Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of gut microbiota in the pathogenesis of castration-resistant prostate cancer: a comprehensive study using sequencing and animal models

Abstract

CRPC remains a significant challenge in prostate cancer research. We aimed to elucidate the role of gut microbiota and its specific mechanisms in CRPC using a multidisciplinary approach. We analyzed 16S rRNA sequencing data from mouse fecal samples, revealing substantial differences in gut microbiota composition between CRPC and castration-sensitive prostate cancer mice, particularly in Firmicutes and Bacteroidetes. Functional analysis suggested different bacteria may influence CRPC via the α-linolenic acid metabolism pathway. In vivo, experiments utilizing mouse models and fecal microbiota transplantation (FMT) demonstrated that FMT from healthy control mice could decelerate tumor growth in CRPC mice, reduce TNF-α levels, and inhibit the activation of the TLR4/MyD88/NF-κB signaling pathway. Transcriptome sequencing identified crucial genes and pathways, with rescue experiments confirming the gut microbiota’s role in modulating CRPC progression through the TLR4/MyD88/NF-κB pathway. The activation of this pathway by TNF-α has been corroborated by in vitro cell experiments, indicating its role in promoting prostate cancer cell proliferation, migration, and invasion while inhibiting apoptosis. Gut microbiota dysbiosis may promote CRPC development through TNF-α activation of the TLR4/MyD88/NF-κB signaling pathway, potentially linked to α-linolenic acid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of gut microbiota species diversity in the CR group and Sham group.
Fig. 2: Differential analysis of the species composition of the intestinal microbiota between CR group and Sham group mice at different levels.
Fig. 3: Differential composition of gut microbiota at the genus level between CR and Sham groups as analyzed by LEfSe.
Fig. 4: Functional enrichment analysis of differential gut microbiota between the CR and Sham groups.
Fig. 5: Effect of broad-spectrum antibiotics (ABX) treatment on tumor growth in prostate cancer mice.
Fig. 6: Effects of fecal microbiota transplantation (FMT) on tumor growth and α-linolenic acid metabolism in castration-resistant prostate cancer mice.
Fig. 7: Selection of critical genes and pathways between the FMT (from ABX) group and the FMT (from NC) group.
Fig. 8: Effects of FMT on TNF-α and TLR4/MyD88/NF-κB signaling in mouse tumors and colon tissues.
Fig. 9: Effects of TNF-α on proliferation, migration, invasion, and apoptosis of DU-145 cells through the regulation of TLR4 expression.
Fig. 10: Effects of TNF-α gene knockout and FMT treatment on tumor growth and α-linolenic acid metabolism in castration-resistant prostate cancer mice.
Fig. 11: Gut Microbiota Activates TNF-α/TLR4/MyD88/NF-κB in Prostate Cancer Progression.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the manuscript and supplementary materials.

References

  1. Mansinho A, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets and treatment. Adv Exp Med Biol. 2018;1096:117–33. https://doi.org/10.1007/978-3-319-99286-0_7

    Article  CAS  PubMed  Google Scholar 

  2. Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013;140:223–38. https://doi.org/10.1016/j.pharmthera.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  3. Achard V, Putora PM, Omlin A, Zilli T, Fischer S. Metastatic prostate cancer: treatment options. Oncology. 2022;100:48–59. https://doi.org/10.1159/000519861

    Article  CAS  PubMed  Google Scholar 

  4. Feng Q, He B. Androgen receptor signaling in the development of castration-resistant prostate cancer. Front Oncol. 2019;9:858 https://doi.org/10.3389/fonc.2019.00858

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wei XX, Ko EC, Ryan CJ. Treatment strategies in low-volume metastatic castration-resistant prostate cancer. Curr Opin Urol. 2017;27:596–603. https://doi.org/10.1097/MOU.0000000000000436

    Article  PubMed  Google Scholar 

  6. Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99. https://doi.org/10.1146/annurev-med-051517-011947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosellini M, Santoni M, Mollica V, Rizzo A, Cimadamore A, Scarpelli M, et al. Treating prostate cancer by antibody-drug conjugates. Int J Mol Sci. 2021;22:1551 https://doi.org/10.3390/ijms22041551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hang Z, Lei T, Zeng Z, Cai S, Bi W, Du H. Composition of intestinal flora affects the risk relationship between Alzheimer’s disease/Parkinson’s disease and cancer. Biomed Pharmacother. 2022;145:112343 https://doi.org/10.1016/j.biopha.2021.112343

    Article  CAS  PubMed  Google Scholar 

  9. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek. 2020;113:2019–40. https://doi.org/10.1007/s10482-020-01474-7

    Article  PubMed  Google Scholar 

  10. Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019;11:1613 https://doi.org/10.3390/nu11071613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, et al. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol. 2021;18:885–902. https://doi.org/10.1038/s41575-021-00512-7

    Article  CAS  PubMed  Google Scholar 

  12. Liu JY, Zhu YP, Han BM. Xia SJ. Zhonghua yi xue za zhi. [Effects of androgen deprivation therapy for prostate cancer on gut microbiota and treatment] 2023;103:84–88. https://doi.org/10.3760/cma.j.cn112137-20220822-01789.

