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In 2020, we identified cancer-specific microbial signals in The Cancer Genome Atlas (TCGA) [1]. Multiple peer-reviewed papers
independently verified or extended our findings [2–12]. Given this impact, we carefully considered concerns by Gihawi et al. [13]
that batch correction and database contamination with host sequences artificially created the appearance of cancer type-specific
microbiomes. (1) We tested batch correction by comparing raw and Voom-SNM-corrected data per-batch, finding predictive
equivalence and significantly similar features. We found consistent results with a modern microbiome-specific method (ConQuR
[14]), and when restricting to taxa found in an independent, highly-decontaminated cohort. (2) Using Conterminator [15], we found
low levels of human contamination in our original databases (~1% of genomes). We demonstrated that the increased detection of
human reads in Gihawi et al. [13] was due to using a newer human genome reference. (3) We developed Exhaustive, a method
twice as sensitive as Conterminator, to clean RefSeq. We comprehensively host-deplete TCGA with many human (pan)genome
references. We repeated all analyses with this and the Gihawi et al. [13] pipeline, and found cancer type-specific microbiomes.
These extensive re-analyses and updated methods validate our original conclusion that cancer type-specific microbial signatures
exist in TCGA, and show they are robust to methodology.
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INTRODUCTION
As late as 2015, the tumor microbiome was considered an elusive
“mirage” [16], but this notion was dispelled by the discovery of
chemo-degrading bacteria in >75% of pancreatic cancers [17].
Subsequent studies annotated the functional, often immunomo-
dulatory, impacts of these intra-pancreatic bacteria [18, 19] and
fungi [20, 21], followed by characterization of microbes in non-
gastrointestinal cancer types, including lung cancer [22–24] and
leukemia [4, 25]. However, multi-cancer microbiome profiling was
rare, and the largest attempts excluded ~85% of The Cancer
Genome Atlas (TCGA) patients while lacking systematic deconta-
mination, batch correction, cross-cancer comparisons, or blood-
related analyses [26]. In 2020, we published a comprehensive
analysis of microbial abundances across all 33 TCGA cancer types,
with standardized methods for batch correction, in silico deconta-
mination, and machine learning (ML) comparisons [1]. These
approaches allowed us to conclude that microbial compositions

were distinct between and within cancer types, and that trace
amounts of their DNA were detectable in human blood samples,
thereby suggesting a novel diagnostic approach [1].
Subsequently, the cancer microbiome field accelerated, includ-

ing direct validation within months of our cancer type-specific
conclusions in an independent, highly-decontaminated cohort [2],
followed by numerous papers from independent labs around the
world [3–12], and the eventual inclusion of the tumor microbiome
as an emerging hallmark of cancer [27]. In 2022, we updated our
methods to reflect contemporaneous host depletion and micro-
bial read assignment approaches, allowing us to detect eukaryotes
(fungi) in the same TCGA samples previously analyzed for bacteria
and viruses, with matching experimental validation in an
international cohort from the Weizmann Institute of Science
(WIS) [28].
In 2023, Gihawi et al. [13] raised concerns about potential

mishandling of human contaminants or batch effect correction

Received: 23 November 2023 Revised: 3 February 2024 Accepted: 7 February 2024
Published online: 23 February 2024

1Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. 2Department of Pediatrics, University of California San Diego, La Jolla, CA, USA. 3Clarity
Genomics, Antwerp, Belgium. 4Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA. 5Program for Mathematical Genomics,
Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. 6Center for Microbiome Innovation, University of California San Diego, La Jolla,
CA, USA. 7Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA. 8Department of Medicine, University of California San Diego, La Jolla, CA, USA.
9Department of Psychiatry, University of California San Diego, La Jolla, CA, USA. 10Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA. 11Department
of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA. 12Department of Computer Science and Engineering, University of California San
Diego, La Jolla, CA, USA. 13Present address: Micronoma, San Diego, CA, USA. 14Present address: Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. 15Present
address: School of Life Sciences, Arizona State University, Tempe, AZ, USA. 16Present address: Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków,
Poland. 17Present address: Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, Gießen, Germany. 18These authors contributed
equally: Gregory D. Sepich-Poore, Daniel McDonald, Evguenia Kopylova, Caitlin Guccione. ✉email: rknight@ucsd.edu

