Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RHNO1: at the crossroads of DNA replication stress, DNA repair, and cancer

Abstract

The DNA replication stress (DRS) response is a crucial homeostatic mechanism for maintaining genome integrity in the face of intrinsic and extrinsic barriers to DNA replication. Importantly, DRS is often significantly increased in tumor cells, making tumors dependent on the cellular DRS response for growth and survival. Rad9-Hus1-Rad1 Interacting Nuclear Orphan 1 (RHNO1), a protein involved in the DRS response, has recently emerged as a potential therapeutic target in cancer. RHNO1 interacts with the 9-1-1 checkpoint clamp and TopBP1 to activate the ATR/Chk1 signaling pathway, the crucial mediator of the DRS response. Moreover, RHNO1 was also recently identified as a key facilitator of theta-mediated end joining (TMEJ), a DNA repair mechanism implicated in cancer progression and chemoresistance. In this literature review, we provide an overview of our current understanding of RHNO1, including its structure, function in the DRS response, and role in DNA repair, and discuss its potential as a cancer therapeutic target. Therapeutic targeting of RHNO1 holds promise for tumors with elevated DRS as well as tumors with DNA repair deficiencies, including homologous recombination DNA repair deficient (HRD) tumors. Further investigation into RHNO1 function in cancer, and development of approaches to target RHNO1, are expected to yield novel strategies for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence alignment of RHNO1 in vertebrate species, and human RHNO1 structure and functional domains.
Fig. 2: Consensus predictions for human RHNO1 disorder (pink) and binding (blue) regions.
Fig. 3: Cyclebase data of RHNO1 mRNA expression in HeLa cells throughout cell cycle phases.
Fig. 4: Functional interplay of RHNO1 with oncogenic pathways in cancer.
Fig. 5: RHNO1 expression is associated with reduced survival in renal cancer and hepatocellular carcinoma (HCC).

Similar content being viewed by others

References

  1. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell. 2022;82:2298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  4. Bianco JN, Bergoglio V, Lin YL, Pillaire MJ, Schmitz AL, Gilhodes J, et al. Overexpression of Claspin and Timeless protects cancer cells from replication stress in a checkpoint-independent manner. Nat Commun. 2019;10:910.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yazinski SA, Comaills V, Buisson R, Genois MM, Nguyen HD, Ho CK, et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31:318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benada J, Bulanova D, Azzoni V, Petrosius V, Ghazanfar S, Wennerberg K, et al. Synthetic lethal interaction between WEE1 and PKMYT1 is a target for multiple low-dose treatment of high-grade serous ovarian carcinoma. NAR Cancer. 2023;5:zcad029.

    Article  PubMed  PubMed Central  Google Scholar 

  7. da Costa A, Chowdhury D, Shapiro GI, D’Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov. 2023;22:38–58.

    Article  PubMed  Google Scholar 

  8. Karnitz LM, Zou L. Molecular pathways: targeting ATR in cancer therapy. Clin Cancer Res. 2015;21:4780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim JW, Fukukawa C, Ueda K, Nishidate T, Katagiri T, Nakamura Y. Involvement of C12orf32 overexpression in breast carcinogenesis. Int J Oncol. 2010;37:861–7.

    CAS  PubMed  Google Scholar 

  10. Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, et al. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science. 2011;332:1313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lindsey-Boltz LA, Kemp MG, Capp C, Sancar A. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Cell Cycle. 2015;14:99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barger CJ, Chee L, Albahrani M, Munoz-Trujillo C, Boghean L, Branick C, et al. Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer. Elife. 2021;10:e55070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, et al. RHINO directs MMEJ to repair DNA breaks in mitosis. Science. 2023;381:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Du D, Wang S, Li T, Liu Z, Yang M, Sun L, et al. RHNO1 disruption inhibits cell proliferation and induces mitochondrial apoptosis via PI3K/Akt pathway in hepatocellular carcinoma. Biochem Biophys Res Commun. 2023;673:96–105.

    Article  CAS  PubMed  Google Scholar 

  15. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–745.

