Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression

Abstract

An increase in the total choline-containing compound content is a common characteristic of cancer cells, and aberrant choline metabolism in cancer is closely associated with malignant progression. However, the potential role of choline-induced global transcriptional changes in cancer cells remains unclear. In this study, we reveal that an elevated choline content facilitates hepatocellular carcinoma (HCC) cell proliferation by reprogramming Krüppel-like factor 5 (KLF5)-dominated core transcriptional regulatory circuitry (CRC). Mechanistically, choline administration leads to elevated S-adenosylmethionine (SAM) levels, inducing the formation of H3K4me1 within the super-enhancer (SE) region of KLF5 and activating its transcription. KLF5, as a key transcription factor (TF) of CRC established by choline, further transactivates downstream genes to facilitate HCC cell cycle progression. Additionally, KLF5 can increase the expression of choline kinase-α (CHKA) and CTP:phosphocholine cytidylyltransferase (CCT) resulting in a positive feedback loop to promote HCC cell proliferation. Notably, the histone deacetylase inhibitor (HDACi) vorinostat (SAHA) significantly suppressed KLF5 expression and liver tumor growth in mice, leading to a prolonged lifespan. In conclusion, these findings highlight the epigenetic regulatory mechanism of the SE-driven key regulatory factor KLF5 conducted by choline metabolism in HCC and suggest a potential therapeutic strategy for HCC patients with high choline content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Choline promotes the proliferation and cell cycle progression of HCC cells in vitro.
Fig. 2: Choline reprograms the SE and CRC landscape in HCC cells.
Fig. 3: KLF5 is regulated by choline methyl group metabolism in a SE-driven manner.
Fig. 4: KLF5 promotes the proliferation and cell cycle progression of HCC cells in vitro.
Fig. 5: Choline and KLF5 regulate cell cycle-related genes, and KLF5 regulate choline phospholipid metabolism in turn.
Fig. 6: SAHA suppresses KLF5 and choline metabolism enzymes expression to inhibit liver tumor growth in mice.
Fig. 7: Choline metabolism and KLF5 expression are upregulated in HCC and are correlated with poor survival in HCC patients.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and its supplementary data files. The raw data generated in this study are publicly available in Gene Expression Omnibus (GEO) at GSE262272.

References

  1. Inazu M. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm Drug Dispos. 2014;35:431–49.

    Article  CAS  PubMed  Google Scholar 

  2. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59:80–4.

    CAS  PubMed  Google Scholar 

  3. Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004;64:4270–6.

    Article  CAS  PubMed  Google Scholar 

  4. Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002;62:1966–70.

    CAS  PubMed  Google Scholar 

  5. Gibellini F, Smith TK. The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62:414–28.

    Article  CAS  PubMed  Google Scholar 

  6. Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, et al. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res. 2010;70:2126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou Y, Huang L, Sun S, Yue F, Li Z, Ma Y, et al. Choline kinase alpha promoted glioma development by activating PI3K/AKT signaling pathway. Cancer Biother Radiopharm. 2021

  8. Bansal A, Harris RA, DeGrado TR. Choline phosphorylation and regulation of transcription of choline kinase alpha in hypoxia. J Lipid Res. 2012;53:149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene. 2009;28:2485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pogribny IP, James SJ, Beland FA. Molecular alterations in hepatocarcinogenesis induced by dietary methyl deficiency. Mol Nutr Food Res. 2012;56:116–25.

    Article  CAS  PubMed  Google Scholar 

  11. Pogribny IP, Tryndyak VP, Bagnyukova TV, Melnyk S, Montgomery B, Ross SA, et al. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol. 2009;51:176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  13. Chrysavgis L, Giannakodimos I, Diamantopoulou P, Cholongitas E. Non-alcoholic fatty liver disease and hepatocellular carcinoma: Clinical challenges of an intriguing link. World J Gastroenterol. 2022;28:310–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tessitore L, Dianzani I, Cui Z, Vance DE. Diminished expression of phosphatidylethanolamine N-methyltransferase 2 during hepatocarcinogenesis. Biochem J. 1999;337:23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gougelet A, Sartor C, Senni N, Calderaro J, Fartoux L, Lequoy M, et al. Hepatocellular carcinomas with mutational activation of beta-catenin require choline and can be detected by positron emission tomography. Gastroenterology. 2019;157:807–22.

