Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinformatics advances in eccDNA identification and analysis

Abstract

Extrachromosomal circular DNAs (eccDNAs) are a unique class of chromosome-originating circular DNA molecules, which are closely linked to oncogene amplification. Due to recent technological advances, particularly in high-throughput sequencing technology, bioinformatics methods based on sequencing data have become primary approaches for eccDNA identification and functional analysis. Currently, eccDNA-relevant databases incorporate previously identified eccDNA and provide thorough functional annotations and predictions, thereby serving as a valuable resource for eccDNA research. In this review, we collected around 20 available eccDNA-associated bioinformatics tools, including identification tools and annotation databases, and summarized their properties and capabilities. We evaluated some of the eccDNA detection methods in simulated data to offer recommendations for future eccDNA detection. We also discussed the current limitations and prospects of bioinformatics methodologies in eccDNA research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical timeline of eccDNA research.
Fig. 2: Biogenesis, classification, and functions of eccDNA in cancer.
Fig. 3: Illustrations of eccDNA experimental approaches and bioinformatics tools.
Fig. 4: Comparison of eccDNA identification methods evaluated by different publications.
Fig. 5: Comparison of eccDNA detected by eccDNA identification methods in simulated datasets.

Similar content being viewed by others

Data availability

The simulation pipeline and all scripts for eccDNA detection are available on GitHub (https://github.com/FuyuLi/Review_bioinformatics_in_eccDNA). The simulated datasets generated for evaluation are available from the corresponding authors and https://pan.seu.edu.cn:443/link/0300E3FCD85AA52A4301691B68BA318C.

References

  1. Gaubatz JW. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Res. 1990;237:271–92.

    Article  CAS  PubMed  Google Scholar 

  2. Paulsen T, Kumar P, Koseoglu MM, Dutta A. Discoveries of Extrachromosomal Circles of DNA in Normal and Tumor Cells. Trends Genet. 2018;34:270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hotta Y, Bassel A. Molecular Size And Circularity Of Dna In Cells Of Mammals And Higher Plants. Proc Natl Acad Sci USA. 1965;53:356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cox D, Yuncken C, Spriggs AI. Minute Chromatin Bodies In Malignant Tumours Of Childhood. Lancet. 1965;1:55–8.

    Article  CAS  PubMed  Google Scholar 

  5. Cowell JK. Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu Rev Genet. 1982;16:21–59.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen S, Yacobi K, Segal D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003;13:1133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B. Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA. 2015;112:E3114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stanfield SW, Helinski DR. Multiple mechanisms generate extrachromosomal circular DNA in Chinese hamster ovary cells. Nucleic Acids Res. 1986;14:3527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lanciano S, Carpentier MC, Llauro C, Jobet E, Robakowska-Hyzorek D, Lasserre E, et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet. 2017;13:e1006630.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Noer JB, Hørsdal OK, Xiang X, Luo Y, Regenberg B. Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends Genet. 2022;38:766–81.

    Article  CAS  PubMed  Google Scholar 

  11. Bailey C, Shoura MJ, Mischel PS, Swanton C. Extrachromosomal DNA-relieving heredity constraints, accelerating tumour evolution. Ann Oncol. 2020;31:884–93.

    Article  CAS  PubMed  Google Scholar 

  12. Wu S, Bafna V, Chang HY, Mischel PS. Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. Annu Rev Pathol. 2022;17:367–86.

    Article  CAS  PubMed  Google Scholar 

  13. Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet. 2022;23:760–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verhaak RGW, Bafna V, Mischel PS. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer. 2019;19:283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Leen E, Brückner L, Henssen AG. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat Genet. 2022;54:107–14.

    Article  PubMed  Google Scholar 

  16. Li Z, Wang B, Liang H, Han L. Pioneering insights of extrachromosomal DNA (ecDNA) generation, action and its implications for cancer therapy. Int J Biol Sci. 2022;18:4006–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bafna V, Mischel PS. Extrachromosomal DNA in Cancer. Annu Rev Genomics Hum Genet. 2022;23:29–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hung KL, Mischel PS, Chang HY. Gene regulation on extrachromosomal DNA. Nat Struct Mol Biol. 2022;29:736–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang R, Yang M, Zhang S, Huang M. Advances in sequencing-based studies of microDNA and ecDNA: Databases, identification methods, and integration with single-cell analysis. Comput Struct Biotechnol J. 2023;21:3073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carroll SM, DeRose ML, Gaudray P, Moore CM, Needham-Vandevanter DR, Von Hoff DD, et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol. 1988;8:1525–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Von Hoff DD, Needham-VanDevanter DR, Yucel J, Windle BE, Wahl GM. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci USA. 1988;85:4804–8.