www.nature.com/oncOncogene

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-024-02974-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-024-02974-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-024-02974-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-024-02974-w&domain=pdf
http://orcid.org/0000-0002-3443-3715
http://orcid.org/0000-0002-3443-3715
http://orcid.org/0000-0002-3443-3715
http://orcid.org/0000-0002-3443-3715
http://orcid.org/0000-0002-3443-3715
http://orcid.org/0000-0002-0581-7963
http://orcid.org/0000-0002-0581-7963
http://orcid.org/0000-0002-0581-7963
http://orcid.org/0000-0002-0581-7963
http://orcid.org/0000-0002-0581-7963
http://orcid.org/0000-0002-0609-0858
http://orcid.org/0000-0002-0609-0858
http://orcid.org/0000-0002-0609-0858
http://orcid.org/0000-0002-0609-0858
http://orcid.org/0000-0002-0609-0858
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
https://doi.org/10.1038/s41388-024-02974-w
mailto:rknight@ucsd.edu
www.nature.com/onc


artificially driving the conclusion of cancer type-specific micro-
biomes in TCGA. Notably, most of their methods were published
after our original paper (Supplementary Fig. 1A), and although
future tools do not invalidate critiques of earlier publications, it
implies that the central question is whether the conclusions are

correct, not whether a non-contemporaneous tool should have
been applied. Herein, we first perform extensive re-analyses of the
originally published data to address claims of data analysis errors,
finding instead that their observations resulted from using new
methods and human genome references. As these tools were not
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available at the time of the original analysis, we also re-analyze
TCGA data from scratch using new methods, and demonstrate
that our conclusions remain correct even with state-of-the-art
resources (Supplementary Text 1.1–1.2).
The claims made by Gihawi et al. [13] depend on interacting

factors. To help readers find individual claims, we provide a
roadmap to our response and the locations of the specific
supporting evidence in Table S1 and Table S2. These tables outline
section-by-section responses to the claims made (Table S1), and a
summary of the analyses performed with their associated figures
(Table S2). We also provide a summary of analyses on the
originally published data versus updated methods (Supplemen-
tary Text 1.1), and a timeline to contextualize this response
(Supplementary Fig. 1A, B; Supplementary Text 1.2).

RESULTS
Voom-SNM batch correction did not introduce systematic bias
in the original data
Gihawi et al. claim that “errors in the [Voom-SNM] transformation
of the raw data created an artificial signature […] tagging each
tumor type with a distinct signal that the machine learning
programs then used to create an apparently accurate classifier”
[13]. However, in the original paper’s methods, we stated the
Voom-SNM (VSNM) normalization was not provided with or
otherwise exposed to cancer type information (Supplementary
Text 1.3).
A systematic way to evaluate whether batch correction

artificially drove cancer type-specific differences is to rerun the
ML in every individual batch using the originally published raw
and VSNM data (Fig. 1A). Artifactual signal is unlikely if per-batch
VSNM results are similar to those produced from raw data, and
equivalent performances would provide evidence against artificial
bias. Further support for lack of artifactual signal could be
obtained if the two types of per-batch ML models independently
choose similar features. We thus directly compared VSNM-versus-
raw, per-batch ML models’ features, both their binary overlap (i.e.,
Fisher’s exact test on a 2 × 2 contingency table)—since most ML
models used only 10–20% of the total genera—and correlation of
the models’ relative rankings of genera using feature importances
(i.e., Kendall’s tau correlation) (Fig. 1A). Finding significantly similar,
and similarly ranked, feature lists among all per-batch analyses, in
conjunction with equivalent ML performances, would argue that
systematic bias was not introduced.
We proceeded to subset the originally published raw and VSNM

data to an individual sequencing platform accounting for 91.27% of
samples (Illumina HiSeq), individual data types (WGS or RNA-Seq),
and seven sequencing centers that focused on single data types with
sufficient samples: Harvard (WGS), Baylor (WGS), MD Anderson
(WGS), Washington University (WashU; WGS), the Broad Institute
(WGS), University of North Carolina (UNC, RNA-Seq), and Canada’s
Michael Smith Genome Sciences Centre (CMS, RNA-Seq) (Fig. 1A,

