Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GATA2 promotes castration-resistant prostate cancer development by suppressing IFN-β axis-mediated antitumor immunity

Abstract

Castration-resistant prostate cancer (CRPC) nearly inevitably develops after long-term treatment with androgen deprivation therapy (ADT), leading to significant mortality. Investigating the mechanisms driving CRPC development is imperative. Here, we determined that the pioneer transcription factor GATA2, which is frequently amplified in CRPC patients, inhibits interferon (IFN)-β-mediated antitumor immunity, thereby promoting CRPC progression. Employing a genetically engineered mouse model (GEMM), we demonstrated that GATA2 overexpression hindered castration-induced cell apoptosis and tumor shrinkage, facilitating tumor metastasis and CRPC development. Notably, GATA2 drives castration resistance predominantly via repressing castration-induced activation of IFN-β signaling and CD8+ T-cell infiltration. This finding aligns with the negative correlation between GATA2 expression and IFNB1 expression, as well as CD8+ T-cell infiltration in CRPC patients. Mechanistically, GATA2 recruited PIAS1 as corepressor, and reprogramed the cistrome of IRF3, a key transcription factor of the IFN-β axis, in an androgen-independent manner. Furthermore, we identified a novel silencer element that facilitated the function of GATA2 and PIAS1 through looping to the IFNB1 promoter. Importantly, depletion of GATA2 augmented antitumor immunity and attenuated CRPC development. Consequently, our findings elucidate a novel mechanism wherein GATA2 promotes CRPC progression by suppressing IFN-β axis-mediated antitumor immunity, underscoring GATA2 as a promising therapeutic target for CRPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of GATA2 promoted CRPC progression in PTEN-null mice.
Fig. 2: GATA2 suppressed castration-induced immune signaling in vivo.
Fig. 3: GATA2 attenuated castration-induced tumor cell apoptosis and CD8+ T-cell infiltration through blockade of IFN-β signaling.
Fig. 4: GATA2 suppressed IFNB1, IFNL2 and ISG expression in vitro.
Fig. 5: GATA2 altered the IRF3 cistrome.
Fig. 6: GATA2 recruited PIAS1 as a corepressor to control PSG expression.
Fig. 7: GATA2 and PIAS1 suppressed IFNB1 transcription through an undefined silencer element.
Fig. 8: Ablation of GATA2 suppressed CRPC progression.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request. The experimental data that support the findings of this study are available through FigShare https://doi.org/10.6084/m9.figshare.25203209. The raw sequencing data reported in this paper have been deposited in the Genome Sequence Archive (GSA) at the National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, under accession numbers HRA004978 and CRA011658, which are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4:365–80.

    PubMed  PubMed Central  Google Scholar 

  4. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, et al. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 2020;38:350–65.e357.

    Article  CAS  PubMed  Google Scholar 

  5. Park SH, Fong KW, Mong E, Martin MC, Schiltz GE, Yu J. Going beyond Polycomb: EZH2 functions in prostate cancer. Oncogene. 2021;40:5788–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol. 2017;14:38–48.

    Article  CAS  PubMed  Google Scholar 

  9. Bohm M, Locke WJ, Sutherland RL, Kench JG, Henshall SM. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene. 2009;28:3847–56.

    Article  CAS  PubMed  Google Scholar 

  10. Shen T, Wang W, Zhou W, Coleman I, Cai Q, Dong B, et al. MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. J Clin Investig. 2021;131:e135465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu D, Sunkel B, Chen Z, Liu X, Ye Z, Li Q, et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 2014;42:3607–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM, et al. GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc Natl Acad Sci USA. 2014;111:18261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiang YT, Wang K, Fazli L, Qi RZ, Gleave ME, Collins CC, et al. GATA2 as a potential metastasis-driving gene in prostate cancer. Oncotarget. 2014;5:451–61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vidal SJ, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27:223–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaochar S, Rusin A, Foley C, Rajapakshe K, Robertson M, Skapura D, et al. Inhibition of GATA2 in prostate cancer by a clinically available small molecule. Endocr Relat Cancer. 2021;29:15–31.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–14.

    Article  CAS  PubMed  Google Scholar 

  17. Borden EC. Interferons alpha and beta in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18:219–34.

    Article  CAS  PubMed  Google Scholar 

  18. Khodarev NN. Intracellular RNA sensing in mammalian cells: role in stress response and cancer therapies. Int Rev Cell Mol Biol. 2019;344:31–89.

    Article  CAS  PubMed  Google Scholar 

  19. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  20. Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papewalis C, Jacobs B, Wuttke M, Ullrich E, Baehring T, Fenk R, et al. IFN-alpha skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J Immunol. 2008;180:1462–70.

    Article  CAS  PubMed  Google Scholar 

  22. Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, Von Laer D, et al. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity. 2014;40:961–73.

    Article  CAS  PubMed  Google Scholar 

  23. Xu HC, Grusdat M, Pandyra AA, Polz R, Huang J, Sharma P, et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity. 2014;40:949–60.

