Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10

Abstract

Chemical modifications of ribonucleotides significantly alter the physicochemical properties and functions of RNA. Initially perceived as static and essential marks in ribosomal RNA (rRNA) and transfer RNA (tRNA), recent discoveries unveiled a dynamic landscape of RNA modifications in messenger RNA (mRNA) and other regulatory RNAs. These findings spurred extensive efforts to map the distribution and function of RNA modifications, aiming to elucidate their distribution and functional significance in normal cellular homeostasis and pathological states. Significant dysregulation of RNA modifications is extensively documented in cancers, accentuating the potential of RNA-modifying enzymes as therapeutic targets. However, the essential role of several RNA-modifying enzymes in normal physiological functions raises concerns about potential side effects. A notable example is N-acetyltransferase 10 (NAT10), which is responsible for acetylating cytidines in RNA. While emerging evidence positions NAT10 as an oncogenic factor and a potential target in various cancer types, its essential role in normal cellular processes complicates the development of targeted therapies. This review aims to comprehensively analyze the essential and oncogenic properties of NAT10. We discuss its crucial role in normal cell biology and aging alongside its contribution to cancer development and progression. We advocate for agnostic approaches to disentangling the intertwined essential and oncogenic functions of RNA-modifying enzymes. Such approaches are crucial for understanding the full spectrum of RNA-modifying enzymes and imperative for designing effective and safe therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NAT10 is an essential gene.
Fig. 2: NAT10 is a cancer-promoting factor.
Fig. 3: Structural and molecular functions of NAT10.
Fig. 4: Role of NAT10 in different cellular processes.

Similar content being viewed by others

Data availability

All data shown in this manuscript are publicly available at the following databases: MODOMICS [1], DepMap [125], cBioportal [36], The University of ALabama at Birmingham CANcer data analysis portal (UALCAN) [126], AlphaFold [127], and BioGRID [128]. Data were downloaded from the databases, reanalyzed, and graphed using publicly available R packages. All code is available upon request.

References

  1. Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50:D231–D5.

    Article  CAS  PubMed  Google Scholar 

  2. Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox. Cell. 2022;185:764–76.

    Article  CAS  PubMed  Google Scholar 

  3. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71:3971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  5. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017;552:126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sturgess K, Yankova E, Vijayabaskar MS, Isobe T, Rak J, Kucinski I, et al. Pharmacological inhibition of METTL3 impacts specific haematopoietic lineages. Leukemia. 2023;37:2133–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haruehanroengra P, Zheng YY, Zhou Y, Huang Y, Sheng J. RNA modifications and cancer. RNA Biol. 2020;17:1560–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang L, Tao Y, Zhai J, Xue M, Zheng C, Hu H. The emerging roles of ac4C acetylation “writer” NAT10 in tumorigenesis: A comprehensive review. Int J Biol Macromol. 2023;254:127789.

    Article  PubMed  Google Scholar 

  13. Rancati G, Moffat J, Typas A, Pavelka N. Emerging and evolving concepts in gene essentiality. Nat Rev Genet. 2018;19:34–49.

    Article  CAS  PubMed  Google Scholar 

  14. Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018;9:1700.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang M, Cheng R, He H, Han Z, Zhang Y, Wu Q. N(4)-acetylcytidine of Nop2 mRNA is required for the transition of morula-to-blastocyst. Cell Mol Life Sci. 2023;80:307.

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Wang WJ, Liu Q, Wu YK, Wu YW, Jiang Y, et al. NAT10-mediated N4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res. 2022;50:10896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin J, Xiang Y, Huang J, Zeng H, Zeng Y, Liu J, et al. NAT10 maintains OGA mRNA stability through ac4C modification in regulating oocyte maturation. Front Endocrinol. 2022;13:907286.

    Article  Google Scholar 

  18. Xiang Y, Zhou C, Zeng Y, Guo Q, Huang J, Wu T, et al. NAT10-mediated N4-acetylcytidine of RNA contributes to post-transcriptional regulation of mouse oocyte maturation in vitro. Front Cell Dev Biol. 2021;9:704341.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, et al. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun. 2023;14:3729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duveau F, Felix MA. Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biol. 2012;10:e1001230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang W, Liu H, Wang F, Liu X, Sun Y, Zhao J, et al. N4-acetylation of cytidine in mRNA plays essential roles in plants. Plant Cell. 2023;35:3739–56.

    Article  PubMed  Google Scholar 

  22. Gramates LS, Agapite J, Attrill H, Calvi BR, Crosby MA, Dos Santos G, et al. FlyBase: a guided tour of highlighted features. Genetics. 2022;220:iyac035.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–D7.

