Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NNMT switches the proangiogenic phenotype of cancer-associated fibroblasts via epigenetically regulating ETS2/VEGFA axis

Abstract

Cancer-associated fibroblasts (CAFs) are known to promote angiogenesis in oral squamous cell carcinoma (OSCC). However, the epigenetic mechanisms through which CAFs facilitate angiogenesis within the tumor microenvironment are still poorly characterized. Nicotinamide N’-methyltransferase (NNMT), a member of the N-methyltransferase family, was found to be a key molecule in the activation of CAFs. This study shows that NNMT in fibroblasts contributes to angiogenesis and tumor growth through an epigenetic reprogramming-ETS2-VEGFA signaling axis in OSCC. Single-cell RNA Sequencing (scRNA-seq) analysis suggests that NNMT is mainly highly expressed in fibroblasts of head and neck squamous cell carcinoma (HNSCC). Moreover, analysis of the TCGA database and multiple immunohistochemical staining of clinical samples also identified a positive correlation between NNMT and tumor angiogenesis. This research further employed an assembled organoid model and a fibroblast-endothelial cell co-culture model to authenticate the proangiogenic ability of NNMT. At the molecular level, high expression of NNMT in CAFs was found to promote ETS2 expression by regulating H3K27 methylation level through mediating methylation deposition. Furthermore, ETS2 was verified to be an activating transcription factor of VEGFA in this study. Collectively, our findings delineate an epigenetic molecular regulatory network of angiogenesis and provide a theoretical basis for exploring new targets and clinical strategy in OSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NNMT is mainly highly expressed in fibroblasts and is closely associated with tumor angiogenesis.
Fig. 2: NNMT promotes the proangiogenic ability of fibroblasts via regulating VEGFA expression.
Fig. 3: Stromal NNMT accelerates angiogenesis in vitro assembled organoid and in vivo.
Fig. 4: ETS2 is a NNMT-regulated transcription factor mediating VEGFA upregulation in CAFs.
Fig. 5: NNMT induces ETS2 expression by inhibiting the tri-methylation of H3K27.
Fig. 6: NNMT-ETS2-VEGFA signal axis orchestrates the proangiogenic properties of CAFs.
Fig. 7: Schematic diagram of the mechanisms of NNMT mediated methyl sink-ETS2-VEGFA signaling axis in promoting angiogenesis of OSCC.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and its supplementary data files. The data that support the findings of this study are available in Figshare (https://doi.org/10.6084/m9.figshare.25230431).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70.

    Article  CAS  PubMed  Google Scholar 

  3. Leslie M. New partners reinvigorate a once-touted cancer treatment. Science. 2023;380:679–80.

    Article  CAS  PubMed  Google Scholar 

  4. Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611–1624.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park D, Sahai E, Rullan A. Snapshot: cancer-associated fibroblasts. Cell. 2020;181:486–486.e1.

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18:99–115.

    Article  CAS  PubMed  Google Scholar 

  9. Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M, et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet. 2008;40:650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  11. Halperin C, Hey J, Weichenhan D, Stein Y, Mayer S, Lutsik P, et al. Global DNA methylation analysis of cancer-associated fibroblasts reveals extensive epigenetic rewiring linked with RUNX1 upregulation in breast cancer stroma. Cancer Res. 2022;82:4139–52.

    Article  CAS  PubMed  Google Scholar 

  12. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    Article  CAS  PubMed  Google Scholar 

  13. Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol. 2013;9:300–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pissios P. Nicotinamide N-methyltransferase: more than a vitamin B3 clearance enzyme. Trends Endocrinol Metab. 2017;28:340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature. 2014;508:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Wang Q, Chen C, Zhao X, Wang H, Xu L, et al. NNMT enriches for AQP5+ cancer stem cells to drive malignant progression in early gastric cardia adenocarcinoma. Gut. 2023;73:63–77.

    Article  PubMed  Google Scholar 

  17. Wang Y, Zhou X, Lei Y, Chu Y, Yu X, Tong Q, et al. NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity. Cancer Lett. 2022;547:215884.

    Article  CAS  PubMed  Google Scholar 

  18. Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;569:723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev. 2020;40:413–30.

    Article  CAS  PubMed  Google Scholar 

  20. Wei G, Srinivasan R, Cantemir-Stone CZ, Sharma SM, Santhanam R, Weinstein M, et al. Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood. 2009;114:1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallace JA, Li F, Balakrishnan S, Cantemir-Stone CZ, Pecot T, Martin C, et al. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS One. 2013;8:e71533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Li R, Chen Y, Yang X, Shang Z. Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: evidence from patient-derived assembled organoids. Oncogene. 2023;42:1166–80.

    Article  CAS  PubMed  Google Scholar 

  23. Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52:D174–D182.