Supplementary Text 1.4). We then compared areas under the receiver
operating characteristic (AUROC) and precision recall (AUPR) curves.
AUROC evaluates recall (i.e., true positive rate) as a function of the
false positive rate. AUPR evaluates precision (i.e., one minus the false
discovery rate) as a function of recall, and is not affected by true
negatives. The two measures therefore provide different insights into
classifier accuracy [29]. Importantly, every per-batch comparison
yielded equivalent AUROCs for cancer type predictions (Fig. 1B–D;
Supplementary Fig. 2E, H, K, N, Q, T; Supplementary Fig. 2B, E, H, K, O,
R, U, X). AUPRs were also similar among batches, and, in a few cases
(e.g., UNC primary tumor; Supplementary Fig. 2S) the raw data
models outperformed the VSNM data models (Supplementary
Fig. 2D, F, I, L, O, S, U; Supplementary Fig. 3A, C, F, I, L, N, P, S, V,
Y). Aggregated AUROC and AUPR performances provided similar
conclusions (Fig. 1H, I, L; Supplementary Fig. 2A–C). Every evaluation
of per-batch model features showed significant overlap and
significantly similar feature rankings (Fig. 1E–G; Supplementary
Fig. 2G, J, M, P, R, V; Supplementary Fig. 3D, G, J, M, Q, T, W, Z),
which increased in significance after aggregating data from each
center (because Fisher’s method combines p-values through multi-
plication; Fig. 1J, K, M). We also confirmed that both data types
equivalently responded to negative control analyses in which
samples or labels were permuted (Supplementary Text 1.5,
Supplementary Figs. 4, 5). Thus, we conclude that VSNM did not
systematically bias the data: (i) equivalent ML model performances
and significantly similar feature rankings result from the raw data; (ii)
we observe equivalent negative control responses.

Voom-SNM and ConQuR provide equivalent conclusions to
uncorrected data
VSNM was not designed for batch correction of microbiome data.
Accordingly, we tested ConQuR [14], a newer (2022) tool developed
specifically for batch correction of microbiome data. Because the
critiquing authors previously cited WIS-overlapping taxa to justify
their own work [30] and a cancer microbiome patent application
[31]—demonstrating their acceptance of these taxa—we next
limited re-analyses of our original paper’s data to the cited 184
WIS-overlapping, decontaminated, bacterial genera [2] (Fig. 2A) to
test whether the same conclusions could be obtained.
We performed direct ML comparisons of VSNM, ConQuR, and

raw data subsets using the same data splitting strategy (Fig. 2B).
Per-batch ML of the WIS-overlapping raw data demonstrated
cancer type-specificity (Supplementary Text 1.6). Voom-SNM and
ConQuR were used to correct for sequencing center biases within
WGS and RNA-Seq sample groups (Methods). Importantly, both
ConQuR and VSNM provided equivalent reductions in sequencing
center effect sizes down to ≤2.7% variance using principal
variance components analyses while increasing effect sizes of
cancer type up to 16.2% variance (Supplementary Fig. 6A, B).
Beyond ConQuR, we also tested another recently introduced
microbiome-specific batch correction tool, MMUPHin [32]. We
decided not to use PLSDA-batch [33] because its output is not

Fig. 1 Comparing raw and Voom-SNM (VSNM) data within batches does not reveal a systematic bias from batch correction. A Data
splitting strategy for comparing the originally published raw and VSNM data using ML performances and ML model feature similarities. Raw-
versus-VSNM AUROCs from comparing cancer types using (B) primary tumors, (C) tumor versus normal tissues, and (D) blood samples in
Harvard Medical School. Fisher exact test (blue) and Kendall tau correlation (red) p values from comparing raw-versus-VSNM model feature
similarities when predicting cancer type among (E) primary tumors, (F) tumor versus normal tissues, and (G) blood samples in Harvard Medical
School. Aggregated AUROC data across all per-batch (H) primary tumor and (I) tumor versus normal comparisons. Aggregated and combined
p-values from per-batch Fisher exact tests (blue) and Kendall tau correlations (red) across all per-batch (J) primary tumor and (K) tumor versus
normal comparisons. Inset white numbers denote the number of batches (i.e., sequencing centers) from which data derived for each
particular cancer type. L Aggregated AUROC data across all per-batch blood sample comparisons.M Aggregated and combined p-values from
per-batch Fisher exact tests (blue) and Kendall tau correlations (red) across all per-batch blood sample comparisons. Inset white numbers
denote the number of batches (i.e., sequencing centers) from which data derived for each particular cancer type. B–D, H–I, L Error bars denote
99% confidence intervals. E–G, J, K, M P values adjusted among cancer types using Benjamini-Hochberg correction. When p values were
combined across multiple batches, Fisher’s method was used on the raw per-batch p-values, followed by Benjamini-Hochberg correction
across cancer types. Logarithms are base 10. See Supplementary Fig. 1C for list of TCGA cancer type abbreviations.
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compatible with standard metagenomics workflows. To our
knowledge, these are the only three microbiome-specific batch
correction tools applicable to TCGA that exist. MMUPHin
performed substantially worse than ConQuR or VSNM in reducing
the sequencing center effect (Supplementary Fig. 6A, B), so we