  13. Liu Y, Yang C, Zhang Z, Jiang H. Gut microbiota dysbiosis accelerates prostate cancer progression through increased LPCAT1 expression and enhanced DNA repair pathways. Front Oncol. 2021;11:679712 https://doi.org/10.3389/fonc.2021.679712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wensel CR, Pluznick JL, Salzberg SL, Sears CL. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Investig. 2022;132:e154944 https://doi.org/10.1172/JCI154944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Church DL, Cerutti L, Gürtler A, Griener T, Zelazny A, Emler S. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin Microbiol Rev. 2020;33:e00053-19 https://doi.org/10.1128/CMR.00053-19

    Article  PubMed  PubMed Central  Google Scholar 

  16. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14:908–34. https://doi.org/10.1111/j.1469-0691.2008.02070.x

    Article  CAS  PubMed  Google Scholar 

  17. Li B, He X, Zhao Y, Bai D, Du M, Song L, et al. Transcriptome profiling of developing testes and spermatogenesis in the Mongolian horse. BMC Genet. 2020;21:46 https://doi.org/10.1186/s12863-020-00843-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021;13:36 https://doi.org/10.1038/s41368-021-00146-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen P, Chen P, Guo Y, Fang C, Li T. Interaction between chronic endometritis caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure. Front Immunol. 2021;12:748447 https://doi.org/10.3389/fimmu.2021.748447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact Mater. 2020;6:1973–87. https://doi.org/10.1016/j.bioactmat.2020.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, et al. The role of tumor necrosis factor Alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021;22:2719 https://doi.org/10.3390/ijms22052719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9:361–71. https://doi.org/10.1038/nrc2628

    Article  CAS  PubMed  Google Scholar 

  23. Morsy MA, Ibrahim YF, Abdel Hafez SMN, Zenhom NM, Nair AB, Venugopala KN, et al. Paeonol attenuates hepatic ischemia/reperfusion injury by modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB signaling pathways. Antioxid. 2022;11:1687 https://doi.org/10.3390/antiox11091687

    Article  CAS  Google Scholar 

  24. Cui C, Hong H, Shi Y, Zhou Y, Qiao CM, Zhao WJ, et al. Vancomycin pretreatment on MPTP-induced parkinson’s disease mice exerts neuroprotection by suppressing inflammation both in brain and gut. J NeuroImmune Pharmacol. 2023;18:72–89. https://doi.org/10.1007/s11481-021-10047-y

    Article  PubMed  Google Scholar 

  25. Rizzo A, Santoni M, Mollica V, Fiorentino M, Brandi G, Massari F. Microbiota and prostate cancer. Semin Cancer Biol. 2022;86:1058–65. https://doi.org/10.1016/j.semcancer.2021.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Naghshi S, Aune D, Beyene J, Mobarak S, Asadi M, Sadeghi O. Dietary intake and biomarkers of alpha linolenic acid and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of cohort studies. BMJ. 2021;375:n2213 https://doi.org/10.1136/bmj.n2213

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fang Z, Huang H, Wang L, Lin Z. Identification of the alpha linolenic acid metabolism-related signature associated with prognosis and the immune microenvironment in nasopharyngeal carcinoma. Front Endocrinol. 2022;13:968984 https://doi.org/10.3389/fendo.2022.968984

    Article  Google Scholar 

  28. Zhong W, Wu K, Long Z, Zhou X, Zhong C, Wang S, et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome. 2022;10:94 https://doi.org/10.1186/s40168-022-01289-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kotovskiĭ AE, Grafskaia ND, Danilov MV, Burtsev IM, Berdikian SIA. Ul’trazvukovoe éndoskopicheskoe issledovanie pri zabolevaniiakh podzheludochnoĭ zhelezy [Ultrasonic endoscopic examination in pancreatic diseases]. Vestn Khirurgii Im I I Grekova. 1989;142:21–24.

