Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ULK1-dependent phosphorylation of PKM2 antagonizes O-GlcNAcylation and regulates the Warburg effect in breast cancer


Pyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked β-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333. Ser333 phosphorylation antagonizes PKM2 O-GlcNAcylation, promotes its tetramer formation and enzymatic activity, and decreases its nuclear localization. As PKM2 is known to have a nuclear role in regulating c-Myc, we also show that PKM2-S333 phosphorylation inhibits c-Myc expression. By downregulating glucose consumption and lactate production, PKM2 pS333 attenuates the Warburg effect. Through mouse xenograft assays, we demonstrate that the phospho-deficient PKM2-S333A mutant promotes tumor growth in vivo. In conclusion, we identified a ULK1-PKM2-c-Myc axis in inhibiting breast cancer, and a glucose-sensitive phosphorylation of PKM2 in modulating the Warburg effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ULK1 interacts with PKM2.
Fig. 2: ULK1 phosphorylates PKM2 at pS333.
Fig. 3: PKM2 pS333 antagonizes O-GlcNAcylation.
Fig. 4: PKM2 pS333 reduces pS37 levels and decreases nuclear localization.
Fig. 5: Abrogation of PKM2 pS333 increases the Warburg effect.
Fig. 6: Abrogation of PKM2 pS333 decreases tetramer formation enzymatic activity.
Fig. 7: Abrogation of PKM2 pS333 enhances breast cancer progression.
Fig. 8: Model depicting the role of PKM2 S333 phosphorylation.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium ( via the iProX partner repository [25, 26] with the dataset identifier PXD044583.


  1. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  3. Yang W, Lu Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 2013;339:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 2012;491:458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure. 1998;6:195–210.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Tang L, Huang H, Yu Q, Hu B, Wang G, et al. Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nat Commun. 2023;14:1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2:ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52:340–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;14:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011;42:719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41:46–56.

    Article  CAS  PubMed  Google Scholar 

  13. He D, Feng H, Sundberg B, Yang J, Powers J, Christian AH, et al. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis. Mol Cell. 2022;82:3045–60.e3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011;80:825–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, et al. O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci USA. 2017;114:13732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, et al. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene. 2020;39:560–73.

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y, Yan S, Shao GC, Wang J, Jian YP, Liu B, et al. O-GlcNAcylation stabilizes the autophagy-initiating kinase ULK1 by inhibiting chaperone-mediated autophagy upon HPV infection. J Biol Chem. 2022;298:102341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo D, Tong Y, Jiang X, Meng Y, Jiang H, Du L, et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IkappaBalpha. Cell Metab. 2022;34:1312–24.e1316.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Wang J, Hou W, Jing Z, Tian C, Han Y, et al. Phosphorylation of Ataxin-10 by polo-like kinase 1 is required for cytokinesis. Cell Cycle. 2011;10:2946–58.

    Article  CAS  PubMed  Google Scholar 

  21. Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell. 2015;59:285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation. Sci Signal. 2013;6:ra75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ, et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018;36:1059–61.

  24. Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, et al. Identification of cross-linked peptides from complex samples. Nat Methods. 2012;9:904–6.

    Article  CAS  PubMed  Google Scholar 

  25. Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50:D1522–D1527.

    Article  CAS  PubMed  Google Scholar 

  26. Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47:D1211–D1217.

    Article  PubMed  Google Scholar 

Download references


We thank Dr. Hong-Jie Zhang (Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences) for the technique support using radioactivity detection. JL is supported by the National Natural Science Foundation of China (NSFC) fund (32271285 and 31872720) and R & D Program of Beijing Municipal Education Commission (KZ202210028043). XX is supported by NSFC fund 32090031, the Shenzhen Science and Technology Innovation Commission projects JCYJ201805073000163.

Author information

Authors and Affiliations



Zibin Zhou: investigation; Xiyuan Zheng: investigation; Jianxin Zhao: investigation; Aiyun Yuan: investigation; Zhuan Lv: investigation; Guangcan Shao: investigation; Bin Peng: investigation; Meng-Qiu Dong: Resources, Supervision; Quan Xu: conceptualization, data curation, supervision, project administration; Xingzhi Xu: conceptualization, resources, supervision, project administration; Jing Li: conceptualization, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Quan Xu, Xingzhi Xu or Jing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zheng, X., Zhao, J. et al. ULK1-dependent phosphorylation of PKM2 antagonizes O-GlcNAcylation and regulates the Warburg effect in breast cancer. Oncogene 43, 1769–1778 (2024).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links