focused on the ConQuR and VSNM results for subsequent
analyses.
Per-batch AUROCs and AUPRs demonstrated equivalence

between ConQuR and VSNM data types in every ML comparison,
and both of these had similar per-batch performances to raw data
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counterparts (Fig. 2C, D, G; Supplementary Fig. 6C–E). For negative
control analyses, we repeated all ML model assessments using two
strategies: scrambled metadata labels and shuffled counts. In both
cases, we found equivalent reductions in AUROCs (Supplementary
Fig. 7) and AUPRs (Supplementary Fig. 8) that were significantly
worse across all cancer types. These results strongly argue against
systemic biases from VSNM or ConQuR, and show their
equivalence for batch correction on these data (Supplementary
Fig. 6A, B) and downstream ML (Fig. 2C, D, G).
We then calculated feature similarity comparisons between

WIS-overlapping raw and normalized data types. We calculated
both Kendall tau correlations (rank similarity) and Fisher exact
tests (binary overlap), although externally constraining the feature
space to 184 WIS genera can weaken the latter (i.e., WIS taxa are
putatively cancer-associated and larger proportions of features are
being used by the ML models). Notably, all rank-based compar-
isons were significantly similar between ML models built using the
raw versus normalized data types (Fig. 2E, F, H; Supplementary
Fig. 6F–H). Compared to raw data ML models, all ConQuR-based
overlap comparisons showed significant enrichment (Fig. 2E, F, H),
whereas 90.6% (58 of 64 cancer type comparisons) VSNM-based
overlap comparisons had significant enrichment (Supplementary
Fig. 6F–H). Additionally, the significance for ConQuR-based feature
similarities were consistently higher than that for VSNM (note
y-axes in Fig. 2E, F, H versus Supplementary Fig. 6F–H).
Collectively, these data suggest that a microbiome-specific batch
correction method (ConQuR) can indeed retain greater within-
batch feature variability than a non-microbiome-specific batch
correction method (VSNM), although for most cases the difference
is in the degree of preservation rather than if they are preserved.
Both ConQuR-corrected (Fig. 3) and VSNM-corrected (Supple-

mentary Fig. 9) WIS-overlapping genera provided pan-cancer
discrimination using multiclass ML, in agreement with per-batch
analyses of the raw data (Supplementary Figs. 10–15). Thus, with
respect to batch correction, the use of VSNM, or a modern
microbiome-specific method, ConQuR, are consistent with the raw
data and do not change our original conclusions about cancer
type-specific microbiomes.

Claims of widespread database contamination were not
supported with data
Gihawi et al. [13] additionally allege that the original microbial
database was highly contaminated with human sequences, which,
they claim, “create[d] the false appearance of bacteria” (see quotes
in Supplementary Text 1.7). However, despite these claims, they did
not analyze either of the two databases used in the original work for
human sequences: an in-house, custom Kraken database with
59,963 genomes, and the Web of Life database [34] (hereon
“WoLr1”) with 10,575 genomes. Notably, the smaller WoLr1 database
has been publicly available for ~4 years, and although the custom

Kraken database was too large to directly post online (>1.3
terabytes), we detailed how it was created [1]. Instead, the critiquing
authors centered their claim on apparent differences in the
published microbial read counts versus those from their pipeline,
which used the T2T-CHM13v1.1 human reference to remove
additional human reads from TCGA—typically first aligned to hg19
(i.e., the TCGA “legacy” pipeline [35])—followed by mapping these
T2T-depleted reads against an independent KrakenUniq database
(“MicrobialDB”). Neither T2T-CHM13v1.1 nor MicrobialDB existed
prior to our original paper (Supplementary Fig. 1A), and to suggest
that our study should have implemented tools that became
available after it was published is unreasonable. Nevertheless, their
untested database contamination claim relies on two assumptions:
(i) the original databases contained substantial human contamina-
tion and (ii) the updated host depletion methods employed by the
critiquing authors did not cause the observation of decreased
microbial reads. In the next sections, we provide evidence
demonstrating that these two assumptions are unsupported.