    Google Scholar 

  30. Fan H, Huang W, Guo Y, Ma X, Yang J. α-Linolenic acid suppresses proliferation and invasion in osteosarcoma cells via inhibiting fatty acid synthase. Molecules. 2022;27:2741 https://doi.org/10.3390/molecules27092741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vecchini A, Ceccarelli V, Susta F, Caligiana P, Orvietani P, Binaglia L, et al. Dietary alpha-linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells. J lipid Res. 2004;45:308–16. https://doi.org/10.1194/jlr.M300396-JLR200

    Article  CAS  PubMed  Google Scholar 

  32. Lu H, Xu X, Fu D, Gu Y, Fan R, Yi H, et al. Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis. Cell Host Microbe. 2022;30:1139–1150.e7. https://doi.org/10.1016/j.chom.2022.07.003

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Zhao C, Meng J, Li N, Xu Z, Liu X, et al. Galectin-3 regulates microglial activation and promotes inflammation through TLR4/MyD88/NF-kB in experimental autoimmune uveitis. Clin Immunol. 2022;236:108939 https://doi.org/10.1016/j.clim.2022.108939

    Article  CAS  PubMed  Google Scholar 

  34. Wu L, Du L, Ju Q, Chen Z, Ma Y, Bai T, et al. Silencing TLR4/MyD88/NF-κB signaling pathway alleviated inflammation of corneal epithelial cells infected by ISE. Inflammation. 2021;44:633–44. https://doi.org/10.1007/s10753-020-01363-1

    Article  CAS  PubMed  Google Scholar 

  35. Liang WJ, Yang HW, Liu HN, Qian W, Chen XL. HMGB1 upregulates NF-kB by inhibiting IKB-α and associates with diabetic retinopathy. Life Sci. 2020;241:117146 https://doi.org/10.1016/j.lfs.2019.117146

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Baba Y, Ishimoto T, Gu X, Zhang J, Nomoto D, et al. Gut microbiome in gastrointestinal cancer: a friend or foe? Int J Biol Sci. 2022;18:4101–17. https://doi.org/10.7150/ijbs.69331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906 https://doi.org/10.3389/fimmu.2020.00906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Camp ER, Patterson LD, Kester M, Voelkel-Johnson C. Therapeutic implications of bioactive sphingolipids: a focus on colorectal cancer. Cancer Biol Ther. 2017;18:640–50. https://doi.org/10.1080/15384047.2017.1345396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engstrand L, Graham DY. Microbiome and gastric cancer. Dig Dis Sci. 2020;65:865–73. https://doi.org/10.1007/s10620-020-06101-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14:527–39. https://doi.org/10.1038/nrgastro.2017.72

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peiffer LB, White JR, Jones CB, Slottke RE, Ernst SE, Moran AE, et al. Composition of gastrointestinal microbiota in association with treatment response in individuals with metastatic castrate resistant prostate cancer progressing on enzalutamide and initiating treatment with anti-PD-1 (pembrolizumab). Neoplasia. 2022;32:100822 https://doi.org/10.1016/j.neo.2022.100822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akbarali HI, Muchhala KH, Jessup DK, Cheatham S. Chemotherapy induced gastrointestinal toxicities. Adv Cancer Res. 2022;155:131–66. https://doi.org/10.1016/bs.acr.2022.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen YC, Hsu PY, Su MC, Chin CH, Liou CW, Wang TY, et al. miR-21-5p under-expression in patients with obstructive sleep apnea modulates intermittent hypoxia with re-oxygenation-induced-cell apoptosis and cytotoxicity by targeting pro-inflammatory TNF-α-TLR4 signaling. Int J Mol Sci. 2020;21:999 https://doi.org/10.3390/ijms21030999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, et al. Gut microbiome and prostate cancer. Int J Urol. 2022;29:793–8. https://doi.org/10.1111/iju.14894

    Article  CAS  PubMed  Google Scholar 

  45. Jiang Z, Wang J, Shen Z, Zhang Z, Wang S. Characterization of esophageal microbiota in patients with esophagitis and esophageal squamous cell carcinoma. Front Cell Infect Microbiol. 2021;11:774330 https://doi.org/10.3389/fcimb.2021.774330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  PubMed  Google Scholar 

  47. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab. 2012;97:E510–E520. https://doi.org/10.1210/jc.2011-1754

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Zhang Q, Huang L, Liu M, Cheng Z, Zheng Y, et al. Pien-Tze-Huang attenuates neuroinflammation in cerebral ischaemia-reperfusion injury in rats through the TLR4/NF-κB/MAPK pathway. Pharm Biol. 2021;59:828–39. https://doi.org/10.1080/13880209.2021.1942926

    Article  CAS  PubMed  Google Scholar 

  50. Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature. 2018;559:363–9. https://doi.org/10.1038/s41586-018-0266-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reikvam DH, Erofeev A, Sandvik A, Grcic V, Jahnsen FL, Gaustad P, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE. 2011;6:e17996 https://doi.org/10.1371/journal.pone.0017996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;173:1728–1741.e13. https://doi.org/10.1016/j.cell.2018.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol. 2020;13:166 https://doi.org/10.1186/s13045-020-01005-x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Yuan Y, Wang W, He Y, Zhong H, Zhou X, et al. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput Biol Med. 2022;145:105454 https://doi.org/10.1016/j.compbiomed.2022.105454

