Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinguishing high-metastasis-potential circulating tumor cells through fluidic shear stress in a bloodstream-like microfluidic circulatory system

Abstract

Circulating tumor cells (CTCs) play a critical role as initiators in tumor metastasis, which unlocks an irreversible process of cancer progression. Regarding the fluid environment of intravascular CTCs, a comprehensive understanding of the impact of hemodynamic shear stress on CTCs is of profound significance but remains vague. Here, we report a microfluidic circulatory system that can emulate the CTC microenvironment to research the responses of typical liver cancer cells to varying levels of fluid shear stress (FSS). We observe that HepG2 cells surviving FSS exhibit a marked overexpression of TLR4 and TPPP3, which are shown to be associated with the colony formation, migration, and anti-apoptosis abilities of HepG2. Furthermore, overexpression of these two genes in another liver cancer cell line with normally low TLR4 and TPPP3 expression, SK-Hep-1 cells, by lentivirus-mediated transfection also confirms the critical role of TLR4 and TPPP3 in improving colony formation, migration, and survival capability under a fluid environment. Interestingly, in vivo experiments show SK-Hep-1 cells, overexpressed with these genes, have enhanced metastatic potential to the liver and lungs in mouse models via tail vein injection. Mechanistically, TLR4 and TPPP3 upregulated by FSS may increase FSS-mediated cell survival and metastasis through the p53-Bax signaling pathway. Moreover, elevated levels of these genes correlate with poorer overall survival in liver cancer patients, suggesting that our findings could offer new therapeutic strategies for early cancer diagnosis and targeted treatment development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Responses of HepG2 cells to FSS.
Fig. 2: Exploration of differentially expressed genes in FSS-treated HepG2 cells by RNA-seq and RT-qPCR.
Fig. 3: Effect of downregulating TLR4 or TPPP3 on the survival in circulation, colony formation, migration, and anti-anoikis of HepG2 cells.
Fig. 4: Responses of SK-Hep-1 cells to FSS.
Fig. 5: Responses of TLR4 or TPPP3-overexpressing SK-Hep-1 cells in vitro and in vivo.
Fig. 6: Clinical significance of TPPP3 and TLR4 in liver cancer.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available from the main text article and its Supplementary Information files or from the corresponding author on reasonable request.

References

  1. Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, et al. Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Rep. 2020;30:3864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  3. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529:298–306.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017;32:282–93.

    Article  CAS  PubMed  Google Scholar 

  5. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6:449–58.

    Article  CAS  PubMed  Google Scholar 

  6. Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS ONE. 2012;7:e50973.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yankaskas CLBK, Stoletov K, Serra SA, Carrillo-Garcia J, Tuntithavornwat S, et al. The fluid shear stress sensor TRPM7 regulates tumor cell intravasation. Sci Adv. 2021;7:eabh3457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020;20:107–24.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Q, Hu X, He W, Zhao Y, Hao S, Wu Q, et al. Fluid shear stress and tumor metastasis. Am J Cancer Res. 2018;8:763–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xin Y, Li K, Yang M, Tan Y. Fluid shear stress induces EMT of circulating tumor cells via JNK signaling in favor of their survival during hematogenous dissemination. Int J Mol Sci. 2020;21:8115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Regmi S, Fu A, Luo KQ. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep. 2017;7:39975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Headley MB, Bins A, Nip A, Roberts EW, Looney MR, Gerard A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature. 2016;531:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang P, Chen S, Hung W, Paul C, Zhu F, Guan P, et al. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways. Oncogene. 2015;34:4558–69.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer lett. 2014;344:62–73.

    Article  CAS  PubMed  Google Scholar 

  15. Sun J, Luo Q, Liu L, Song G. Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway. Cancer Lett. 2018;427:1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lee HJ, Diaz MF, Price KM, Ozuna JA, Zhang S, Sevick-Muraca EM, et al. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun. 2017;8:14122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitchell MJ, Denais C, Chan MF, Wang Z, Lammerding J, King MR. Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. Am J Physiol Cell Physiol. 2015;309:C736–C746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Y, Miyamoto DT, Wittner BS, Sullivan JP, Aceto N, Jordan NV, et al. Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun. 2017;8:14344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu A, Ma S, Wei N, Tan BXX, Tan EY, Luo KQ. High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget. 2016;7:50239.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA. 2013;110:E1974–E1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma S, Fu A, Chiew GG, Luo KQ. Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett. 2017;388:239–48.

    Article  CAS  PubMed  Google Scholar 

  22. Fuh KF, Shepherd RD, Withell JS, Kooistra BK, Rinker KD. Fluid flow exposure promotes epithelial-to-mesenchymal transition and adhesion of breast cancer cells to endothelial cells. Breast Cancer Res. 2021;23:1–97.

    Article  Google Scholar 

  23. Yu H, He J, Su G, Wang Y, Fang F, Yang W, et al. Fluid shear stress activates YAP to promote epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol. 2021;15:3164–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dash SK, Patra B, Sharma V, Das SK, Verma RS. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression. Lab Chip. 2022;22:2200–11.

    Article  CAS  PubMed  Google Scholar 

  25. Das J, Maiti TK. Fluid shear stress influences invasiveness of HeLa cells through the induction of autophagy. Clin Exp Metastasis. 2022;39:495–504.