Database contamination with human sequences was rare and
did not drive cancer microbiome classifiers
To evaluate the impact of human sequence contamination on the
databases and downstream conclusions, we applied Conterminator
[15], a state-of-the-art tool published by some of the critiquing
authors in mid-2020, to identify any microbial genomes in the
original Kraken database (Table S3) or WoLr1 (Table S4) sharing ≥1
Conterminator-identified human sequences with GRCh38 [36], T2T-
CHM13v2.0 [37], or human pangenome (HPRC) [38] references (Fig.
4A, top; Methods). These analyses revealed that just 0.97% (583 of
59,963) of the Kraken database genomes, and just 1.08% (114 of
10,575) of the WoLr1 genomes, contained any amount of human
sequence (Fig. 4A, top; Tables S3–S4); this represented ~0.0006% or
0.0005% of nucleotides in our Kraken database or WoLr1,
respectively. As a conservative approach, we then identified and
removed any genus-level features having ≥1 genome affected by
human sequences in the originally published Kraken data (145
genera) and WoLr1 data (82 genera). We then compared ML
performances between these filtered data versus their raw data
counterparts within every individual batch; per-batch application
limits the set of samples available but was chosen as a conservative
approach to rule out concerns of batch correction. Per-batch
performances were then aggregated to calculate confidence
intervals for AUROC and AUPR. Importantly, we found overlapping
AUROC and AUPR confidence intervals between the filtered and raw
data for every Kraken-based ML comparison: one-cancer type
versus all others using primary tumors or blood samples, or primary
tumors versus adjacent normal tissues (Fig. 4B–D; Supplementary
Fig. 16A–C). All blood and tumor-versus-normal ML comparisons
using WoLr1 data similarly had equivalent performances, and 87.1%
(27/31) of its primary tumor ML comparisons had overlapping

Fig. 2 Application of a microbiome-specific batch correction tool (ConQuR) and restricting the features to WIS-overlapping genera does
not change the original manuscript’s conclusions. A WIS-overlapping data was generated by intersecting decontaminated bacterial genera
from Nejman et al. [2], followed by subsetting to Illumina HiSeq samples and WGS or RNA-Seq groups. Within each WGS or RNA-Seq group,
ConQuR and VSNM were applied to correct for sequencing center bias. B Data splitting strategy to accommodate separate WGS and RNA-Seq
datasets due to ConQuR limitations. Downstream goals were to compare ML performances among the raw, ConQuR, and VSNM data types, as
well as to compare the model feature similarities between the raw and normalized data. Aggregated AUROC data across all per-batch (C)
primary tumor and (D) tumor versus normal comparisons. Aggregated and combined p-values from ConQuR-versus-raw, per-batch Fisher
exact tests (blue) and Kendall tau correlations (red) across all per-batch (E) primary tumor and (F) tumor versus normal comparisons. Inset
white numbers denote the number of batches (i.e., sequencing centers) from which data derived for each particular cancer type.
G Aggregated AUROC data across all per-batch blood sample comparisons. H Aggregated and combined p values from ConQuR-versus-raw,
per-batch Fisher exact tests (blue) and Kendall tau correlations (red) across all per-batch blood sample comparisons. Inset white numbers
denote the number of batches (i.e., sequencing centers) from which data derived for each particular cancer type. C, D, G Error bars denote
99% confidence intervals. E, F, H P values were combined across multiple batches using Fisher’s method on the raw per-batch p values,
followed by Benjamini-Hochberg correction across cancer types. Logarithms are base 10. See Supplementary Fig. 1C for list of TCGA cancer
type abbreviations.
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AUROC and AUPR confidence intervals; moreover, the exceptions
still had AUROCs ≥85% with filtered data (Fig. 4E–G; Supplementary
Fig. 16D–F). We also repeated the above using only WIS-overlapping
genera, with similar conclusions (Supplementary Fig. 17,

Supplementary Text 1.8). These results show that database
contamination with human sequences was minimal, that the
number of genomes affected was very low, and that cancer type-
specific classifiers were not dependent on the human sequences.

Fig. 3 ConQuR-corrected, WIS-overlapping genera abundances demonstrate pan-cancer discrimination among blood and primary tumor
samples across dozens of cancer types. A Diagram of data sources for the multiclass ML. Since ConQuR was limited to correcting one batch
variable, sequencing center bias was corrected within WGS and RNA-Seq groups after subsetting analyses to Illumina HiSeq-processed
samples. Multiclass ML was run independently on the ConQuR-corrected WGS and RNA-Seq groups; of note, blood samples were only in the
WGS group. B Multiclass gradient boosting ML across 24 cancer types using all blood samples in TCGA. Average pairwise AUROC is denoted
above the confusion matrix. No information rate: 9.1%, mean balanced accuracy: 73.2%. C Multiclass gradient boosting ML across 24 cancer
types using all WGS primary tumors in TCGA. Average pairwise AUROC is denoted above the confusion matrix. No information rate: 8.5%,
mean balanced accuracy: 76.9% (D) Multiclass gradient boosting ML across 32 cancer types using all RNA-Seq primary tumors in TCGA.
Average pairwise AUROC is denoted above the confusion matrix. No information rate: 10.7%, mean balanced accuracy: 79.2%. B–D P values
are all less than 2.2 × 10-16 for comparing the no information rate to the observed accuracy. See Supplementary Fig. 1C for list of TCGA cancer
type abbreviations.
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Excluding the human reference in the original database did
not materially affect the SHOGUN validation pipeline
In another section, Gihawi et al. [13] state, “their Kraken database
did not include the human genome […] This dramatically
increased the odds for human DNA sequences present in the

