Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer

A Correction to this article was published on 05 April 2024

This article has been updated

Abstract

The loss of intercellular adhesion molecule E-cadherin is a hallmark of the epithelial-mesenchymal transition (EMT), during which tumor cells transition into an invasive phenotype. Accordingly, E-cadherin has long been considered a tumor suppressor gene; however, E-cadherin expression is paradoxically correlated with breast cancer survival rates. Using novel multi-compartment organoids and multiple in vivo models, we show that E-cadherin promotes a hyper-proliferative phenotype in breast cancer cells via interaction with the transmembrane receptor EGFR. The E-cad and EGFR interaction results in activation of the MEK/ERK signaling pathway, leading to a significant increase in proliferation via activation of transcription factors, including c-Fos. Pharmacological inhibition of MEK activity in E-cadherin positive breast cancer significantly decreases both tumor growth and macro-metastasis in vivo. This work provides evidence for a novel role of E-cadherin in breast tumor progression and identifies a new target to treat hyper-proliferative E-cadherin-positive breast tumors, thus providing the foundation to utilize E-cadherin as a biomarker for specific therapeutic success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manipulation of E-cadherin expression impacts proliferation in breast cancer cells.
Fig. 2: E-cadherin promotes hyper-proliferation via the MAPK pathway.
Fig. 3: E-cadherin expression correlates with increased proliferation and activation of MAPK pathway.
Fig. 4: E-cadherin results in larger metastatic burden in two in vivo models via MAPK proliferation pathway.
Fig. 5: Blocking ERK phosphorylation stops hyper-proliferative effect of E-cad.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD021545 and 10.6019/PXD021545. Please use the following username and password to access the data: Username: reviewer_pxd021545@ebi.ac.uk Password: MYmOhJvc.

Change history

References

  1. van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756–88.

    Article  CAS  PubMed  Google Scholar 

  2. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-Mesenchymal Transitions in Development and Disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  4. Hartsock A, Nelson WJ. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr. 2008;1778:660–9.

  5. Bajpai S, Correia J, Feng Y, Figueiredo J, Sun SX, Longmore GD, et al. Catenin mediates initial E-cadherin-dependent cell-cell recognition and subsequent bond strengthening. PNAS. 2008;105:18331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li CI, Anderson BO, Daling JR, More RE. Trends in incidence rates of invasive lobular and ductal breast carcinoma. J Am Med Assoc. 2003;289:1421–4.

    Article  Google Scholar 

  7. Liu JB, Feng CY, Deng M, Ge DF, Liu DC, Mi JQ, et al. E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: evidence from a retrospective study and meta-analysis. World J Surg Oncol. 2017;15:139.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu K, Boley KM, Moraes R, Barsky SH, Robertson FM. The paradox of E-cadherin: role in response to hypoxia in the tumor microenvironment and regulation of energy metabolism. Oncotarget. 2013;4:446–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta Rev Cancer. 2012;1826:23–31.

    Article  CAS  Google Scholar 

  11. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Na TY, Schecterson L, Mendonsa AM, Gumbiner BM. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci USA. 2020;117:5931–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4:118–32.

    Article  CAS  PubMed  Google Scholar 

  14. Pece S, Gutkind JS. Signaling from E-cadharins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem. 2000;275:41227–33.

    Article  CAS  PubMed  Google Scholar 

  15. Kovacs EM, Ali RG, McCormack AJ, Yap AS. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem. 2002;277:6708–18.

    Article  CAS  PubMed  Google Scholar 

  16. Zantek N, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch M. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ. 1999;10:629–38.

    CAS  PubMed  Google Scholar 

  17. Fedor-Chaiken M, Hein PW, Stewart JC, Brackenbury R, Kinch MS. E-cadherin binding modulates EGF receptor activation. Cell Communication and Adhes. 2003;10:105–18.

  18. Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol. 2022;9:828673

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alpaugh ML, Tomlinson JS, Shao ZM, Barsky SH. A novel human xenograft model of inflammatory breast cancer. Cancer Res. 1999;59. http://aacrjournals.org/cancerres/article-pdf/59/20/5079/2472940/5079.pdf.