    Article  Google Scholar 

  22. deCarvalho AC, Kim H, Poisson LM, Winn ME, Mueller C, Cherba D, et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet. 2018;50:708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, Kim DH, et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature. 2021;591:137–41.

    Article  CAS  PubMed  Google Scholar 

  24. Rosswog C, Bartenhagen C, Welte A, Kahlert Y, Hemstedt N, Lorenz W, et al. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nat Genet. 2021;53:1673–85.

    Article  CAS  PubMed  Google Scholar 

  25. Shibata Y, Kumar P, Layer R, Willcox S, Gagan JR, Griffith JD, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012;336:82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mansisidor A, Molinar T Jr, Srivastava P, Dartis DD, Pino Delgado A, Blitzblau HG, et al. Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles. Mol Cell. 2018;72:583–93.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Roy N, Vandesompele J, Menten B, Nilsson H, De Smet E, Rocchi M, et al. Translocation-excision-deletion-amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1. Genes Chromosomes Cancer. 2006;45:107–17.

    Article  PubMed  Google Scholar 

  29. Carroll SM, Gaudray P, De Rose ML, Emery JF, Meinkoth JL, Nakkim E, et al. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Mol Cell Biol. 1987;7:1740–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, D’Addabbo P, Daniele G, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20:1198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koche RP, Rodriguez-Fos E, Helmsauer K, Burkert M, MacArthur IC, Maag J, et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat Genet. 2020;52:29–34.

    Article  CAS  PubMed  Google Scholar 

  32. Smith CA, Vinograd J. Small polydisperse circular DNA of HeLa cells. J Mol Biol. 1972;69:163–78.

    Article  CAS  PubMed  Google Scholar 

  33. Nosek J, Dinouël N, Kovac L, Fukuhara H. Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet. 1995;247:61–72.

    Article  CAS  PubMed  Google Scholar 

  34. Dillon LW, Kumar P, Shibata Y, Wang YH, Willcox S, Griffith JD, et al. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep. 2015;11:1749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14:977–85.

    Article  CAS  PubMed  Google Scholar 

  36. Nabetani A, Ishikawa F. Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol Cell Biol. 2009;29:703–13.

    Article  CAS  PubMed  Google Scholar 

  37. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature. 2017;543:122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Wang M, Djekidel MN, Chen H, Liu D, Alt FW, et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature. 2021;599:308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prada-Luengo I, Krogh A, Maretty L, Regenberg B. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinforma. 2019;20:663.

    Article  CAS  Google Scholar 

  40. Henriksen RA, Jenjaroenpun P, Sjøstrøm IB, Jensen KR, Prada-Luengo I, Wongsurawat T, et al. Circular DNA in the human germline and its association with recombination. Mol Cell. 2022;82:209–17.e7.

    Article  CAS  PubMed  Google Scholar 

  41. Møller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018;9:1069.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet. 2020;52:891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen JP, Diekmann C, Wu H, Chen C, Della Chiara G, Berrino E, et al. scCircle-seq unveils the diversity and complexity of extrachromosomal circular DNAs in single cells. Nat Commun. 2024;15:1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao XK, Xing P, Song X, Zhao M, Zhao L, Dang Y, et al. Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma. Nat Commun. 2021;12:6489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, Piazza MS, et al. Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell. 2019;179:1330–41.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Helmsauer K, Valieva ME, Ali S, Chamorro González R, Schöpflin R, Röefzaad C, et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat Commun. 2020;11:5823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu Y, Gujar AD, Wong CH, Tjong H, Ngan CY, Gong L, et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell. 2021;39:694–707.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hung KL, Yost KE, Xie L, Shi Q, Helmsauer K, Luebeck J, et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature. 2021;600:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yi E, Gujar AD, Guthrie M, Kim H, Zhao D, Johnson KC, et al. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discov. 2022;12:468–83.

    Article  CAS  PubMed  Google Scholar 

  51. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343:72–6.

    Article  CAS  PubMed  Google Scholar 

  52. Bergstrom EN, Luebeck J, Petljak M, Khandekar A, Barnes M, Zhang T, et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature. 2022;602:510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lange JT, Rose JC, Chen CY, Pichugin Y, Xie L, Tang J, et al. The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat Genet. 2022;54:1527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang P, Mbodj A, Soundiramourtty A, Llauro C, Ghesquière A, Ingouff M, et al. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nat Commun. 2023;14:5236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang F, Su W, Chung OW, Tracy L, Wang L, Ramsden DA, et al. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature. 2023;620:218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol Cancer Res. 2017;15:1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sin STK, Jiang P, Deng J, Ji L, Cheng SH, Dutta A, et al. Identification and characterization of extrachromosomal circular DNA in maternal plasma. Proc Natl Acad Sci USA. 2020;117:1658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luo X, Zhang L, Cui J, An Q, Li H, Zhang Z, et al. Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring. Clin Transl Med. 2023;13:e1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu T, Wu C, Zhao X, Wang G, Ning W, Tao Z, et al. Extrachromosomal DNA formation enables tumor immune escape potentially through regulating antigen presentation gene expression. Sci Rep. 2022;12:3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kunisada T, Yamagishi H, Ogita Z, Kirakawa T, Mitsui Y. Appearance of extrachromosomal circular DNAs during in vivo and in vitro ageing of mammalian cells. Mech Ageing Dev. 1985;29:89–99.