    Article  CAS  PubMed  Google Scholar 

  24. Hedgespeth BA, Birkenheuer AJ, Friedenberg SG, Olby NJ, Meurs KM. A novel missense mutation of the NAT10 gene in a juvenile Schnauzer dog with chronic respiratory tract infections. J Vet Intern Med. 2021;35:1542–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma S, Langhendries JL, Watzinger P, Kotter P, Entian KD, Lafontaine DL. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015;43:2242–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharma S, Yang J, van Nues R, Watzinger P, Kotter P, Lafontaine DLJ, et al. Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genet. 2017;13:e1006804.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ikeuchi Y, Kitahara K, Suzuki T. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J. 2008;27:2194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020;583:638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175:1872–86.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu R, Wubulikasimu Z, Cai R, Meng F, Cui Q, Zhou Y, et al. NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells. Nucleic Acids Res. 2023;51:8514–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ge J, Wang Z, Wu J. NAT10-mediated ac(4)C modification promotes ectoderm differentiation of human embryonic stem cells via acetylating NR2F1 mRNA. Cell Prolif. 2023:e13577.

  32. Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science. 2014;344:527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  34. Tschida BR, Temiz NA, Kuka TP, Lee LA, Riordan JD, Tierrablanca CA, et al. Sleeping beauty insertional mutagenesis in mice identifies drivers of steatosis-associated hepatic tumors. Cancer Res. 2017;77:6576–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan TZ, Miow QH, Huang RY, Wong MK, Ye J, Lau JA, et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol Med. 2013;5:1051–66.

    Article  PubMed  Google Scholar 

  36. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  37. Yang C, Wu T, Zhang J, Liu J, Zhao K, Sun W, et al. Prognostic and immunological role of mRNA ac4C regulator NAT10 in pan-cancer: new territory for cancer research? Front Oncol. 2021;11:630417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Liu J, Yan S, Huang K, Bai Y, Zheng S. High expression of N-acetyltransferase 10: a novel independent prognostic marker of worse outcome in patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8:14765–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Q, Liu X, Jin K, Lu M, Zhang C, Du X, et al. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMC Cancer. 2017;17:605.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liang P, Hu R, Liu Z, Miao M, Jiang H, Li C. NAT10 upregulation indicates a poor prognosis in acute myeloid leukemia. Curr Probl Cancer. 2020;44:100491.

    Article  PubMed  Google Scholar 

  41. Wu J, Zhu H, Wu J, Chen W, Guan X. Inhibition of N-acetyltransferase 10 using remodelin attenuates doxorubicin resistance by reversing the epithelial-mesenchymal transition in breast cancer. Am J Transl Res. 2018;10:256–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48:3638–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan Z, Bao Y, Hu M, Zhu Y, Tan C, Fan L, et al. Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma. Cell Death Discov. 2023;9:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei W, Zhang S, Han H, Wang X, Zheng S, Wang Z, et al. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep. 2023;42:112810.

    Article  CAS  PubMed  Google Scholar 

  45. Xie R, Cheng L, Huang M, Huang L, Chen Z, Zhang Q, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res. 2023;83:1666–83.

    Article  CAS  PubMed  Google Scholar 

  46. Cao Y, Yao M, Wu Y, Ma N, Liu H, Zhang B. N-acetyltransferase 10 promotes micronuclei formation to activate the senescence-associated secretory phenotype machinery in colorectal cancer cells. Transl Oncol. 2020;13:100783.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guerrero Llobet S, Bhattacharya A, Everts M, Kok K, van der Vegt B, Fehrmann RSN, et al. An mRNA expression-based signature for oncogene-induced replication-stress. Oncogene. 2022;41:1216–24.

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Ling Y, Gong Y, Sun Y, Hou L, Zhang B. DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation. Mol Cell Biochem. 2007;300:249–58.

    Article  CAS  PubMed  Google Scholar 

  49. Tan Y, Zheng J, Liu X, Lu M, Zhang C, Xing B, et al. Loss of nucleolar localization of NAT10 promotes cell migration and invasion in hepatocellular carcinoma. Biochem Biophys Res Commun. 2018;499:1032–8.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang H, Hou W, Wang HL, Liu HJ, Jia XY, Zheng XZ, et al. GSK-3beta-regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin Cancer Res. 2014;20:4717–29.