    Article  CAS  PubMed  Google Scholar 

  55. Hu X, Ni S, Zhao K, Qian J, Duan Y. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front Immunol. 2022;13:871008 https://doi.org/10.3389/fimmu.2022.871008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, et al. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. J Am Soc Nephrol. 2020;31:1267–81. https://doi.org/10.1681/ASN.2019101029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei L, Li J, Han Z, Chen Z, Zhang Q. Silencing of lncRNA MALAT1 Prevents Inflammatory Injury after Lung Transplant Ischemia-Reperfusion by Downregulation of IL-8 via p300. Mol Ther Nucleic Acids. 2019;18:285–97. https://doi.org/10.1016/j.omtn.2019.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jing Y, Yu Y, Bai F, Wang L, Yang D, Zhang C, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome. 2021;9:59 https://doi.org/10.1186/s40168-021-01007-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu Q, Yi X. Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the pi3k/akt signaling pathway in rats with epilepsy. J Mol Neurosci. 2018;65:234–45. https://doi.org/10.1007/s12031-018-1093-3

    Article  CAS  PubMed  Google Scholar 

  60. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 2019;10:487 https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Z, Li W, Jiang D, Liu C, Lai Z. MicroRNA-139-5p inhibits cell viability, migration and invasion and suppresses tumor growth by targeting HDGF in non-small cell lung cancer. Oncol Lett. 2020;19:1806–14. https://doi.org/10.3892/ol.2020.11296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Y, Zhang Y, Lin Z, Wu K, He Z, Zhu D, et al. Silencing of histone deacetylase 3 suppresses the development of esophageal squamous cell carcinoma through regulation of miR-494-mediated TGIF1. Cancer Cell Int. 2022;22:191 https://doi.org/10.1186/s12935-022-02581-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ding W, Shi Y, Zhang H. Circular RNA circNEURL4 inhibits cell proliferation and invasion of papillary thyroid carcinoma by sponging miR-1278 and regulating LATS1 expression. Am J Transl Res. 2021;13:5911–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu X, Yu Y, Huang T. Synthesis and biological evaluation of 4-phenoxy-phenyl isoxazoles as novel acetyl-CoA carboxylase inhibitors. J Enzym Inhib Med Chem. 2021;36:1236–47. https://doi.org/10.1080/14756366.2021.1936514

    Article  CAS  Google Scholar 

  65. Cong P, Wu T, Huang X, Liang H, Gao X, Tian L, et al. Identification of the role and clinical prognostic value of target genes of m6A RNA methylation regulators in glioma. Front Cell Dev Biol. 2021;9:709022 https://doi.org/10.3389/fcell.2021.709022

    Article  PubMed  PubMed Central  Google Scholar 

  66. Morris R, Loftus A, Friedmann Y, Parker P, Pallister I. Intra-pelvic pressure changes after pelvic fracture: a cadaveric study quantifying the effect of a pelvic binder and limb bandaging over a bolster. Injury. 2017;48:833–40. https://doi.org/10.1016/j.injury.2017.01.046

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Shanghai Medical Innovation Research Special Foundation (No.23Y11908800); Shanghai Natural Science Foundation (No.21ZR1414500); National Natural Science Foundation of China (No.82303856) and China Anti-cancer Association Foundation (No.YJQN202201).

Author information

Authors and Affiliations

Authors

Contributions

Guowen Lin was involved in conceptualization, methodology, data curation, and the initial draft of the manuscript. Feng Zhang contributed to conceptualization, methodology, investigation, and reviewing and editing of the manuscript. Xiaoling Weng participated in methodology, data curation, and manuscript reviewing and editing. Zhe Hong was involved in methodology, investigation, and manuscript reviewing and editing. Dingwei Ye played a role in conceptualization, manuscript reviewing, editing, and funding support, and supervision of the project. Gangmin Wang contributed to conceptualization, manuscript reviewing and editing, and project supervision.

Corresponding authors

Correspondence to Guowen Lin, Zhe Hong, Dingwei Ye or Gangmin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All experiments involving mice were approved by the Animal Ethics Committee of Fudan University Shanghai Cancer Center (No. FUSCC-IACUC-S2023-0427).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Zhang, F., Weng, X. et al. Role of gut microbiota in the pathogenesis of castration-resistant prostate cancer: a comprehensive study using sequencing and animal models. Oncogene (2024). https://doi.org/10.1038/s41388-024-03073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03073-6

Search

Quick links