Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell profiling reveals altered immune landscape and impaired NK cell function in gastric cancer liver metastasis

Abstract

Gastric cancer (GC) is a substantial global health concern, and the development of liver metastasis (LM) in GC represents a critical stage linked to unfavorable patient prognoses. In this study, we employed single-cell RNA sequencing (scRNA-seq) to investigate the immune landscape of GC liver metastasis, revealing several immuno-suppressive components within the tumor immune microenvironment (TIM). Our findings unveiled an increased presence of cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cell (MDSC)-like macrophages, tumor-associated macrophage (TAM)-like macrophages, and naive T cells, while conventional dendritic cells (cDCs) and effector CD8 T cells declined in LM. Additionally, we identified two distinct natural killer (NK) cell clusters exhibiting differential cytotoxicity-related gene expression, with cytotoxic NK cells notably reduced in LM. Strikingly, TGFβ was identified as an inducer of NK cell dysfunction, potentially contributing to immune evasion and tumor metastasis. In preclinical LM models, the combined approach of inhibiting TGFβ and transferring NK cells exhibited a synergistic impact, resulting in a significant reduction in liver metastasis. This work highlights the importance of understanding the complex immune dynamics within GC liver metastasis and presents a promising strategy combining TGFβ inhibition and NK-based immunotherapy to improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell transcriptome map of cell types in HL, GC, and LM specimens.
Fig. 2: Characterization and dynamic of the endothelial/fibroblast lineage.
Fig. 3: Altered myeloid populations in liver metastasis of gastric cancer.
Fig. 4: Characterization of T cell subclusters in liver metastasis of gastric cancer.
Fig. 5: Characterization of two distinct NK cell clusters in liver metastasis of gastric cancer.
Fig. 6: Enhanced cell-cell communication, TGFβ signaling, and therapeutic targeting in gastric cancer liver metastasis.

Similar content being viewed by others

Data availability

The scRNA-seq data presented in this study have been submitted to the GEO database and are available under accession number GSE246662. All codes and scripts used for association studies are available on request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention. Nat Rev Clin Oncol. 2023;20:338–49.

    Article  PubMed  Google Scholar 

  3. Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. 2017;8:15016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verstegen MH, Harker M, van de Water C, van Dieren J, Hugen N, Nagtegaal ID, et al. Metastatic pattern in esophageal and gastric cancer: Influenced by site and histology. World J Gastroenterol. 2020;26:6037–46.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang R, Song S, Qin J, Yoshimura K, Peng F, Chu Y, et al. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell. 2023;41:1407–26.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fidler IJ, Poste G. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008;9:808.

    Article  PubMed  Google Scholar 

  8. Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27:152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 2022;40:424–37.e5.

    Article  PubMed  Google Scholar 

  11. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21:541–57.

    Article  CAS  PubMed  Google Scholar 

  12. Yang S, Qian L, Li Z, Li Y, Bai J, Zheng B, et al. Integrated multi-omics landscape of liver metastases. Gastroenterology. 2023;164:407–23.e17.

    Article  CAS  PubMed  Google Scholar 

  13. Ho PC, Kaech SM. Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Curr Opin Immunol. 2017;46:38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40:201–18.e9.

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki A, Nakamura Y, Mishima S, Kawazoe A, Kuboki Y, Bando H, et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer. 2019;22:793–802.

    Article  CAS  PubMed  Google Scholar 

  16. Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;24:695–713.

    Article  CAS  PubMed  Google Scholar 

  17. Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol. 2017;18:725–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yofe I, Dahan R, Amit I. Single-cell genomic approaches for developing the next generation of immunotherapies. Nat Med. 2020;26:171–7.

    Article  CAS  PubMed  Google Scholar 

  19. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol. 2019;37:925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov. 2023;22:496–520.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guruprasad P, Lee YG, Kim KH, Ruella M. The current landscape of single-cell transcriptomics for cancer immunotherapy. J Exp Med. 2021;218:e20201574.

  22. Mo S, Tang P, Luo W, Zhang L, Li Y, Hu X, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy. Adv Sci. 2022;9:e2204097.

    Article  Google Scholar 

  23. Sun K, Xu R, Ma F, Yang N, Li Y, Sun X, et al. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat Commun. 2022;13:4943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res. 2020;26:2640–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guerrero-Juarez CF, Dedhia PH, Jin S, Ruiz-Vega R, Ma D, Liu Y, et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun. 2019;10:650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16:282–95.

    Article  PubMed  Google Scholar 

  28. Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer. 2021;21:786–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T, et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell. 2021;39:1464–78.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity. 2017;47:820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Notarbartolo S, Ranzani V, Bandera A, Gruarin P, Bevilacqua V, Putignano AR, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Sci Immunol. 2021;6:eabg5021.

  33. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17:159–62.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki T, Ravindranath MH, Terasaki PI, Freitas MC, Kawakita S, Jucaud V. Gastric cancer progression may involve a shift in HLA-E profile from an intact heterodimer to beta2-microglobulin-free monomer. Int J Cancer. 2014;134:1558–70.

    Article  CAS  PubMed  Google Scholar 

  36. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol. 2019;5:1411–20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Borst L, van der Burg SH, van Hall T. The NKG2A-HLA-E axis as a novel checkpoint in the tumor microenvironment. Clin Cancer Res. 2020;26:5549–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Research Center for Basic Medical Sciences of Qilu Hospital for experimental supporting in this article.

Funding

This study was supported by grants from the National Natural Science Foundation of China [Nos. 82373000, 82203634], and the Natural Science Foundation of Shandong Province [No. ZR2021MH344]. The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and writing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HQ and XLT designed this study and experiments. XLT, LG, XZJ, and SYH performed the experiments. XLT, ZYH, and YWW analyzed the data and wrote the manuscript. HQ reviewed and supervised the manuscript. All authors contributed to experimental design and data analysis. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Hui Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was performed in accordance with the Declaration of Helsinki. The research protocol has been approved by the Ethical Committee of the School of Basic Medical Sciences, Shandong University [Document No. KYLL-2023(ZM)-036], with informed consent obtained from all participants. The authors have obtained informed consent for the publication of the patients’ images.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Gao, L., Jiang, X. et al. Single-cell profiling reveals altered immune landscape and impaired NK cell function in gastric cancer liver metastasis. Oncogene 43, 2635–2646 (2024). https://doi.org/10.1038/s41388-024-03114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03114-0

Search

Quick links