    Article  CAS  PubMed  Google Scholar 

  24. Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in human macrophages. J Immunol. 2011;187:2540–7.

    Article  CAS  PubMed  Google Scholar 

  25. Spaapen RM, Leung MY, Fuertes MB, Kline JP, Zhang L, Zheng Y, et al. Therapeutic activity of high-dose intratumoral IFN-beta requires direct effect on the tumor vasculature. J Immunol. 2014;193:4254–60.

    Article  CAS  PubMed  Google Scholar 

  26. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borden EC, Parkinson D. A perspective on the clinical effectiveness and tolerance of interferon-alpha. Semin Oncol. 1998;25:3–8.

    CAS  PubMed  Google Scholar 

  28. An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Ther Nucleic Acids. 2019;14:80–9.

    Article  CAS  PubMed  Google Scholar 

  29. Chin EN, Sulpizio A, Lairson LL. Targeting STING to promote antitumor immunity. Trends Cell Biol. 2023;33:189–203.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Chen J, Hu J, Zhang H, Xu F, He W, et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J Clin Invest. 2019;129:4850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol. 2020;21:17–29.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007;27:380–92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao JC, Fong KW, Jin HJ, Yang YA, Kim J, Yu J. FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression. Oncogene. 2016;35:4335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li S, Wan C, Zheng R, Fan J, Dong X, Meyer CA, et al. Cistrome-GO: a web server for functional enrichment analysis of transcription factor ChIP-seq peaks. Nucleic Acids Res. 2019;47:W206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol. 2005;5:593–605.

    Article  CAS  PubMed  Google Scholar 

  41. Liu B, Tahk S, Yee KM, Fan G, Shuai K. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science. 2010;330:521–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  43. Powles T, Yuen KC, Gillessen S, Kadel EE 3rd, Rathkopf D, Matsubara N, et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat Med. 2022;28:144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Imamura Y, Sadar MD. Androgen receptor targeted therapies in castration-resistant prostate cancer: Bench to clinic. Int J Urol. 2016;23:654–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun BL. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment. Prostate. 2021;81:1125–34.

    Article  CAS  PubMed  Google Scholar 

  46. Kaur HB, Guedes LB, Lu J, Maldonado L, Reitz L, Barber JR, et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod Pathol. 2018;31:1539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laccetti AL, Subudhi SK. Immunotherapy for metastatic prostate cancer: immuno-cold or the tip of the iceberg? Curr Opin Urol. 2017;27:566–71.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett. 2022;525:9–21.

    Article  CAS  PubMed  Google Scholar 

  49. Guillot B, Portales P, Thanh AD, Merlet S, Dereure O, Clot J, et al. The expression of cytotoxic mediators is altered in mononuclear cells of patients with melanoma and increased by interferon-alpha treatment. Br J Dermatol. 2005;152:690–6.

    Article  CAS  PubMed  Google Scholar 

  50. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–49.

    Article  CAS  PubMed  Google Scholar 

  51. Sorrentino C, Musiani P, Pompa P, Cipollone G, Di Carlo E. Androgen deprivation boosts prostatic infiltration of cytotoxic and regulatory T lymphocytes and has no effect on disease-free survival in prostate cancer patients. Clin Cancer Res. 2011;17:1571–81.

    Article  CAS  PubMed  Google Scholar 

  52. Siddiqui BA, Subudhi SK, Sharma P. Anti-PD-L1 plus enzalutamide does not improve overall survival in prostate cancer. Cell Rep Med. 2022;3:100613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank professors Ming-jer Tsai and Sophia Tsai at Baylor College of Medicine for the kind gift of GATA2OE+ mice and editorial assistance. We also thank Cheng-Tai Yu and the Genetically Engineered Mouse Core at Baylor College of Medicine for generating GATA2OE+ mice. We appreciate the technical support of the Center for Scientific Research in the School of Life Sciences, Anhui Medical University. This work was supported by a grant from the National Natural Science Foundation of China project (82073256), a talent start-up program and a research and innovation talent team from Anhui Medical University.

Author information

Authors and Affiliations

Authors

Contributions

XM and JQ conceived and designed the experimental approach and prepared the manuscript as senior authors. JZ, WH, TR and PB performed most experiments. LH and LS performed a specific subset of the experiments and analyses. WL contributed to the computational statistical analysis.

Corresponding authors

Correspondence to Jun Qin or Mafei Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal procedures were performed under a protocol (AN-1002) approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine or a protocol (LLSC20200389) approved by the Institutional Animal Care and Use Committee of Anhui Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Wang, H., Tang, R. et al. GATA2 promotes castration-resistant prostate cancer development by suppressing IFN-β axis-mediated antitumor immunity. Oncogene 43, 2595–2610 (2024). https://doi.org/10.1038/s41388-024-03107-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03107-z

Search

Quick links