    Article  CAS  PubMed  Google Scholar 

  16. Bu L, Zhang Z, Chen J, Fan Y, Guo J, Su Y, et al. High-fat diet promotes liver tumorigenesis via palmitoylation and activation of AKT. Gut. 2024;73:1156–68.

    Article  PubMed  Google Scholar 

  17. Ikawa-Yoshida A, Matsuo S, Kato A, Ohmori Y, Higashida A, Kaneko E, et al. Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet. Int J Exp Pathol. 2017;98:221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  20. Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet. 2013;14:427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng Q, Maksimovic I, Upad A, David Y. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell. 2020;11:401–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010;107:21931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Budhu A, Terunuma A, Zhang G, Hussain SP, Ambs S, Wang XW. Metabolic profiles are principally different between cancers of the liver, pancreas and breast. Int J Biol Sci. 2014;10:966–72.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Zhou Y, Zhang D, Zhao W, Lu Y, Liu C, et al. CRIP1 suppresses BBOX1-mediated carnitine metabolism to promote stemness in hepatocellular carcinoma. EMBO J. 2022;41:e110218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sawada N, Inoue M, Iwasaki M, Sasazuki S, Shimazu T, Yamaji T, et al. Consumption of n-3 fatty acids and fish reduces risk of hepatocellular carcinoma. Gastroenterology. 2012;142:1468–75.

    Article  CAS  PubMed  Google Scholar 

  26. Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, et al. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab. 2023;35:1057–71 e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14:370–84.

    Article  CAS  PubMed  Google Scholar 

  28. Sun L, Wang Y, Cen J, Ma X, Cui L, Qiu Z, et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol. 2019;21:1015–26.

    Article  CAS  PubMed  Google Scholar 

  29. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ott CJ, Federation AJ, Schwartz LS, Kasar S, Klitgaard JL, Lenci R, et al. Enhancer architecture and essential core regulatory circuitry of chronic lymphocytic leukemia. Cancer Cell. 2018;34:982–95 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li K, Liu Y, Cao H, Zhang Y, Gu Z, Liu X, et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat Commun. 2020;11:485.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zeisel SH, Klatt KC, Caudill MA. Choline. Adv Nutr. 2018;9:58–60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lu SC. S-Adenosylmethionine. Int J Biochem Cell Biol. 2000;32:391–5.

    Article  CAS  PubMed  Google Scholar 

  34. Yan J, Chen SA, Local A, Liu T, Qiu Y, Dorighi KM, et al. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res. 2018;28:204–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong Y, Ren W, Fang H, Shah NA, Shi Y, You D, et al. Histone deacetylase inhibitors (HDACi) promote KLF5 ubiquitination and degradation in basal-like breast cancer. Int J Biol Sci. 2022;18:2104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, et al. GepLiver: an integrative liver expression atlas spanning developmental stages and liver disease phases. Sci Data. 2023;10:376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li B, Liu W, Wang L, Li M, Wang J, Huang L, et al. CpG island methylator phenotype associated with tumor recurrence in tumor-node-metastasis stage I hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1917–26.

    Article  PubMed  Google Scholar 

  38. Suzuki-Kemuriyama N, Abe A, Nakane S, Yuki M, Miyajima K, Nakae D. Nonalcoholic steatohepatitis-associated hepatocarcinogenesis in mice fed a modified choline-deficient, methionine-lowered, L-amino acid-defined diet and the role of signal changes. PLoS One. 2023;18:e0287657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin N, Qin S, Luo S, Cui S, Huang G, Zhang X. Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro. FEBS J. 2014;281:2088–96.

    Article  CAS  PubMed  Google Scholar 

  40. Pogribny IP, Tryndyak VP, Muskhelishvili L, Rusyn I, Ross SA. Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr. 2007;137:216S–22S.

