Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GOLM1 dictates acquired Lenvatinib resistance by a GOLM1-CSN5 positive feedback loop upon EGFR signaling activation in hepatocellular carcinoma

Abstract

Lenvatinib is a multiple receptor tyrosine kinases inhibitor (TKI) authorized for first-line treatment of hepatocellular carcinoma (HCC). However, Lenvatinib resistance is common in HCC clinical treatment, highlighting the urgent need to understand mechanisms of resistance. Here, we identified Golgi membrane protein 1 (GOLM1), a type II transmembrane protein originally located in the Golgi apparatus, as a novel regulator of Lenvatinib resistance. We found GOLM1 was overexpressed in Lenvatinib resistant human HCC cell lines, blood and HCC samples. Additionally, GOLM1 overexpression contributes to Lenvatinib resistance and HCC progression in vitro and in vivo. Mechanistically, GOLM1 upregulates CSN5 expression through EGFR-STAT3 pathway. Reversely, CSN5 deubiquitinates and stabilizes GOLM1 protein by inhibiting ubiquitin-proteasome pathway of GOLM1. Furthermore, clinical specimens of HCC showed a positive correlation between the activation of the GOLM1-EGFR-STAT3-CSN5 axis. Finally, GOLM1 knockdown was found to act in synergy with Lenvatinib in subcutaneous and orthotopic mouse model. Overall, these findings identify a mechanism of resistance to Lenvatinib treatment for HCC, highlight an effective predictive biomarker of Lenvatinib response in HCC and show that targeting GOLM1 may improve the clinical benefit of Lenvatinib.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GOLM1 is upregulated in Lenvatinib resistant HCC.
Fig. 2: GOLM1 upregulation promotes Lenvatinib resistance in vitro.
Fig. 3: GOLM1 overexpression induced Lenvatinib resistance in vivo.
Fig. 4: GOLM1 binds CSN5 and positively regulates CSN5 expression.
Fig. 5: GOLM1 binds CSN5 and positively regulates CSN5 expression.
Fig. 6: CSN5 stabilizes GOLM1 through deubiquitylation.
Fig. 7: GOLM1 knockdown in synergy with Lenvatinib treatment in vivo and GOLM1-EGFR-STAT3-CSN5 axis is coactivated in human HCC samples.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included and available within the article. The RNA-seq data has been uploaded to GEO database (Accession number: GSE273819).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400:1345–62.

    Article  CAS  PubMed  Google Scholar 

  3. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:7

    Article  Google Scholar 

  4. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.

    Article  PubMed  Google Scholar 

  5. Matsuki M, Hoshi T, Yamamoto Y, Ikemori-Kawada M, Minoshima Y, Funahashi Y, et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018;7:2641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Salama ZT, Syed YY, Scott LJ. Lenvatinib: A review in hepatocellular carcinoma. Drugs. 2019;79:665–74.

    Article  CAS  PubMed  Google Scholar 

  7. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  8. Su GL, Altayar O, O’Shea R, Shah R, Estfan B, Wenzell C, et al. AGA Clinical Practice Guideline on Systemic Therapy for Hepatocellular Carcinoma. Gastroenterology. 2022;162:920–34.

    Article  PubMed  Google Scholar 

  9. Kladney RD, Bulla GA, Guo L, Mason AL, Tollefson AE, Simon DJ, et al. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene. 2000;249:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, et al. GOLM1 modulates EGFR/RTK Cell-Surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 2016;30:444–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan J, Zhou B, Guo L, Chen Z, Zhang B, Liu S, et al. GOLM1 upregulates expression of PD-L1 through EGFR/STAT3 pathway in hepatocellular carcinoma. Am J Cancer Res. 2020;10:3705–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Wang Y, Tao J, Shi Y, Gai X, Huang F, et al. MTORC1 Up-Regulates GP73 to promote proliferation and migration of hepatocellular carcinoma cells and growth of xenograft tumors in mice. Gastroenterology. 2015;149:741–52.

    Article  CAS  PubMed  Google Scholar 

  13. Wei C, Yang X, Liu N, Geng J, Tai Y, Sun Z, et al. Tumor microenvironment regulation by the endoplasmic reticulum stress transmission mediator golgi protein 73 in mice. Hepatology. 2019;70:851–70.

    Article  CAS  PubMed  Google Scholar 

  14. Yan J, Zhou B, Li H, Guo L, Ye Q. Recent advances of GOLM1 in hepatocellular carcinoma. Hepat Oncol. 2020;7:P22.

    Article  Google Scholar 

  15. Hu B, Zou T, Qin W, Shen X, Su Y, Li J, et al. Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma. Cancer Res. 2022;82:3845–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Llovet JM, Lencioni R. MRECIST for HCC: Performance and novel refinements. J Hepatol. 2020;72:288–306.

    Article  PubMed  Google Scholar 

  17. Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59:1687–93.

