt, Md: 1950). 2007;179:673–81.

    CAS  Google Scholar 

  25. Whiteside TL, Odoux C. Dendritic cell biology and cancer therapy. Cancer Immunol Immunother CII. 2004;53:240–8.

    Article  PubMed  Google Scholar 

  26. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol (Balt, Md 1950). 1995;154:5071–9.

    Article  CAS  Google Scholar 

  27. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  28. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansen M, Andersen MH. The role of dendritic cells in cancer. Semin Immunopathol. 2017;39:307–16.

    Article  CAS  PubMed  Google Scholar 

  30. Dartsch H, Kleene R, Kern HF. In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur J Cell Biol. 1998;75:211–22.

    Article  CAS  PubMed  Google Scholar 

  31. Ruby CE, Funatake CJ, Kerkvliet NI. 2,3,7,8 Tetrachlorodibenzo-p-Dioxin (TCDD) directly enhances the maturation and apoptosis of dendritic cells in vitro. J Immunotoxicol. 2005;1:159–66.

    Article  PubMed  Google Scholar 

  32. Saban DR. The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul Surf. 2014;12:87–99.

    Article  PubMed  Google Scholar 

  33. Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. 2020;11:924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184:747–52.

    Article  CAS  PubMed  Google Scholar 

  35. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998;188:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Shen S, Zhao G, Xu CF, Zhang HB, Luo YL, et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials. 2019;217:119302.

    Article  CAS  PubMed  Google Scholar 

  37. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.

    Article  CAS  PubMed  Google Scholar 

  38. Tong AW, Stone MJ. CD40 and the effect of anti-CD40-binding on human multiple myeloma clonogenicity. Leuk lymphoma. 1996;21:1–8.

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Du P, She J, Cao L, Li Y, Xia H. Loss of ZG16 is regulated by miR-196a and contributes to stemness and progression of colorectal cancer. Oncotarget. 2016;7:86695–703.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer cell. 2020;37:289–307.e289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67.

    Article  CAS  PubMed  Google Scholar 

  42. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    Article  CAS  PubMed  Google Scholar 

  44. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379:2395–406.

    Article  CAS  PubMed  Google Scholar 

  45. Conroy T, Castan F, Lopez A, Turpin A, Ben Abdelghani M, Wei AC, et al. Five-year outcomes of FOLFIRINOX vs gemcitabine as adjuvant therapy for pancreatic cancer: a randomized clinical trial. JAMA Oncol. 2022;8:1571–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61:6451–8.

    CAS  PubMed  Google Scholar 

  47. Banchereau J, Ueno H, Dhodapkar M, Connolly J, Finholt JP, Klechevsky E, et al. Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J Immunother. 2005;28:505–16.

    Article  CAS  PubMed  Google Scholar 

  48. Bauer C, Bauernfeind F, Sterzik A, Orban M, Schnurr M, Lehr HA, et al. Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut. 2007;56:1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dauer M, Herten J, Bauer C, Renner F, Schad K, Schnurr M, et al. Chemosensitization of pancreatic carcinoma cells to enhance T cell-mediated cytotoxicity induced by tumor lysate-pulsed dendritic cells. J Immunother. 2005;28:332–42.

    Article  PubMed  Google Scholar 

  50. Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, et al. Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas. 2012;41:195–205.

    Article  CAS  PubMed  Google Scholar 

  51. Riegel K, Schlöder J, Sobczak M, Jonuleit H, Thiede B, Schild H, et al. RAF kinases are stabilized and required for dendritic cell differentiation and function. Cell Death Differ. 2020;27:1300–15.

    Article  CAS  PubMed  Google Scholar 

  52. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Training Program for Young and Mid-Career Health Science and Technology Innovation Talents in Henan Province (Grant No. LJRC2023018) and the Natural Science Foundation of Henan Province in 2022 (Grant No. 232300420039).

Author information

Authors and Affiliations

Authors

Contributions

HM: conceptualization, methodology, resources, writing – original draft; LL: data curation, investigation, formal analysis; MN: data curation, validation, visualization; YD: data curation, validation; YL: data curation, validation; MZ: resources, supervision, project administration, writing –review & editing.

Corresponding authors

Correspondence to Hui Meng or Mingzhi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Li, L., Nan, M. et al. ZG16 enhances the maturation of dendritic cells via induction of CD40 and contributes to the antitumor immunity in pancreatic cancer. Oncogene (2024). https://doi.org/10.1038/s41388-024-03154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03154-6

Search

Quick links