Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic investigation of BRCA1-A, -B, and -C complexes and their functions in DNA damage response and DNA repair

Abstract

BRCA1, a breast cancer susceptibility gene, has emerged as a central mediator that brings together multiple signaling complexes in response to DNA damage. The A, B, and C complexes of BRCA1, which are formed based on their phosphorylation-dependent interactions with the BRCA1-C-terminal domains, contribute to the roles of BRCA1 in DNA repair and cell cycle checkpoint control. However, their functions in DNA damage response remain to be fully appreciated. Specifically, there has been no systematic investigation of the roles of BRCA1-A, -B, and -C complexes in the regulation of BRCA1 localization and functions, in part because of cellular lethality associated with loss of CtIP protein, which is an essential component in BRCA1-C complex. To systematically investigate the functions of these complexes in DNA damage response, we depleted a key component in each of these complexes. We used the degradation tag system to inducibly deplete endogenous CtIP and obtained a series of RAP80/FANCJ/CtIP single-, double-, and triple-knockout cells. We showed that loss of BRCA1-B/FANCJ and BRCA1-C/CtIP, but not BRCA1-A/RAP80, resulted in reduced cell proliferation and increased sensitivity to DNA damage. BRCA1-C/CtIP and BRCA1-A/RAP80 were involved in BRCA1 recruitment to sites of DNA damage. However, BRCA1-A/RAP80 was not essential for damage-induced BRCA1 localization. Instead, RAP80/H2AX and CtIP have redundant roles in BRCA1 recruitment. Altogether, our systematic analysis uncovers functional differences between BRCA1-A, -B, and -C complexes and provides new insights into the roles of these BRCA1-associated protein complexes in DNA damage response and DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FANCJ depletion reduces cell viability and enhances cellular sensitivity to DNA damage-inducing agents.
Fig. 2: CtIP is essential for cell viability.
Fig. 3: CtIP, RAP80, and FANCJ regulate BRCA1 functions in response to DNA damage.
Fig. 4: CtIP and H2AX represent two independent pathways involved in BRCA1 recruitment.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011;25:409–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  5. Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7:a016600.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rodgers K, McVey M. Error-prone repair of DNA double-strand breaks. J Cell Physiol. 2016;231:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4:511–8.

    Article  CAS  PubMed  Google Scholar 

  8. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene. 2003;22:5784–91.

    Article  CAS  PubMed  Google Scholar 

  9. Nagaraju G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair. 2007;6:1018–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4:665–76.

    Article  CAS  PubMed  Google Scholar 

  11. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108:171–82.

    Article  CAS  PubMed  Google Scholar 

  12. Huen MS, Sy SM, Chen J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol. 2010;11:138–48.

    Article  CAS  PubMed  Google Scholar 

  13. Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006;34:1416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 2006;20:34–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 2007;316:1194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu X, Chini CC, He M, Mer G, Chen J. The BRCT domain is a phospho-protein binding domain. Science. 2003;302:639–42.

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Elledge SJ. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci USA. 2007;104:20759–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science. 2007;316:1198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang B, Hurov K, Hofmann K, Elledge SJ. NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev. 2009;23:729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng L, Huang J, Chen J. MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev. 2009;23:719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patterson-Fortin J, Shao G, Bretscher H, Messick TE, Greenberg RA. Differential regulation of JAMM domain deubiquitinating enzyme activity within the RAP80 complex. J Biol Chem. 2010;285:30971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim H, Huang J, Chen J. CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol. 2007;14:710–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kim H, Chen J, Yu X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science. 2007;316:1202–5.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Wu J, Yu X. CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol. 2007;14:716–20.

    Article  CAS  PubMed  Google Scholar 

  25. Wang B. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci. 2012;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gong Z, Kim JE, Leung CC, Glover JN, Chen J. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell. 2010;37:438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001;105:149–60.

    Article  CAS  PubMed  Google Scholar 

  28. Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet. 2005;37:934–5.

    Article  CAS  PubMed  Google Scholar 

  29. Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet. 2005;37:931–3.

    Article  CAS  PubMed  Google Scholar 

  30. Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell. 2005;8:255–65.

    Article  CAS  PubMed  Google Scholar 

  31. Cantor SB, Guillemette S. Hereditary breast cancer and the BRCA1-associated FANCJ/BACH1/BRIP1. Future Oncol. 2011;7:253–61.

    Article  CAS  PubMed  Google Scholar 

  32. Xie J, Litman R, Wang S, Peng M, Guillemette S, Rooney T, et al. Targeting the FANCJ-BRCA1 interaction promotes a switch from recombination to poleta-dependent bypass. Oncogene. 2010;29:2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen L, Nievera CJ, Lee AY, Wu X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 2008;283:7713–20.