    Article  CAS  PubMed  Google Scholar 

  51. Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res. 2009;315:1653–67.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng J, Tan Y, Liu X, Zhang C, Su K, Jiang Y, et al. NAT10 regulates mitotic cell fate by acetylating Eg5 to control bipolar spindle assembly and chromosome segregation. Cell Death Differ. 2022;29:846–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zi J, Han Q, Gu S, McGrath M, Kane S, Song C, et al. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells. Front Oncol. 2020;10:598107.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Jing Y, Wang Y, Tang J, Zhu X, Jin WL, et al. NAT10 promotes gastric cancer metastasis via N4-acetylated COL5A1. Signal Transduct Target Ther. 2021;6:173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng M, Zhang L, Zheng W, Chen J, Du N, Li M, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. J Exp Clin Cancer Res. 2023;42:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tao W, Tian G, Xu S, Li J, Zhang Z, Li J. NAT10 as a potential prognostic biomarker and therapeutic target for HNSCC. Cancer Cell Int. 2021;21:413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu S, Liu W, Ding Z, Yang X, Jiang Y, Wu Y, et al. Identification and validation of a novel tumor driver gene signature for diagnosis and prognosis of head and neck squamous cell carcinoma. Front Mol Biosci. 2022;9:912620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang G, Zhang M, Zhang Y, Xie Y, Zou J, Zhong J, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022;12:e738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma N, Liu H, Wu Y, Yao M, Zhang B. Inhibition of N-acetyltransferase 10 suppresses the progression of prostate cancer through regulation of DNA replication. Int J Mol Sci. 2022;23:6573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zong G, Wang X, Guo X, Zhao Q, Wang C, Shen S, et al. NAT10-mediated AXL mRNA N4-acetylcytidine modification promotes pancreatic carcinoma progression. Exp Cell Res. 2023;428:113620.

    Article  CAS  PubMed  Google Scholar 

  61. Xu D, Huang K, Chen Y, Yang F, Xia C, Yang H. Immune response and drug therapy based on ac4C-modified gene in pancreatic cancer typing. Front Immunol. 2023;14:1133166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Deng Z, Sun S, Xie S, Jiang M, Chen B, et al. NAT10 acetylates BCL-XL mRNA to promote the proliferation of multiple myeloma cells through PI3K-AKT pathway. Front Oncol. 2022;12:967811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei R, Cui X, Min J, Lin Z, Zhou Y, Guo M, et al. NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharm Sin B. 2022;12:3313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liao L, He Y, Li SJ, Yu XM, Liu ZC, Liang YY, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 2023;33:355–71.

    Article  CAS  PubMed  Google Scholar 

  65. Yu XM, Li SJ, Yao ZT, Xu JJ, Zheng CC, Liu ZC, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 2023;42:1101–16.

    Article  CAS  PubMed  Google Scholar 

  66. Li Z, Li D, Yang T, Yao C. NAT10 promotes the tumorigenesis and progression of laryngeal squamous cell carcinoma through ac4C modification of FOXM1 mRNA. Cancer Biol Ther. 2023;24:2274143.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shang X, Peng Y, Wang Y, Feng Z, Li M, Peng Z, et al. Profile analysis of N4-acetylcytidine (ac4C) on mRNA of human lung adenocarcinoma and paired adjacent non-tumor tissues. Biochim Biophys Acta Gen Subj. 2023;1867:130498.

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Hao Y, Liu Y, Zhong S, You Y, Ao K, et al. NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer. Adv Sci. 2023;10:e2302705.

    Article  Google Scholar 

  69. Long Y, Ren Y, Wei Q, Mobet Y, Liu Y, Zhao H, et al. NAT10-mediated RNA acetylation enhances HNRNPUL1 mRNA stability to contribute cervical cancer progression. Int J Med Sci. 2023;20:1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang W, Gao J, Fan L, Wang J, He B, Wang Y, et al. ac4C acetylation regulates mRNA stability and translation efficiency in osteosarcoma. Heliyon. 2023;9:e17103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng X, Wang Q, Zhou Y, Zhang D, Geng Y, Hu W, et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun. 2022;42:1347–66.

    Article  Google Scholar 

  72. Jin C, Wang T, Zhang D, Yang P, Zhang C, Peng W, et al. Acetyltransferase NAT10 regulates the Wnt/beta-catenin signaling pathway to promote colorectal cancer progression via ac(4)C acetylation of KIF23 mRNA. J Exp Clin Cancer Res. 2022;41:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang H, Shan W, Yang Z, Zhang Y, Wang M, Gao L, et al. NAT10 mediated mRNA acetylation modification patterns associated with colon cancer progression and microsatellite status. Epigenetics. 2023;18:2188667.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liu Z, Liu X, Li Y, Ren P, Zhang C, Wang L, et al. miR-6716-5p promotes metastasis of colorectal cancer through downregulating NAT10 expression. Cancer Manag Res. 2019;11:5317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lv J, Liu H, Wang Q, Tang Z, Hou L, Zhang B. Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun. 2003;311:506–13.