    Article  CAS  PubMed  Google Scholar 

  18. Ke MY, Wu XN, Zhang Y, Wang S, Lv Y, Dong J. Serum GP73 predicts posthepatectomy outcomes in patients with hepatocellular carcinoma. J Transl Med. 2019;17:140.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pan Y, Wang S, Su B, Zhou F, Zhang R, Xu T, et al. Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene. 2017;36:1069–79.

    Article  CAS  PubMed  Google Scholar 

  20. Liu C, Yao Z, Wang J, Zhang W, Yang Y, Zhang Y, et al. Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. Cell Death Differ. 2020;27:1765–81.

    Article  CAS  PubMed  Google Scholar 

  21. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50:D165–D173.

    Article  CAS  PubMed  Google Scholar 

  22. Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mazzu YZ, Liao YR, Nandakumar S, Jehane LE, Koche RP, Rajanala SH, et al. Prognostic and therapeutic significance of COP9 signalosome subunit CSN5 in prostate cancer. Oncogene. 2022;41:671–82.

    Article  CAS  PubMed  Google Scholar 

  24. Xie P, Wang H, Fang J, Du D, Tian Z, Zhen J, et al. CSN5 promotes carcinogenesis of thyroid carcinoma cells through ANGPTL2. Endocrinology. 2021;162:bqaa206.

  25. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan J, Li X, Huang S, Zeng Y, He Y, Liu H, et al. GOLPH2, a gene downstream of ras signaling, promotes the progression of pancreatic ductal adenocarcinoma. Mol Med Rep. 2018;17:4187–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu G, Zhang Y, He F, Li J, Wei X, Li Y, et al. Expression of GOLPH2 is associated with the progression of and poor prognosis in gastric cancer. Oncol Rep. 2014;32:2077–85.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang R, Zhu Z, Shen W, Li X, Dhoomun DK, Tian Y. Golgi Membrane Protein 1 (GOLM1) Promotes Growth and Metastasis of Breast Cancer Cells via Regulating Matrix Metalloproteinase-13 (MMP13). Med Sci Monit. 2019;25:847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin H, Shi Y, Lv Y, Yuan S, Ramirez C, Lieftink C, et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature. 2021;595:730–4. https://doi.org/10.1038/s41586-021-03741-7.

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Yao Z, Wang J, Zhang W, Yang Y, Zhang Y, et al. Correction: Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. Cell Death Differ. 2020;27:2293.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo H, Jing L, Cheng Y, Atsaves V, Lv Y, Wu T, et al. Down-regulation of the cyclin-dependent kinase inhibitor p57 is mediated by Jab1/Csn5 in hepatocarcinogenesis. Hepatology. 2016;63:898–913.

    Article  CAS  PubMed  Google Scholar 

  32. Adler AS, Littlepage LE, Lin M, Kawahara TL, Wong DJ, Werb Z, et al. CSN5 isopeptidase activity links COP9 signalosome activation to breast cancer progression. Cancer Res. 2008;68:506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene. 2013;32:2756–66.

    Article  CAS  PubMed  Google Scholar 

  34. Sinha S, Dwivedi TR, Yengkhom R, Bheemsetty VA, Abe T, Kiyonari H, et al. Asrij/OCIAD1 suppresses CSN5-mediated p53 degradation and maintains mouse hematopoietic stem cell quiescence. Blood. 2019;133:2385–2400.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, et al. COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. Am J Pathol. 2009;174:1415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15:416–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, et al. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B. 2020;10:2299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen S, Zhou B, Huang W, Li Q, Yu Y, Kuang X, et al. The deubiquitinating enzyme USP44 suppresses hepatocellular carcinoma progression by inhibiting Hedgehog signaling and PDL1 expression. Cell Death Dis. 2023;14:830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie P, Yu M, Zhang B, Yu Q, Zhao Y, Wu M, et al. CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma. J Hepatol. 2024;81:93–107.

Download references

Funding

This work was funded by National Natural Science Foundation of China (82172739, 82102959), Natural Science Foundation of Shanghai (21ZR1481900), Zhongshan talent development program (2021ZSYQ11).

Author information

Authors and Affiliations

Authors

Contributions

PX, MW, HW, BZ, ZZ and JY designed and performed experiments, analyzed data, and wrote the manuscript. MY, QY, YZ, DH, MX and WX analyzed data. YX, YX and HL provided patient tissue samples and analyzed clinical data. LG, YX, YX and HL supervised the entire project, obtained funding, designed the experiments and revised the manuscript.

Corresponding authors

Correspondence to Hui Li, Yongfeng Xu, Yongsheng Xiao or Lei Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. All study participants provided informed consent, and the study design was approved by Research Ethics Committee of Zhongshan Hospital (approval number: B2021-464). Informed consent was obtained from all participants. Written informed consent for publication of the images from human research participants have been obtained.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Wu, M., Wang, H. et al. GOLM1 dictates acquired Lenvatinib resistance by a GOLM1-CSN5 positive feedback loop upon EGFR signaling activation in hepatocellular carcinoma. Oncogene (2024). https://doi.org/10.1038/s41388-024-03153-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03153-7

Search

Quick links