  20. Patil PU, D’Ambrosio J, Inge LJ, Mason RW, Rajasekaran AK. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR. J Cell Sci. 2015;128:4366–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stockinger A, Eger A, Wolf J, Beug H, Foisner R. E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin transcriptional activity. J Cell Biol. 2001;154:1185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soler C, Grangeasse C, Baggetto LG, Damour O. Dermal fibroblast proliferation is improved by β-catenin overexpression and inhibited by E-cadherin expression. FEBS Lett. 1999;442:178–82.

    Article  CAS  PubMed  Google Scholar 

  23. Heibeck TH, Ding SJ, Opresko LK, Zhao R, Schepmoes AA, Yang F, et al. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J Proteome Res. 2009;8:3852–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee MH, Russo GC, Rahmanto YS, Du W, Crawford AJ, Wu PH, et al. Multi-compartment tumor organoids. Mater Today. 2022;61:104–16.

    Article  CAS  Google Scholar 

  25. Crawford AJ, Forjaz A, Bhorkar I, Roy T, Schell D, Queiroga V, et al. Precision-engineered biomimetics: the human fallopian tube. bioRxiv. 2023. https://doi.org/10.1101/2023.06.06.543923.

  26. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and Its relevance with breast tumor subtyping. J Cancer. 2017;8:3131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu K, Newbury PA, Glicksberg BS, Zeng WZD, Paithankar S, Andrechek ER, et al. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat Commun. 2019;10:2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu PH, Gilkes DM, Phillip JM, Narkar A, Cheng TWT, Marchand J, et al. Single-cell morphology encodes metastatic potential. Sci Adv. 2020;6:eaaw6938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sonnaert M, Papantoniou I, Luyten FP, Schrooten J. Quantitative validation of the Presto BlueTM metabolic assay for online monitoring of cell proliferation in a 3D perfusion bioreactor system. Tissue Eng Part C Methods. 2015;21:519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  31. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012;4:9.

    Article  Google Scholar 

  32. Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 2008;18:6501–4.

    Article  CAS  PubMed  Google Scholar 

  33. Ravi D, Bhalla S, Gartenhaus RB, Crombie J, Kandela I, Sharma J, et al. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and hodgkin lymphoma cells and human xenograft models. Clin Cancer Res. 2014;20:6023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wright CJM, McCormack PL. Trametinib: first global approval. Drugs 2013;73:1245–54.

    Article  PubMed  Google Scholar 

  35. Paulo JA, Mcallister FE, Everley RA, Beausoleil SA, Banks AS, Gygi SP. Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics. Proteomics 2015;15:462–73.

    Article  CAS  PubMed  Google Scholar 

  36. Bajpai S, Feng Y, Wirtz D, Longmore GD. β-Catenin serves as a clutch between low and high intercellular E-cadherin bond strengths. Biophys J. 2013;105:2289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iorns E, Drews-Elger K, Ward TM, Dean S, Clarke J, Berry D, et al. A new mouse model for the study of human breast cancer metastasis. PLoS ONE. 2012;7:e47995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc. 2016;11:937–48.

    Article  CAS  PubMed  Google Scholar 

  39. Chaturvedi P, Gilkes DM, Wong CCL, Kshitiz, Luo W, Zhang H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig. 2013;123:189–205.

    Article  CAS  PubMed  Google Scholar 

  40. Romero-Fernandez W, Carvajal-Tapia C, Prusky A, Katdare KA, Wang E, Shostak A, et al. Detection, visualization and quantification of protein complexes in human Alzheimer’s disease brains using proximity ligation assay. Sci Rep. 2023;13:11948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 2014;8:1558–70.

    Article  CAS  PubMed  Google Scholar 

  42. Williams KC, Cepeda MA, Javed S, Searle K, Parkins KM, Makela AV, et al. Invadopodia are chemosensing protrusions that guide cancer cell extravasation to promote brain tropism in metastasis. Oncogene. 2019;38:3598–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leong HS, Lizardo MM, Ablack A, McPherson VA, Wandless TJ, Chambers AF, et al. Imaging the impact of chemically inducible proteins on cellular dynamics in vivo. PLoS ONE. 2012;7:e30177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res. 2006;8:212.

    Article  PubMed  PubMed Central  Google Scholar 

  45. MEK Inhibitor PD-325901 To Treat Advanced Non-Small Cell Lung Cancer. Identifier NCT00174369. Pfizer, 2005-2007. https://clinicaltrials.gov/study/NCT00174369 (accessed 2023).