    Article  CAS  PubMed  Google Scholar 

  41. Chen CH, Yang N, Zhang Y, Ding J, Zhang W, Liu R, et al. Inhibition of super enhancer downregulates the expression of KLF5 in basal-like breast cancers. Int J Biol Sci. 2019;15:1733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown AL, Conrad K, Allende DS, Gromovsky AD, Zhang R, Neumann CK, et al. Dietary choline supplementation attenuates high-fat-diet-induced hepatocellular carcinoma in mice. J Nutr. 2020;150:775–83.

    Article  PubMed  Google Scholar 

  43. Lin XM, Hu L, Gu J, Wang RY, Li L, Tang J, et al. Choline kinase alpha mediates interactions between the epidermal growth factor receptor and mechanistic target of rapamycin complex 2 in hepatocellular carcinoma cells to promote drug resistance and xenograft tumor progression. Gastroenterology. 2017;152:1187–202.

    Article  CAS  PubMed  Google Scholar 

  44. Glunde K, Raman V, Mori N, Bhujwalla ZM. RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res. 2005;65:11034–43.

    Article  CAS  PubMed  Google Scholar 

  45. Mori N, Glunde K, Takagi T, Raman V, Bhujwalla ZM. Choline kinase down-regulation increases the effect of 5-fluorouracil in breast cancer cells. Cancer Res. 2007;67:11284–90.

    Article  CAS  PubMed  Google Scholar 

  46. Chen Z, Krishnamachary B, Bhujwalla ZM. Degradable dextran nanopolymer as a carrier for choline kinase (ChoK) siRNA cancer therapy. Nanomaterials. 2016;6:34.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jimenez-Lopez JM, Carrasco MP, Segovia JL, Marco C. Hexadecylphosphocholine inhibits phosphatidylcholine synthesis via both the methylation of phosphatidylethanolamine and CDP-choline pathways in HepG2 cells. Int J Biochem Cell Biol. 2004;36:153–61.

    Article  CAS  PubMed  Google Scholar 

  48. Clive S, Gardiner J, Leonard RC. Miltefosine as a topical treatment for cutaneous metastases in breast carcinoma. Cancer Chemother Pharm. 1999;44:S29–30.

    Article  CAS  Google Scholar 

  49. Wu Y, Chen S, Shao Y, Su Y, Li Q, Wu J, et al. KLF5 promotes tumor progression and parp inhibitor resistance in ovarian cancer. Adv Sci. 2023;10:e2304638.

    Article  Google Scholar 

  50. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT. ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods. 2009;48:240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature. 2019;567:525–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saint-Andre V, Federation AJ, Lin CY, Abraham BJ, Reddy J, Lee TI, et al. Models of human core transcriptional regulatory circuitries. Genome Res. 2016;26:385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang M, Zhao Y, Zhao J, Wei S, Liu M, Zheng N, et al. Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. Sci Adv. 2022;8:eabn5683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for Prof. Lijian Hui’s gifts of hiHeps and Prof. Jian Xu’s gifts of the enCRISPRi plasmids. This work was supported by grants from the National Natural Science Foundation of China (82121004 and 81930123).

Author information

Authors and Affiliations

Authors

Contributions

X. He, Z. Chen and X. Li conceived and designed the study. X. Li, Z. Hu, W. Qiu and Y. Liu performed the experiments. X. Li, Q. Shi, Z. Chen, Y. Liu, S. Huang and L. Liang processed the data. X. Li and X. He wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhiao Chen or Xianghuo He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal experiments were conducted in strict accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Fudan University Shanghai Cancer Center. Approval for these experiments was obtained under the following permission numbers: FUSCC-IACUC-2023121 and FUSCC-IACUC-2023278 (Shanghai, China). All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, Z., Shi, Q. et al. Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression. Oncogene 43, 3121–3136 (2024). https://doi.org/10.1038/s41388-024-03150-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03150-w

Search

Quick links