    Article  CAS  PubMed  Google Scholar 

  61. Hull RM, King M, Pizza G, Krueger F, Vergara X, Houseley J. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol. 2019;17:e3000471.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Deshpande V, Luebeck J, Nguyen ND, Bakhtiari M, Turner KM, Schwab R, et al. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun. 2019;10:392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells. J Vis Exp. 2016;110:e54239.

  64. Møller HD. Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells. Methods Mol Biol. 2020;2119:165–81.

    Article  PubMed  Google Scholar 

  65. Mehta D, Cornet L, Hirsch-Hoffmann M, Zaidi SS, Vanderschuren H. Full-length sequencing of circular DNA viruses and extrachromosomal circular DNA using CIDER-Seq. Nat Protoc. 2020;15:1673–89.

    Article  CAS  PubMed  Google Scholar 

  66. Shoura MJ, Gabdank I, Hansen L, Merker J, Gotlib J, Levene SD, et al. Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 Bethesda. 2017;7:3295–303.

  67. Kumar P, Kiran S, Saha S, Su Z, Paulsen T, Chatrath A, et al. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci Adv. 2020;6:eaba2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fan X, Yang C, Li W, Bai X, Zhou X, Xie H, et al. SMOOTH-seq: single-cell genome sequencing of human cells on a third-generation sequencing platform. Genome Biol. 2021;22:195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chamorro González R, Conrad T, Stöber MC, Xu R, Giurgiu M, Rodriguez-Fos E, et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat Genet. 2023;55:880–90.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chang L, Deng E, Wang J, Zhou W, Ao J, Liu R, et al. Single-cell third-generation sequencing-based multi-omics uncovers gene expression changes governed by ecDNA and structural variants in cancer cells. Clin Transl Med. 2023;13:e1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Disentangling extrachromosomal circular DNA heterogeneity in single cells with scEC&T-seq. Nat Genet. 2023;55:740–1.

  72. Yang L, Jia R, Ge T, Ge S, Zhuang A, Chai P, et al. Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther. 2022;7:342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Prada-Luengo I, Møller HD, Henriksen RA, Gao Q, Larsen CE, Alizadeh S, et al. Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2020;48:7883–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mann L, Seibt KM, Weber B, Heitkam T. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data. BMC Bioinforma. 2022;23:40.

    Article  CAS  Google Scholar 

  75. Vogt N, Gibaud A, Lemoine F, de la Grange P, Debatisse M, Malfoy B. Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucleic Acids Res. 2014;42:13194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayes M, Li J. An integrative framework for the identification of double minute chromosomes using next generation sequencing data. BMC Genet. 2015;16:S1. Suppl 2

    Article  PubMed  PubMed Central  Google Scholar 

  77. Luebeck J, Coruh C, Dehkordi SR, Lange JT, Turner KM, Deshpande V, et al. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat Commun. 2020;11:4374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hayes M, Nguyen A, Islam R, Butler C, Tran E, Mullins D, et al. HolistIC: leveraging Hi-C and whole genome shotgun sequencing for double minute chromosome discovery. Bioinformatics. 2022;38:1208–15.

    Article  CAS  PubMed  Google Scholar 

  79. Mehta D, Hirsch-Hoffmann M, Were M, Patrignani A, Zaidi SS, Were H, et al. A new full-length circular DNA sequencing method for viral-sized genomes reveals that RNAi transgenic plants provoke a shift in geminivirus populations in the field. Nucleic Acids Res. 2019;47:e9.

    Article  PubMed  Google Scholar 

  80. Zhang P, Peng H, Llauro C, Bucher E, Mirouze M. ecc_finder: A Robust and Accurate Tool for Detecting Extrachromosomal Circular DNA From Sequencing Data. Front Plant Sci. 2021;12:743742.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Wang M, Zhang Y. Purification, full-length sequencing and genomic origin mapping of eccDNA. Nat Protoc. 2023;18:683–99.