    Article  CAS  PubMed  Google Scholar 

  26. Xin Y, Hu B, Li K, Hu G, Zhang C, Chen X, et al. Circulating tumor cells with metastasis-initiating competence survive fluid shear stress during hematogenous dissemination through CXCR4-PI3K/AKT signaling. Cancer Lett. 2024;590:216870.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Yang L, Chien S, Lv Y. Suspension state promotes metastasis of breast cancer cells by up-regulating cyclooxygenase-2. Theranostics. 2018;8:3722–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goh A, Pai PC, Cheng G, Ho Y-P, Lei KF. Modulation of cancer stemness property in head and neck cancer cells via circulatory fluid shear stress. Microfluid Nanofluid. 2022;26:37.

    Article  CAS  Google Scholar 

  29. Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9:3038–46.

    Article  PubMed  Google Scholar 

  30. Blockhuys S, Zhang X, Wittung-Stafshede P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci USA. 2020;117:2014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li K, Wu R, Zhou M, Tong H, Luo KQ. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mouly L, Gilhodes J, Lemarie A, Cohen-Jonathan Moyal E, Toulas C, Favre G, et al. The RND1 small GTPase: main functions and emerging role in oncogenesis. Int J Mol Sci. 2019;20:3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiang G, Yi Y, Weiwei H, Weiming W. RND1 is up-regulated in esophageal squamous cell carcinoma and promotes the growth and migration of cancer cells. Tumor Biol. 2016;37:773–9.

    Article  Google Scholar 

  34. Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci. 2018;19:2729.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haricharan S, Brown P. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth. Proc Natl Acad Sci USA. 2015;112:E3216–E3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 2020;13:1–15.

    Article  CAS  Google Scholar 

  37. Kumar DBU, Chen CL, Liu JC, Feldman DE, Sher LS, French S, et al. TLR4 signaling via NANOG cooperates with STAT3 to activate Twist1 and promote formation of tumor-initiating stem-like cells in livers of mice. Gastroenterology. 2016;150:707–19.

    Article  Google Scholar 

  38. Li Y, Xu Y, Ye K, Wu N, Li J, Liu N, et al. Knockdown of tubulin polymerization promoting protein family member 3 suppresses proliferation and induces apoptosis in non-small-cell lung cancer. J Cancer. 2016;7:1189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren Q, Hou Y, Li X, Fan X. Silence of TPPP3 suppresses cell proliferation, invasion and migration via inactivating NF‐κB/COX2 signal pathway in breast cancer cell. Cell Biochem Funct. 2020;38:773–81.

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Bai M, Xu Y, Zhao W, Liu N, Yu J. TPPP3 promotes cell proliferation, invasion and tumor metastasis via STAT3/Twist1 pathway in non-small-cell lung carcinoma. Cell Physiol Biochem. 2018;50:2004–16.

    Article  CAS  PubMed  Google Scholar 

  41. Qin CD, Ma DN, Zhang SZ, Zhang N, Ren ZG, Zhu XD, et al. The Rho GTPase Rnd1 inhibits epithelial–mesenchymal transition in hepatocellular carcinoma and is a favorable anti-metastasis target. Cell Death Dis. 2018;9:486.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, et al. The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol. 2015;17:81–94.

    Article  CAS  PubMed  Google Scholar 

  43. Ohtsuka T, Ryu H, Minamishima YA, Macip S, Sagara J, Nakayama KI, et al. ASC is a Bax adaptor and regulates the p53–Bax mitochondrial apoptosis pathway. Nat Cell Biol. 2004;6:121–8.

    Article  CAS  PubMed  Google Scholar 

  44. Vasudevan J, Lim CT, Fernandez JG. Cell migration and breast cancer metastasis in biomimetic extracellular matrices with independently tunable stiffness. Adv Funct Mater. 2020;30:2005383.

    Article  CAS  Google Scholar 

  45. Choudhury KR, Yagle KJ, Swanson PE, Krohn KA, Rajendran JG. A robust automated measure of average antibody staining in immunohistochemistry images. J Histochem Cytochem. 2010;58:95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project (HZQB-KCZYZ-2021017), National Key Research and Development Program of China (2018YFA0901104), and City University of Hong Kong (project #9680217 and # 9678223). The authors thank Wang Peng, Zesheng Wang, Tongxu Si, and NG Ka Ki for their assistance in experiments.

Author information

Authors and Affiliations

Authors

Contributions

Wenxiu Li is responsible for conducting the experiments, collecting data, plotting figures, and writing the manuscript. Zhengjun Guo and Zhihang Zhou are responsible for conducting animal experiments and reviewing the manuscript. Zhengdong Zhou and Huimin He contributed to result discussion and writing the manuscript. Jiayu Sun, Xiaoyu Zhou, Y. Rebecca Chin, Liang Zhang provided feedback on the manuscript. Mengsu Yang is responsible for designing, supervising, and writing this study.

Corresponding author

Correspondence to Mengsu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were conducted according to the animal protocol approved by the Animal Care and Ethics Committee of City University of Hong Kong (A-0644). All experiments about human samples were approved by the Ethical Committee of the Second Affiliated Hospital of Chongqing Medical University (2022)80) and carried out in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Guo, Z., Zhou, Z. et al. Distinguishing high-metastasis-potential circulating tumor cells through fluidic shear stress in a bloodstream-like microfluidic circulatory system. Oncogene 43, 2295–2306 (2024). https://doi.org/10.1038/s41388-024-03075-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03075-4

Search

Quick links