    Article  PubMed  Google Scholar 

  77. Chi YH, Haller K, Peloponese JM Jr, Jeang KT. Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in de-condensation of mitotic chromosomes. J Biol Chem. 2007;282:27447–58.

    Article  CAS  PubMed  Google Scholar 

  78. Zou YJ, Shan MM, Wan X, Liu JC, Zhang KH, Ju JQ, et al. Kinesin KIF15 regulates tubulin acetylation and spindle assembly checkpoint in mouse oocyte meiosis. Cell Mol Life Sci. 2022;79:422.

    Article  CAS  PubMed  Google Scholar 

  79. Wang T, Zou Y, Huang N, Teng J, Chen J. CCDC84 acetylation oscillation regulates centrosome duplication by modulating HsSAS-6 degradation. Cell Rep. 2019;29:2078–91.e5.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res. 2019;47:8502–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kong R, Zhang L, Hu L, Peng Q, Han W, Du X, et al. hALP, a novel transcriptional U three protein (t-UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF). J Biol Chem. 2011;286:7139–48.

    Article  CAS  PubMed  Google Scholar 

  82. Liu X, Cai S, Zhang C, Liu Z, Luo J, Xing B, et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 2018;46:9601–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cai S, Liu X, Zhang C, Xing B, Du X. Autoacetylation of NAT10 is critical for its function in rRNA transcription activation. Biochem Biophys Res Commun. 2017;483:624–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, et al. RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. EMBO J. 2009;28:1362–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomas G, Gordon J, Rogg H. N4-Acetylcytidine. A previously unidentified labile component of the small subunit of eukaryotic ribosomes. J Biol Chem. 1978;253:1101–5.

    Article  CAS  PubMed  Google Scholar 

  86. Ito S, Akamatsu Y, Noma A, Kimura S, Miyauchi K, Ikeuchi Y, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J Biol Chem. 2014;289:26201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ito S, Horikawa S, Suzuki T, Kawauchi H, Tanaka Y, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014;289:35724–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tardu M, Jones JD, Kennedy RT, Lin Q, Koutmou KS. Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs. ACS Chem Biol. 2019;14:1403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsai K, Jaguva Vasudevan AA, Martinez Campos C, Emery A, Swanstrom R, Cullen BR. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe. 2020;28:306–12.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bortolin-Cavaille ML, Quillien A, Thalalla Gamage S, Thomas JM, Sas-Chen A, Sharma S, et al. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res. 2022;50:6284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thalalla Gamage S, Bortolin-Cavaille ML, Link C, Bryson K, Sas-Chen A, Schwartz S, et al. Antisense pairing and SNORD13 structure guide RNA cytidine acetylation. RNA. 2022;28:1582–96.

    PubMed  PubMed Central  Google Scholar 

  92. Taniguchi T, Miyauchi K, Sakaguchi Y, Yamashita S, Soma A, Tomita K, et al. Acetate-dependent tRNA acetylation required for decoding fidelity in protein synthesis. Nat Chem Biol. 2018;14:1010–20.

    Article  CAS  PubMed  Google Scholar 

  93. Svobodova Kovarikova A, Stixova L, Kovarik A, Bartova E. PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin. Epigenetics Chromatin. 2023;16:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang B, Johansson MJ, Bystrom AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA. 2005;11:424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bose DA, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger SL. RNA binding to CBP stimulates histone acetylation and transcription. Cell. 2017;168:135–49.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23:174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van Rompay AR, Norda A, Linden K, Johansson M, Karlsson A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol Pharm. 2001;59:1181–6.

    Article  Google Scholar 

  98. Pelletier J, Thomas G, Volarevic S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer. 2018;18:51–63.

    Article  CAS  PubMed  Google Scholar 

  99. Cheng J, Bassler J, Fischer P, Lau B, Kellner N, Kunze R, et al. Thermophile 90S Pre-ribosome structures reveal the reverse order of co-transcriptional 18S rRNA subdomain integration. Mol Cell. 2019;75:1256–69.e7.

    Article  CAS  PubMed  Google Scholar 

  100. Arango D, Sturgill D, Yang R, Kanai T, Bauer P, Roy J, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82:2797–814.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arango D, Sturgill D, Oberdoerffer S. Immunoprecipitation and sequencing of acetylated RNA. Bio Protoc. 2019;9:e3278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thalalla Gamage S, Sas-Chen A, Schwartz S, Meier JL. Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq. Nat Protoc. 2021;16:2286–307.

