Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CircVPS8 promotes the malignant phenotype and inhibits ferroptosis of glioma stem cells by acting as a scaffold for MKRN1, SOX15 and HNF4A

Abstract

Exciting breakthroughs have been achieved in the field of glioblastoma with therapeutic interventions targeting specific ferroptosis targets. Nonetheless, the precise mechanisms through which circRNAs regulate the ferroptosis pathway have yet to be fully elucidated. Here we have identified a novel circRNA, circVPS8, which is highly expressed in glioblastoma. Our findings demonstrated that circVPS8 enhances glioma stem cells’ viability, proliferation, sphere-forming ability, and stemness. Additionally, it inhibits ferroptosis in GSCs. In vivo, experiments further supported the promotion of glioblastoma growth by circVPS8. Mechanistically, circVPS8 acts as a scaffold, binding to both MKRN1 and SOX15, thus facilitating the ubiquitination of MKRN1 and subsequent degradation of SOX15. Due to competitive binding, the ubiquitination ability of MKRN1 towards HNF4A is reduced, leading to elevated HNF4A expression. Increased HNF4A expression, along with decreased SOX15 expression, synergistically inhibits ferroptosis in glioblastoma. Overall, our study highlights circVPS8 as a promising therapeutic target and provides valuable insights for clinically targeted therapy of glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CircVPS8 is up-regulated in glioma tissues and correlated with the progression and poor prognosis.
Fig. 2: CircVPS8 promotes the proliferation and stemness of GSCs in vitro and in vivo.
Fig. 3: CircVPS8 protects glioma stem cells from ferroptotic cell death.
Fig. 4: CircVPS8 directly binds to SOX15 and down-regulates its expression.
Fig. 5: MKRN1 is essential for the degradation of SOX15 in GBM cells.
Fig. 6: CircVPS8 scaffolds MKRN1 binding to and ubiquitination degradation of SOX15.
Fig. 7: CircVPS8 upregulate HNF4A expression via inhibiting MKRN1 mediated ubiquitination degradation of HNF4A.
Fig. 8: CircVPS8 protects glioma stem cells from ferroptotic cell death via upregulating HNF4A.

Similar content being viewed by others

Data availability

All the data obtained for the study could be available by inquiring the corresponding author.

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23:1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310:1842–50.

    Article  CAS  PubMed  Google Scholar 

  4. Manikandan C, Kaushik A, Sen D. Viral vector: potential therapeutic for glioblastoma multiforme. Cancer Gene Ther. 2020;27:270–9.

    Article  CAS  PubMed  Google Scholar 

  5. Muir M, Gopakumar S, Traylor J, Lee S, Rao G. Glioblastoma multiforme: novel therapeutic targets. Expert Opin Ther Targets. 2020;24:605–14.

    Article  CAS  PubMed  Google Scholar 

  6. Lee E, Yong RL, Paddison P, Zhu J. Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 2018;53:201–11.

    Article  CAS  PubMed  Google Scholar 

  7. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019;33:591–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65:625–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai L, Liang W, Shi Z, Li X, Zhou S, Hu W, et al. Systematic characterization and biological functions of non-coding RNAs in glioblastoma. Cell Prolif. 2023;56:e13375.

    Article  CAS  PubMed  Google Scholar 

  11. Peng D, Luo L, Zhang X, Wei C, Zhang Z, Han L. CircRNA: an emerging star in the progression of glioma. Biomedicine &. Pharmacotherapy. 2022;151:113150.

    Article  CAS  Google Scholar 

  12. Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell. 2022;185:2016–34.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou F, Wang B, Wang H, Hu L, Zhang J, Yu T, et al. circMELK promotes glioblastoma multiforme cell tumorigenesis through the miR-593/EphB2 axis. Mol Ther Nucleic Acids. 2021;25:25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D’Angeli F, et al. CircSMARCA5 inhibits migration of glioblastoma multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci. 2018;19:480.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen S, Li K, Guo J, Chen HN, Ming Y, Jin Y, et al. circNEIL3 inhibits tumor metastasis through recruiting the E3 ubiquitin ligase Nedd4L to degrade YBX1. Proc Natl Acad Sci USA. 2023;120:e2215132120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  17. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol. 2016;17:626–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jo EH, Kim MY, Lee HJ, Park HS. Ubiquitin E3 ligases in cancer: somatic mutation and amplification. BMB Rep. 2023;56:265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Zhao R, Qiu W, Pan Z, Zhao S, Qi Y, et al. The N6-methyladenosine-mediated lncRNA WEE2-AS1 promotes glioblastoma progression by stabilizing RPN2. Theranostics. 2022;12:6363–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji J, Ding K, Luo T, Zhang X, Chen A, Zhang D, et al. TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell Death Differ. 2021;28:367–81.

    Article  CAS  PubMed  Google Scholar 

  23. Ferroptosis: molecular mechanisms and health implications | Cell Research [Internet]. [cited 2023 Jul 18]. Available from: https://www.nature.com/articles/s41422-020-00441-1.

  24. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity | SpringerLink [Internet]. [cited 2023 Jul 18]. Available from: https://link.springer.com/article/10.1186/s13045-020-00946-7.