    Article  CAS  PubMed  Google Scholar 

  34. Yu X, Chen J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol. 2004;24:9478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cruz-Garcia A, Lopez-Saavedra A, Huertas P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 2014;9:451–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen PL, Liu F, Cai S, Lin X, Li A, Chen Y, et al. Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol Cell Biol. 2005;25:3535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nabet B, Ferguson FM, Seong BKA, Kuljanin M, Leggett AL, Mohardt ML, et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat Commun. 2020;11:4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature. 2013;493:356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012;26:1393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, et al. The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol. 2018;14:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ, Raghuraman MK. Replication in hydroxyurea: it’s a matter of time. Mol Cell Biol. 2007;27:6396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nuss JE, Patrick SM, Oakley GG, Alter GM, Robison JG, Dixon K, et al. DNA damage induced hyperphosphorylation of replication protein A. 1. Identification of novel sites of phosphorylation in response to DNA damage. Biochemistry. 2005;44:8428–37.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14:1448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin SA, Ouchi T. Cellular commitment to reentry into the cell cycle after stalled DNA is determined by site-specific phosphorylation of Chk1 and PTEN. Mol Cancer Ther. 2008;7:2509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, Salada G, et al. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene. 1998;17:2279–85.

    Article  CAS  PubMed  Google Scholar 

  47. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 1998;273:25388–92.

    Article  CAS  PubMed  Google Scholar 

  48. Yun MH, Hiom K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature. 2009;459:460–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013;49:872–83.

    Article  CAS  PubMed  Google Scholar 

  50. Nakamura K, Kogame T, Oshiumi H, Shinohara A, Sumitomo Y, Agama K, et al. Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLoS Genet. 2010;6:e1000828.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reczek CR, Szabolcs M, Stark JM, Ludwig T, Baer R. The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. J Cell Biol. 2013;201:693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen J, Li P, Song L, Bai L, Huen MSY, Liu Y, et al. 53BP1 loss rescues embryonic lethality but not genomic instability of BRCA1 total knockout mice. Cell Death Differ. 2020;27:2552–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drost R, Jonkers J. Opportunities and hurdles in the treatment of BRCA1-related breast cancer. Oncogene. 2014;33:3753–63.

    Article  CAS  PubMed  Google Scholar 

  54. Sato K, Sundaramoorthy E, Rajendra E, Hattori H, Jeyasekharan AD, Ayoub N, et al. A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair. Curr Biol. 2012;22:1659–66.

    Article  CAS  PubMed  Google Scholar 

  55. Anand R, Ranjha L, Cannavo E, Cejka P. Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell. 2016;64:940–50.

    Article  CAS  PubMed  Google Scholar 

  56. Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol. 2016;51:195–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paull TT. 20 years of Mre11 biology: no end in sight. Mol Cell. 2018;71:419–27.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM Jr. FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood. 2007;110:2390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131:901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 2007;318:1637–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 2007;131:887–900.

    Article  CAS  PubMed  Google Scholar 

  62. Panier S, Durocher D. Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair. 2009;8:436–43.

    Article  CAS  PubMed  Google Scholar 

  63. Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, et al. FOXK1 participates in DNA damage response by controlling 53BP1 function. Cell Rep. 2020;32:108018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang MF, Pei GS, Su D, Wang C, Feng X, Srivastava M, et al. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res. 2021;49:7476–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A, Aregger M, et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3. 2017;7:2719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163:1515–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of Dr. Chen’s laboratory for their help and constructive discussions and the North Campus Flow Cytometry and Cellular Imaging Core Facility, DNA Analysis Core Facility at the University of Texas MD Anderson Cancer (CA016672) for their technical support. We thank Sarah Bronson and Ann Sutton at the Research Medical Library for Editing Services. We also thank Drs. Richard Baer and Sharon Cantor respectively for providing CtIP and FANCJ antibodies.

Funding

This work was supported in part by internal funds that were available to JC. JC also received support from the Pamela and Wayne Garrison Distinguished Chair in Cancer Research, Cancer Prevention & Research Institute of Texas (awards RP160667 and RP180813 to JC), and NIH (CA210929, CA216911, and CA216437 to JC; P01 CA193124, project 4, to JC; and more recently, CA274234 and CA275712 to JC).

Author information

Authors and Affiliations

Authors

Contributions

Siting Li, Mengfan Tang, and Junjie Chen conceived the project. Siting Li, Mengfan Tang, Litong Nie, Min Huang, Huimin Zhang, Ling Yin, Dandan Zhu, Chang Yang, and Tiantian Ma performed the experiments. Yun Xiong, Xu Feng, and Chao Wang helped with the mass spectrometry experiments and CRISPR screen data analysis, and Siting Li and Junjie Chen wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Junjie Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Tang, M., Xiong, Y. et al. Systematic investigation of BRCA1-A, -B, and -C complexes and their functions in DNA damage response and DNA repair. Oncogene 43, 2621–2634 (2024). https://doi.org/10.1038/s41388-024-03108-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03108-y

Search

Quick links