    Article  CAS  PubMed  Google Scholar 

  82. Tüns AI, Hartmann T, Magin S, González RC, Henssen AG, Rahmann S, et al. Detection and Validation of Circular DNA Fragments Using Nanopore Sequencing. Front Genet. 2022;13:867018.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li F, Ming W, Lu W, Wang Y, Li X, Dong X, et al. FLED: a full-length eccDNA detector for long-reads sequencing data. Brief Bioinform. 2023;24:bbad388.

    Article  PubMed  Google Scholar 

  84. Wanchai V, Jenjaroenpun P, Leangapichart T, Arrey G, Burnham CM, TĂĽmmler MC, et al. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences. Brief Bioinform. 2022;23:bbac422.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang M, Zhang S, Jiang R, Chen S, Huang M. Circlehunter: a tool to identify extrachromosomal circular DNA from ATAC-Seq data. Oncogenesis. 2023;12:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng H, Ma W, Wang K, Chu H, Bao G, Liao Y, et al. ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data. BMC Genomics. 2023;24:678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fang M, Fang J, Luo S, Liu K, Yu Q, Yang J, et al. eccDNA-pipe: an integrated pipeline for identification, analysis and visualization of extrachromosomal circular DNA from high-throughput sequencing data. Brief Bioinform. 2024;25:bbae034.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chang KL, Chen JH, Lin TC, Leu JY, Kao CF, Wong JY, et al. Short human eccDNAs are predictable from sequences. Brief Bioinform. 2023;24:bbad147.

    Article  PubMed  Google Scholar 

  89. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics. 2012;28:593–4.

    Article  PubMed  Google Scholar 

  90. Yang C, Chu J, Warren RL, Birol I. NanoSim: nanopore sequence read simulator based on statistical characterization. Gigascience. 2017;6:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhao X, Shi L, Ruan S, Bi W, Chen Y, Chen L, et al. CircleBase: an integrated resource and analysis platform for human eccDNAs. Nucleic Acids Res. 2022;50:D72–d82.

    Article  CAS  PubMed  Google Scholar 

  92. Peng L, Zhou N, Zhang CY, Li GC, Yuan XQ. eccDNAdb: a database of extrachromosomal circular DNA profiles in human cancers. Oncogene. 2022;41:2696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo J, Zhang Z, Li Q, Chang X, Liu X. TeCD: The eccDNA Collection Database for extrachromosomal circular DNA. BMC Genomics. 2023;24:47.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhong T, Wang W, Liu H, Zeng M, Zhao X, Guo Z. eccDNA Atlas: a comprehensive resource of eccDNA catalog. Brief Bioinform. 2023;24:bbad037.

    Article  PubMed  Google Scholar 

  95. Yang M, Qiu B, He GY, Zhou JY, Yu HJ, Zhang YY, et al. eccDB: a comprehensive repository for eccDNA-mediated chromatin contacts in multi-species. Bioinformatics. 2023;39:btad173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun H, Lu X, Zou L. EccBase: A high-quality database for exploration and characterization of extrachromosomal circular DNAs in cancer. Comput Struct Biotechnol J. 2023;21:2591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khatami F, Larijani B, Tavangar SM. The presence of tumor extrachomosomal circular DNA (ecDNA) as a component of liquid biopsy in blood. Med Hypotheses. 2018;114:5–7.

    Article  CAS  PubMed  Google Scholar 

  98. Ma XK, Zhai SN, Yang L. Approaches and challenges in genome-wide circular RNA identification and quantification. Trends Genet. 2023;39:897–907.

    Article  CAS  PubMed  Google Scholar 

  99. Kaufman RJ, Brown PC, Schimke RT. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc Natl Acad Sci USA. 1979;76:5669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol. 1996;16:2002–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Møller HD, Lin L, Xiang X, Petersen TS, Huang J, Yang L, et al. CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res. 2018;46:e131.

    PubMed  PubMed Central  Google Scholar 

  102. Hung KL, Luebeck J, Dehkordi SR, Colón CI, Li R, Wong IT, et al. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat Genet. 2022;54:1746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luebeck J, Ng AWT, Galipeau PC, Li X, Sanchez CA, Katz-Summercorn AC, et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature. 2023;616:798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number: 61871121).

Author information

Authors and Affiliations

Authors

Contributions

YB provided direction and guidance throughout the preparation of this manuscript. FL collected and interpreted the studies, and wrote the manuscript with the assistance of WM and WL. Both WM and YW made significant contributions to the final manuscript. Both XD and YB reviewed and made significant revisions to the manuscript. All authors read and approved the submission and publication.

Corresponding authors

Correspondence to Wenlong Ming, Xianjun Dong or Yunfei Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Ming, W., Lu, W. et al. Bioinformatics advances in eccDNA identification and analysis. Oncogene (2024). https://doi.org/10.1038/s41388-024-03138-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03138-6

Search

Quick links