  25. Zhuo S, He G, Chen T, Li X, Liang Y, Wu W, et al. Emerging role of ferroptosis in glioblastoma: therapeutic opportunities and challenges. Front Mol Biosci. 2022;9:974156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, et al. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res. 2022;41:307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Wu S, He H, Ai K, Xu R, Zhang L, et al. CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab Invest. 2022;102:1323–34.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang H, Ge Z, Wang Z, Gao Y, Wang Y, Qu X. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging. 2021;13:8115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De S, Holvey-Bates EG, Mahen K, Willard B, Stark GR. The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci USA. 2021;118:e2112674118.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou P, Peng X, Tang S, Zhang K, Tan Z, Li D, et al. E3 ligase MAEA-mediated ubiquitination and degradation of PHD3 promotes glioblastoma progression. Oncogene. 2023;42:1308–20.

    Article  CAS  PubMed  Google Scholar 

  31. Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol. 2018;1087:67–79.

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6:319–36.

    Article  CAS  PubMed  Google Scholar 

  33. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li I, Chen YG. Emerging roles of circular RNAs in innate immunity. Curr Opin Immunol. 2021;68:107–15.

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Yang T, Wang W, Xi W, Zhang T, Li Q, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019;9:588–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620.

    Article  CAS  PubMed  Google Scholar 

  37. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhi Y, Gao L, Wang B, Ren W, Liang KX, Zhi K. Ferroptosis holds novel promise in treatment of cancer mediated by non-coding RNAs. Front Cell Dev Biol. 2021;9:686906.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang D, Guo S, Wang H, Hu Y. SOX15 exerts antitumor function in glioma by inhibiting cell proliferation and invasion via downregulation of Wnt/β-catenin signaling. Life Sci. 2020;255:117792.

    Article  CAS  PubMed  Google Scholar 

  42. Ding Y, Feng Y, Huang Z, Zhang Y, Li X, Liu R, et al. SOX15 transcriptionally increases the function of AOC1 to modulate ferroptosis and progression in prostate cancer. Cell Death Dis. 2022;13:673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Proestling K, Birner P, Balendran S, Nirtl N, Marton E, Yerlikaya G, et al. Enhanced expression of the stemness-related factors OCT4, SOX15 and TWIST1 in ectopic endometrium of endometriosis patients. Reprod Biol Endocrinol. 2016;14:81.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Choi EB, Vodnala M, Saini P, Anugula S, Zerbato M, Ho JJ, et al. Transcription factor SOX15 regulates stem cell pluripotency and promotes neural fate during differentiation by activating the neurogenic gene Hes5. J Biol Chem. 2023;299:102996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021;12:295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Luo Y, Huang S, Tao Y, Li C, Wang C. MKRN1/2 serve as tumor suppressors in renal clear cell carcinoma by regulating the expression of p53. Cancer Biomark. 2023;36:267–78.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Li QS, Liu HL, Tang HT, Yang HL, Wu DQ, et al. MKRN1 promotes colorectal cancer metastasis by activating the TGF-β signalling pathway through SNIP1 protein degradation. J Exp Clin Cancer Res. 2023;42:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang Y, Xian L, Liu Z, Wei L, Qin L, Xiong Y, et al. AMPKα2/HNF4A/BORIS/GLUT4 pathway promotes hepatocellular carcinoma cell invasion and metastasis in low glucose microenviroment. Biochem Pharmacol. 2022;203:115198.

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Shi J, Huang M, Chen J, Dan J, Tang Y, et al. TUBB2B facilitates progression of hepatocellular carcinoma by regulating cholesterol metabolism through targeting HNF4A/CYP27A1. Cell Death Dis. 2023;14:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther. 2020;27:645–56.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Du L, Qiao Y, Zhang X, Zheng W, Wu Q, et al. Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol. 2019;24:101211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou Q, Liu T, Qian W, Ji J, Cai Q, Jin Y, et al. HNF4A-BAP31-VDAC1 axis synchronously regulates cell proliferation and ferroptosis in gastric cancer. Cell Death Dis. 2023;14:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hu J, Zhang G, Wang Y, Xu K, Chen L, Luo G, et al. CircGNB1 facilitates the malignant phenotype of GSCs by regulating miR-515-5p/miR-582-3p-XPR1 axis. Cancer Cell Int. 2023;23:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge our lab colleagues for their support in the development of this article.

Author information

Authors and Affiliations

Authors

Contributions

ZTJ and YJ conceived and designed the study; JPH, XQL and KX performed the experiments and wrote the manuscript; JHC, HYZ, SLZ, and HL collected and analyzed the data. GQZ, ZTG, and XZ contributed equally to this work. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yang Jiang or Zhitao Jing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

We have obtained consent to publish the article from all the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, X., Xu, K. et al. CircVPS8 promotes the malignant phenotype and inhibits ferroptosis of glioma stem cells by acting as a scaffold for MKRN1, SOX15 and HNF4A. Oncogene 43, 2679–2695 (2024). https://doi.org/10.1038/s41388-024-03116-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03116-y

Search

Quick links