    Article  PubMed  Google Scholar 

  24. Tran TQ, Lowman XH, Kong M. Molecular pathways: metabolic control of histone methylation and gene expression in cancer. Clin Cancer Res. 2017;23:4004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heinemann B, Nielsen JM, Hudlebusch HR, Lees MJ, Larsen DV, Boesen T, et al. Inhibition of demethylases by GSK-J1/J4. Nature. 2014;514:E1–2.

    Article  CAS  PubMed  Google Scholar 

  26. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    Article  PubMed  Google Scholar 

  27. Verginadis II, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, et al. A stromal integrated stress response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 2022;24:940–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu B, Zhang B, Qi J, Zhou H, Tan L, Huang J, et al. Targeting MFGE8 secreted by cancer-associated fibroblasts blocks angiogenesis and metastasis in esophageal squamous cell carcinoma. Proc Natl Acad Sci USA. 2023;120:e2307914120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li X, Jiang E, Zhao H, Chen Y, Xu Y, Feng C, et al. Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis. Br J Cancer. 2022;127:449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aksoy S, Szumlanski CL, Weinshilboum RM. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J Biol Chem. 1994;269:14835–40.

    Article  CAS  PubMed  Google Scholar 

  31. Makarov MV, Trammell SAJ, Migaud ME. The chemistry of the vitamin B3 metabolome. Biochem Soc Trans. 2019;47:131–47.

    Article  CAS  PubMed  Google Scholar 

  32. Palanichamy K, Kanji S, Gordon N, Thirumoorthy K, Jacob JR, Litzenberg KT, et al. NNMT silencing activates tumor suppressor PP2A, inactivates oncogenic STKs, and inhibits tumor forming ability. Clin Cancer Res. 2017;23:2325–34.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Yang B, Miao H, Liu L, Wang Z, Jiang C, et al. Nicotinamide N -methyltransferase promotes M2 macrophage polarization by IL6 and MDSC conversion by GM-CSF in gallbladder carcinoma. Hepatology. 2023;78:1352–67.

    PubMed  Google Scholar 

  34. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18:792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337–51.

    Article  CAS  PubMed  Google Scholar 

  36. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu J, Xu C, Ruan L, Wu J, Li Y, Zhang X. MicroRNA-146b overexpression promotes human bladder cancer invasion via enhancing ETS2-mediated mmp2 mRNA transcription. Mol Ther Nucleic Acids. 2019;16:531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN. An in vitro model of angiogenesis: basic features. Angiogenesis. 1999;3:335–44.

    Article  CAS  PubMed  Google Scholar 

  39. Unterleuthner D, Kramer N, Pudelko K, Burian A, Hengstschläger M, Dolznig H. An optimized 3D coculture assay for preclinical testing of pro- and antiangiogenic drugs. SLAS Discov. 2017;22:602–13.

    Article  CAS  PubMed  Google Scholar 

  40. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.

    Article  CAS  PubMed  Google Scholar 

  41. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–1988.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater. 2022;21:143–59.

    Article  CAS  PubMed  Google Scholar 

  43. Sobrino A, Phan DT, Datta R, Wang X, Hachey SJ, Romero-López M, et al. 3D microtumors in vitro supported by perfused vascular networks. Sci Rep. 2016;6:31589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–W514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Xiazhou Fu (Wuhan University) for his expert guidance. This study was supported by grants from National Key R&D Program of China (No. 2022YFC2504200), the National Nature Science Foundation of China (No. 82273306; No.82373093).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WXM, and ZH; Literature Search, WXM and LXY; Data Collection, WXM and SCY; Formal Analysis, WXM; Validation, WXM, LXY, SCY, WYF, and BJQ; Investigation and Visualization, WXM; Methodology, WXM and LXY; Writing-original draft, WXM; Project administration, SZ and SZJ; Writing-review & editing, LXY, CY, SZ and SZJ; Supervision, SZJ. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhe Shao or Zhengjun Shang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Human material and human data involved in this research is in accordance with the Declaration of Helsinki. All animal studies were approved by the Ethics Committee of the School and Hospital of Stomatology, Wuhan University (Approval Number: S07921100A). Informed consent was obtained from all participating patients. This research did not involve identifiable images of human participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41388_2024_3112_MOESM1_ESM.docx

NNMT switches the proangiogenic phenotype of cancer-associated fibroblasts via epigenetically regulating ETS2/VEGFA axis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, H., Luo, X. et al. NNMT switches the proangiogenic phenotype of cancer-associated fibroblasts via epigenetically regulating ETS2/VEGFA axis. Oncogene 43, 2647–2660 (2024). https://doi.org/10.1038/s41388-024-03112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03112-2

Search

Quick links