TCGA reads to be falsely reported as matching microbial
genomes.” This statement overlooked the identical conclusions
we made using direct genome alignments with SHOGUN [39] as
validation on 13,157 TCGA samples (Ext. Data Figs. 4i-4t in the
original work). To quantitatively evaluate this hypothesis, we
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estimated what percentage of human reads and how many
genera would have been false positives within the original TCGA
SHOGUN pipeline (Fig. 4H). Specifically, we simulated 10 samples
of 2 × 150 base pair Illumina paired end reads from the T2T-
CHM13v2.0 human reference genome at 1x coverage, randomly
subsampled each to a million reads, aligned them against hg19
using BWA (i.e., the legacy TCGA pipeline [35]), and aligned the
non-hg19 reads with SHOGUN to the originally published WoLr1
database [34]. This mimics how we extracted non-human reads
from pre-aligned TCGA files as an initial host depletion step,
followed by processing the non-human reads for microbial
abundances. Notably, among these human-only samples, just
0.002965% ± 0.0004558 of human reads mapped to WoLr1, or
1.7 ± 0.483 microbial genera (Fig. 4I, J). Given that the original
SHOGUN data reported 1240 total genera, these results suggest
false positive rates of ~0.1% genera and ~0.003% reads using the
original SHOGUN pipeline. Thus, the SHOGUN results in the
original manuscript were not materially affected by excluding a
human reference in the underlying database, and its conclusions
were the same as the original manuscript’s Kraken-derived data
(Ext. Data Figs. 4i-4t in the original work).

Microbial read differences are driven by non-
contemporaneous host-depletion, and not by database
contamination
Computational host depletion comprises a series of steps to
remove human reads prior to microbial classification (Fig. 5A). Our
original paper [1] contained one step of host depletion via hg19
[35], which was updated to two-step host depletion using hg38 in
our mycobiome work [28]. Gihawi et al. [13] processed ~8% of
TCGA samples with T2T-CHM13v1.1 [40], a reference unavailable
at the time of the original work, comprising a third step. To
consider host depletion comprehensively, we included these steps
and additionally filtered using T2T-CHM13v2.0 [37], the human
pangenome (HPRC) [38], and the GENCODE v44 human transcript
[41] references for RNA-Seq data.
Host depletion substantially lowers the number of non-human

reads available for microbial classification in every TCGA cancer
type (Fig. 5B; Supplementary Fig. 18A), and causes concomitant
decreases in the number of microbial reads. We reported the latter
when progressing from our original paper [1], which found 2.5% of
total TCGA reads were microbial, to our mycobiome work [28],
which found 0.08% of total reads were microbial, or a 31.25-fold
decrease. Gihawi et al. [13] stated, without direct supporting
evidence, that the lower number of microbial reads output from
their pipeline is primarily the result of database contamination.
Here, we show that the number of reads output from their
pipeline is dependent on the inputted number of non-human
reads (i.e., degree of host filtration). Specifically, we evaluated
whether serial host depletion alone could cause substantive
decreases in TCGA microbial read counts using the critiquing
authors’ KrakenUniq pipeline with MicrobialDB (Fig. 5C), a
database the authors emphasized “mitigated [false positives] by

including the human genome and using only complete bacterial
genomes” [13]. In other words, the critiquing authors’ conclusion
of database contamination is confounded by their simultaneous
addition of T2T-CHM13 host filtering.
Despite the multiple orders of magnitude decreases in non-