    Article  PubMed  Google Scholar 

  16. Kim HM, Colaiacovo MP. ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-strand break repair in the C. elegans germline. PLoS Genet. 2014;10:e1004723.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hara K, Tatsukawa K, Nagata K, Iida N, Hishiki A, Ohashi E, et al. Structural basis for intra- and inter-molecular interactions on RAD9 subunit of 9-1-1 checkpoint clamp implies functional 9-1-1 regulation by RHINO. J Biol Chem. 2024;300:105751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Day M, Oliver AW, Pearl LH. Structure of the human RAD17-RFC clamp loader and 9-1-1 checkpoint clamp bound to a dsDNA-ssDNA junction. Nucleic Acids Res. 2022;50:8279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hara K, Iida N, Tamafune R, Ohashi E, Sakurai H, Ishikawa Y, et al. Structure of the RAD9-RAD1-HUS1 checkpoint clamp bound to RHINO sheds light on the other side of the DNA clamp. J Biol Chem. 2020;295:899–904.

    Article  PubMed  Google Scholar 

  20. Wardlaw CP, Carr AM, Oliver AW. TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst). 2014;22:165–74.

    Article  CAS  PubMed  Google Scholar 

  21. Day M, Rappas M, Ptasinska K, Boos D, Oliver AW, Pearl LH. BRCT domains of the DNA damage checkpoint proteins TOPBP1/Rad4 display distinct specificities for phosphopeptide ligands. Elife. 2018;7:e39979.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qu M, Rappas M, Wardlaw CP, Garcia V, Ren JY, Day M, et al. Phosphorylation-dependent assembly and coordination of the DNA damage checkpoint apparatus by Rad4(TopBP1). Mol Cell. 2013;51:723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohashi E, Takeishi Y, Ueda S, Tsurimoto T. Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair (Amst). 2014;21:1–11.

    Article  CAS  PubMed  Google Scholar 

  24. Conte AD, Mehdiabadi M, Bouhraoua A, Miguel Monzon A, Tosatto SCE, Piovesan D. Critical assessment of protein intrinsic disorder prediction (CAID) - Results of round 2. Proteins. 2023;91:1925–34.

    Article  CAS  PubMed  Google Scholar 

  25. Necci M, Piovesan D, Predictors C, DisProt C, Tosatto SCE. Critical assessment of protein intrinsic disorder prediction. Nat Methods. 2021;18:472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujimitsu K, Grimaldi M, Yamano H. Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science. 2016;352:1121–4.

    Article  CAS  PubMed  Google Scholar 

  27. Santos A, Wernersson R, Jensen LJ. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res. 2015;43:D1140–1144.

    Article  CAS  PubMed  Google Scholar 

  28. Barger CJ, Branick C, Chee L, Karpf AR. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers (Basel). 2019;11:251.

    Article  CAS  PubMed  Google Scholar 

  29. Barger CJ, Zhang W, Hillman J, Stablewski AB, Higgins MJ, Vanderhyden BC, et al. Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget. 2015;6:27613–27.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu C, Barger CJ, Karpf AR. FOXM1: a multifunctional oncoprotein and emerging therapeutic target in ovarian cancer. Cancers (Basel). 2021;13:3065.

    Article  CAS  PubMed  Google Scholar 

  31. Li YY, Yu H, Guo ZM, Guo TQ, Tu K, Li YX. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Comput Biol. 2006;2:e74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Yu DS, Doetsch PW, Werner E. Replication stress and FOXM1 drive radiation induced genomic instability and cell transformation. PLoS One. 2020;15:e0235998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laoukili J, Stahl M, Medema RH. FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775:92–102.

    CAS  PubMed  Google Scholar 

  34. Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol. 2017;18:622–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8.

    Article  CAS  PubMed  Google Scholar 

  36. Haahr P, Hoffmann S, Tollenaere MA, Ho T, Toledo LI, Mann M, et al. Activation of the ATR kinase by the RPA-binding protein ETAA1. Nat Cell Biol. 2016;18:1196–207.