  46. Henderson YC, Chen Y, Frederick MJ, Lai SY, Clayman GL. MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2010;9:1968–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haura EB, Ricart AD, Larson TG, Stella PJ, Bazhenova L, Miller VA, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450–7.

    Article  CAS  PubMed  Google Scholar 

  48. Brown AP, Carlson TCG, Loi CM, Graziano MJ. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol. 2007;59:671–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lee MH, Wu PH, Staunton JR, Ros R, Longmore GD, Wirtz D. Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys J. 2012;102:2731–41. https://doi.org/10.1016/j.bpj.2012.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giri A, Bajpai S, Trenton N, Jayatilaka H, Longmore GD, Wirtz D. The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. FASEB J. 2013;27:4089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu PH, Gilkes DM, Phillip JM, Narkar A, Wen-Tao Cheng T, Marchand J, et al. Single-cell morphology encodes metastatic potential. 2020. https://www.science.org

  52. Fraley SI, Wu PH, He L, Feng Y, Krisnamurthy R, Longmore GD, et al. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci Rep. 2015;5:14580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell. 2019;179:964–983.e31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13:1632–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen L, Zhang B, Schnaubelt M, Shah P, Aiyetan P, Chan D, et al. MS-PyCloud: an open-source, cloud computing-based pipeline for LC-MS/MS data analysis. bioRxiv. https://doi.org/10.1101/320887.

  56. Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun. 2014;5:5277.

    Article  CAS  PubMed  Google Scholar 

  57. Kim S, Gupta N, Pevzner PA. Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res. 2008;7:3354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007;4:207–14.

    Article  CAS  PubMed  Google Scholar 

  59. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20.

    Article  CAS  PubMed  Google Scholar 

  60. Kolde, R. Package 'pheatmap'. CRAN. 2022; 1.0.12.

  61. Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. Bioconductor. 2018; 1.20.0.

  62. Wu PH, Hale CM, Chen WC, Lee JSH, Tseng Y, Wirtz D. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat Protoc. 2012;7:155–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leong HS, Chambers AF, Lewis JD. Assessing cancer cell migration and metastatic growth in vivo in the chick embryo using fluorescence intravital imaging. In: Hoffman RM, editor. In vivo cellular imaging using fluorescent proteins: methods and protocols. Totowa, NJ: Humana Press; 2012. p. 1–14. https://doi.org/10.1007/978-1-61779-797-2_1.

  64. Debord LC, Pathak RR, Villaneuva M, Liu HC, Harrington DA, Yu W, et al. The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res. 2018;8. www.ajcr.us/ISSN:2156-6976/ajcr0080963.

  65. Nair PR, Danilova L, Gómez-De-Mariscal E, Kim D, Fan R, Muñoz-Barrutia A, et al. MLL1 regulates cytokine-driven cell migration and metastasis. bioRxiv. 2022. https://doi.org/10.1101/2022.10.18.512715.

Download references

Acknowledgements

We thank all members of the Wirtz Lab for discussions and feedback on this project. We also thank Alan Meeker and Sujayita Roy from the Oncology Tissue Services IHC Core at Johns Hopkins Medical Campus for their assistance with IHC. This work was supported through grants from the National Cancer Institute (U54CA143868, UG3CA275681, and U54CA268083), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (U54AR081774), and the National Institute on Aging (U01AG060903) to DW and PHW.

Author information

Authors and Affiliations

Authors

Contributions

GCR and DW developed the hypothesis and designed experiments. GCR performed most experiments and data analysis. AJC, JC, RC, MNK, BS, and MHL assisted with the experiments. VWR assisted with proximity ligation assay. DC, TL, HZ performed proteomics experiments, assisted in the analysis, and edited the manuscript. BS and HSL performed CAM experiments, assisted in the analysis, and edited the manuscript. QZ assisted with the Metabric analysis of clinical data. PRN analyzed TCGA invasive breast carcinoma data sets for correlation with E-cad (CDH1) expression. PW assisted with image analysis. GCR and DW wrote the manuscript with input from AJC and VWR.

Corresponding author

Correspondence to Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, G.C., Crawford, A.J., Clark, D. et al. E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. Oncogene 43, 1445–1462 (2024). https://doi.org/10.1038/s41388-024-03007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03007-2

Search

Quick links