human reads between hg19, hg38, T2T-CHM13v2.0, and pangen-
omes (Fig. 5B), we observe that the percentage of non-human
reads that are microbial via KrakenUniq-MicrobialDB appear to
concentrate as human depletion increases in stringency (Fig. 5D).
In contrast, if this proportion had decreased with greater host
depletion, it would suggest that the “non-human” reads were
indeed human and not microbial. When calculated per-sample,
and aggregated by cancer type, the mean fold changes (MFCs) in
microbial reads between hg38- and T2T-based KrakenUniq-
MicrobialDB reduced up to 189.9-fold (rectal adenocarcinoma
[READ], Fig. 5E), with an average MFC of 24.6-fold. These
reductions are relative to the larger drop of non-human reads
overall (Fig. 5B). Similarly, even more extensive MFC decreases
existed between hg38- and pangenome-based KrakenUniq-
MicrobialDB comparisons, up to 204.1-fold (READ, Supplementary
Fig. 19A), with an average MFC of 32.26-fold. Whole genome
sequenced (WGS) samples experienced larger reductions on
average than RNA-Seq samples (Fig. 5F; Supplementary
Fig. 19B), as expected given that most of the improvements to
newer genomes are in non-coding regions. Overall KrakenUniq-
MicrobialDB microbial read counts were significantly correlated
with input non-human reads but with decreasing effect sizes after
each round of host depletion (Fig. 5G), suggesting that the true
level of microbial reads is being asymptotically approximated.
Collectively, these data demonstrate that the use of T2T-CHM13
directly confounded the critiquing authors’ conclusion that
microbial read count reduction must imply database contamina-
tion, since their own database is described to lack human
sequence contamination and included a human reference
genome. Differences between these hg38- and T2T-based
KrakenUniq-MicrobialDB TCGA data alone comprised 631 million
microbial reads, and this may be even larger for hg19-versus-T2T
comparisons, although we did not perform that analysis due to
prohibitive computational cost.

Development of a generalizable, sensitive method for
database cleaning
Using only complete bacterial genomes for mapping microbial
reads (as in MicrobialDB) is undesirable, because this precludes
utilization of human-associated metagenome assemblies [42, 43]
or public databases like RefSeq [44]. We thus developed a
generalizable, sensitive method for microbial database cleaning of
human sequences called “Exhaustive,” using RefSeq version 210
(“RS210”) as an example, and benchmarked it against Contermi-
nator (Methods).
Exhaustive comprises a one-time, computationally-intensive

process that aligns all 150 base pair sequences from hg38, T2T-
CHM13v2.0, and HPRC human reference genomes, with 75 base

Fig. 4 Human sequence contamination in the original databases was rare and does not impact downstream conclusions when all
associated genera are removed. A Microbial genomes in the original two databases (custom Kraken, WoLr1) were processed with
Conterminator [15] to identify any regions shared with hg38, T2T-CHM13, and human pangenome references, with ≤1.08% of microbial
genomes affected in either database. Genus-level features in the associated count tables linked to any of these genomes with human
contamination were removed to form filtered versions of the Kraken and SHOGUN/WoLr1 tables. A data splitting strategy was applied to
compare filtered versus raw data. Aggregated AUROC data across all per-batch (B) primary tumor and (C) tumor versus normal, and (D) blood
sample comparisons using the Kraken raw and filtered data. Aggregated AUROC data across all per-batch (E) blood sample (F) primary tumor,
and (G) tumor versus normal comparisons using the SHOGUN/WoLr1 raw and filtered data. H Simulation diagram to evaluate false positive
rate of human-only reads aligning to WoLr1 using the SHOGUN pipeline described in the original paper. Paired-end 150 bp Illumina reads
from the T2T-CHM13 human reference were simulated using ART [64], subsampled to one million reads each, followed by initial mapping with
BWA against hg19 and alignments of the unmapped reads against WoLr1. I Percent of human reads mapping against WoLr1 out of one million
per sample. J Number of false positive genera based on human reads mapped against WoLr1. B–G Error bars denote 99% confidence intervals.
See Supplementary Fig. 1C for list of TCGA cancer type abbreviations.
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pair steps, against a microbial database of interest (Fig. 5H). All
contiguously mapped regions in the microbial database are
subsequently masked to “Ns” to provide a human-cleaned
counterpart. Parallel evaluation of Conterminator and Exhaustive
against RS210 with hg38, T2T-CHM13v2.0, and HPRC human

genomes demonstrated that Exhaustive was 2.38-times more
sensitive (1106 versus 463 contaminated genomes in RS210; Fig.
5I), and identified regions of similar length overall (Fig. 5J), but
significantly longer regions when restricting to genomes found by
both methods (Fig. 5K). Repeating these analyses with the WoLr1
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database revealed similar results, with Exhaustive providing 2.01-
times greater sensitivity than Conterminator (229 versus 114
contaminated genomes), and again identified significantly longer
regions on overlapping genomes (Supplementary Fig. 18B–D). As
a conservative measure, we masked any bases flagged by
Conterminator or Exhaustive to create a cleaned version of
RS210 (“RS210-clean”; Fig. 5H). Simulations of this host depletion
pipeline with RS210-clean using human-only sequences provided
an estimated false positive rate of 1 in 60 million reads
(Supplementary Fig. 18E, F, Supplementary Text 1.9).