    Article  CAS  PubMed  Google Scholar 

  37. Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Betous R, et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 2013;27:1610–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu E, Lee AY, Chiba T, Olson E, Sun P, Wu X. The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. J Cell Biol. 2007;179:643–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol. 2022;23:125–40.

    Article  CAS  PubMed  Google Scholar 

  40. Hussmann JA, Ling J, Ravisankar P, Yan J, Cirincione A, Xu A, et al. Mapping the genetic landscape of DNA double-strand break repair. Cell. 2021;184:5653–69 e5625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schrempf A, Slyskova J, Loizou JI. Targeting the DNA repair enzyme polymerase theta in cancer therapy. Trends Cancer. 2021;7:98–111.

    Article  CAS  PubMed  Google Scholar 

  42. Llorens-Agost M, Ensminger M, Le HP, Gawai A, Liu J, Cruz-Garcia A, et al. POLtheta-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. Nat Cell Biol. 2021;23:1095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dutta A, Eckelmann B, Adhikari S, Ahmed KM, Sengupta S, Pandey A, et al. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res. 2017;45:2585–99.

    CAS  PubMed  Google Scholar 

  44. Hilton BA, Li Z, Musich PR, Wang H, Cartwright BM, Serrano M, et al. ATR plays a direct antiapoptotic role at mitochondria, which is regulated by prolyl isomerase Pin1. Mol Cell. 2016;61:487.

    Article  CAS  PubMed  Google Scholar 

  45. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–W560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mengwasser KE, Adeyemi RO, Leng Y, Choi MY, Clairmont C, D’Andrea AD, et al. Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal Targets. Mol Cell. 2019;73:885–899 e886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drzewiecka M, Barszczewska-Pietraszek G, Czarny P, Skorski T, Sliwinski T. Synthetic lethality targeting poltheta. Genes (Basel). 2022;13:1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi C, Qin K, Lin A, Jiang A, Cheng Q, Liu Z, et al. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J Exp Clin Cancer Res. 2022;41:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang M, Ran X, Leung W, Kawale A, Saxena S, Ouyang J, et al. ATR inhibition induces synthetic lethality in mismatch repair-deficient cells and augments immunotherapy. Genes Dev. 2023;37:929–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oh G, Wang A, Wang L, Li J, Werba G, Weissinger D, et al. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. J Clin Invest. 2023;133:e165934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sen T, Della Corte CM, Milutinovic S, Cardnell RJ, Diao L, Ramkumar K, et al. Combination treatment of the oral CHK1 Inhibitor, SRA737, and low-dose gemcitabine enhances the effect of programmed death ligand 1 blockade by modulating the immune microenvironment in SCLC. J Thorac Oncol. 2019;14:2152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoon WH, DeFazio A, Kasherman L. Immune checkpoint inhibitors in ovarian cancer: where do we go from here? Cancer Drug Resist. 2023;6:358–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pawlowska A, Rekowska A, Kurylo W, Panczyszyn A, Kotarski J, Wertel I. Current understanding on why ovarian cancer is resistant to immune checkpoint inhibitors. Int J Mol Sci. 2023;24:10859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martorana F, Da Silva LA, Sessa C, Colombo I. Everything comes with a price: the toxicity profile of DNA-damage response targeting agents. Cancers (Basel). 2022;14:953.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R21CA273399 (ARK, DRR), US Department of Defense HT9425-23-1-0238 (ARK, DRR), the Rivkin Center (ARK), NIH P30CA036727 (ARK, GG), Fred & Pamela Buffett Cancer Center Pilot Award (ARK), and The Betty J. and Charles D. McKinsey Ovarian Cancer Research Fund (ARK).

Author information

Authors and Affiliations

Authors

Contributions

NJ and ARK drafted, edited, and prepared the final version of the manuscript. SFB, DRR, and GG edited the manuscript. NJ, ARK, and DRR prepared figures. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Adam R. Karpf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirapongwattana, N., Bunting, S.F., Ronning, D.R. et al. RHNO1: at the crossroads of DNA replication stress, DNA repair, and cancer. Oncogene 43, 2613–2620 (2024). https://doi.org/10.1038/s41388-024-03117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03117-x

Search

Quick links