    Article  CAS  PubMed  Google Scholar 

  103. Sturgill D, Arango D, Oberdoerffer S. Protocol for base resolution mapping of ac4C using RedaC:T-seq. STAR Protoc. 2022;3:101858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan S, Lu Z, Yang W, Xu J, Wang Y, Xiong W, et al. Antibody-free fluorine-assisted metabolic sequencing of RNA N(4)-acetylcytidine. J Am Chem Soc. 2023;145:22232–42.

    Article  CAS  PubMed  Google Scholar 

  105. Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, et al. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol. 2004;166:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Safieddine A, Coleno E, Salloum S, Imbert A, Traboulsi AM, Kwon OS, et al. A choreography of centrosomal mRNAs reveals a conserved localization mechanism involving active polysome transport. Nat Commun. 2021;12:1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park S, Dahn R, Kurt E, Presle A, VanDenHeuvel K, Moravec C, et al. The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Dev Cell. 2023;58:1917–32.e6.

    Article  CAS  PubMed  Google Scholar 

  108. Lu X, Liu L. Genome stability from the perspective of telomere length. Trends Genet. 2024;40:175–86.

  109. Fu D, Collins K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell. 2007;28:773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim HS, Parker DJ, Hardiman MM, Munkacsy E, Jiang N, Rogers AN, et al. Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun. 2023;14:5021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun. 2017;8:328.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  113. Dalhat MH, Mohammed MRS, Alkhatabi HA, Rehan M, Ahmad A, Choudhry H, et al. NAT10: An RNA cytidine transferase regulates fatty acid metabolism in cancer cells. Clin Transl Med. 2022;12:e1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dalhat MH, Choudhry H, Khan MI. NAT10, an RNA cytidine acetyltransferase, regulates ferroptosis in cancer cells. Antioxidants. 2023;12:1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dalhat MH, Mohammed MRS, Ahmad A, Khan MI, Choudhry H. Remodelin, a N-acetyltransferase 10 (NAT10) inhibitor, alters mitochondrial lipid metabolism in cancer cells. J Cell Biochem. 2021;122:1936–45.

    Article  CAS  PubMed  Google Scholar 

  116. Yang Q, Lei X, He J, Peng Y, Zhang Y, Ling R, et al. N4-acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1alpha positive feedback loop. Adv Sci. 2023;10:e2300898.

    Article  Google Scholar 

  117. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  PubMed  Google Scholar 

  118. Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 2023;33:1077–87.

  119. Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal. 2022;20:127.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shrimp JH, Jing Y, Gamage ST, Nelson KM, Han J, Bryson KM, et al. Remodelin is a cryptic assay interference chemotype that does not inhibit NAT10-dependent cytidine acetylation. ACS Med Chem Lett. 2021;12:887–92.

    Article  CAS  PubMed  Google Scholar 

  121. Dalhat MH, Altayb HN, Khan MI, Choudhry H. Structural insights of human N-acetyltransferase 10 and identification of its potential novel inhibitors. Sci Rep. 2021;11:6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shubina MY, Musinova YR, Sheval EV. Proliferation, cancer, and aging-novel functions of the nucleolar methyltransferase fibrillarin? Cell Biol Int. 2018;42:1463–6.

    Article  CAS  PubMed  Google Scholar 

  123. Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA. 2021;27:1441–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guo J, Zhu P, Ye Z, Wang M, Yang H, Huang S, et al. YRDC mediates the resistance of lenvatinib in hepatocarcinoma cells via modulating the translation of KRAS. Front Pharmacol. 2021;12:744578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. DepMap. DepMap 19Q4 Public. figshare. In: Broad, editor. 2019.

  126. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (NCI) grant R00CA245035, the American Association for Cancer Research (AACR) award 22-20-01-ARAN, the V Scholar Award V2022-016, and the American Cancer Society Institutional Research Grant IRG-21-144-27.

Author information

Authors and Affiliations

Authors

Contributions

M.H.D, S.N. and D.A. wrote the first draft. D.A. structured, wrote, and corrected all the sections in the paper. H.S. and D.A. analyzed publicly available data and prepared the figures. M.H.D., S.N, H.S. and D.A. revised the final draft.

Corresponding author

Correspondence to Daniel Arango.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalhat, M.H., Narayan, S., Serio, H. et al. Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10. Oncogene 43, 1077–1086 (2024). https://doi.org/10.1038/s41388-024-02975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02975-9

Search

Quick links