Bioinformatic pipelines implementing host read removal and
human-cleaned databases reveal hundreds of human-
associated microbial species in TCGA
To verify that the existence of microbes in TCGA is independent of
the bioinformatic pipeline, we applied the critiquing authors’
workflow of T2T-CHM13 host depletion followed by KrakenUniq
with MicrobialDB (Fig. 5L, left), in addition to performing direct
genome alignments of hg38-T2T-HPRC-GENCODE-depleted data
against RS210-clean (Fig. 5L, right). To further improve host
removal, we used T2T-CHM13v2.0, rather than T2T-CHM13v1.1 as
suggested [13], to include a more complete Y-chromosome. With
the goal of performing a sensitivity analysis, we required taxa to
be human-associated by overlapping with one or more of the
following: the UNITN [42] or UHGG [43] human-associated
metagenome assemblies; WIS-derived decontaminated bacteria
[2] or fungi [28]; or bacterial species known to be pathogenic to
humans [45]. To further eliminate false positives within this taxa
subset, we performed additional filtering using combined read
and k-mer counts for KrakenUniq-MicrobialDB data, or using ≥50%
aggregate microbial genome coverages for RS210-clean data
(Methods). Since virus and phage human associations remain
poorly characterized in the literature, only genera/species that
passed the restrictive KrakenUniq-MicrobialDB or RS210-clean
filtering were kept for downstream analyses. These steps provided
294 genera in KrakenUniq-MicrobialDB data (Table S5) and 689 to
249 species in RS210-clean when varying the genome coverage
filter between 50% and 90% (Table S5–S6). Remarkably, in RS210-
clean data, hundreds of human-associated, non-viral species had
nearly complete genome coverages among blood or tumor
samples, including numerous orally-derived bacteria (Fig. 5M,
Supplementary Fig. 19C, Supplementary Text 1.10, Tables S5–S6).

We next considered whether these taxa with rigorous bioinfor-
matic evidence would verify the existence of cancer type-specific
microbiomes, beginning with the critiquing authors’ T2T-
KrakenUniq-MicrobialDB pipeline.

Applying the T2T-KrakenUniq-MicrobialDB pipeline to all of
TCGA verifies the existence of cancer type-specific
microbiomes
Gihawi et al. [13] analyzed the microbiomes of 1255 TCGA samples
(8.1% of total in [28]) from three cancer types (bladder [BLCA],
head and neck [HNSC], and breast [BRCA]), and ended their
manuscript by saying, “the near-perfect association between
microbes and cancer types […] is, simply put, a fiction” [13].
However, the authors never examined their own data for cancer
type differences. Indeed, re-analyzing their supplementary raw
data demonstrates that cancer type-specific microbiomes among
BLCA, HNSC, and BRCA are clearly found in TCGA tissues and
blood (Supplementary Fig. 20A–G), including when subsetting to
WIS-overlapping genera (Supplementary Fig. 20H, I), or a subset of
just 9 WIS-overlapping, human-associated genera (Supplementary
Fig. 20J–S). This was true across measures of alpha diversity, beta
diversity, log-ratios, or ML classification performance (Supplemen-
tary Fig. 20B–I, L–S). Thus, the critiquing authors’ own data
supports the existence of cancer type-specific microbiomes
in TCGA.
We extended this analysis to all available TCGA samples. We

applied the KrakenUniq-MicrobialDB pipeline on all 15,512 hg38-
depleted TCGA samples profiled in our mycobiome manuscript
[28] after additional host depletion with T2T-CHM13v2.0 (Fig. 6A;
filtered genera abundances in Table S8 and metadata in Table S9).
As we previously noted, the number of samples decreased from
our original paper [1] after hg38 depletion (18,166 to 15,512), of
which ~97% were RNA-Seq samples of lower total read depth [28];
however, extra host depletion with T2T-CHM13v2.0 did not cause
further sample dropout. Conservatively, we then only examined
294 human-associated genera passing read count and unique
k-mer filtering (Fig. 5L; Methods), followed by evaluating their
abundances for cancer type-specific differences across alpha
diversity, beta diversity, differential abundance, and ML without or
with ConQuR [14] batch correction (Fig. 6A). Nearly all WGS
samples contained one or more of these filtered taxa, but fewer
RNA-Seq samples did (Fig. 6B), and, overall, samples lacking them

Fig. 5 Sequential host depletion of TCGA reduces read counts without eliminating microbial signals. A Sequential host depletion steps of
TCGA with respect to past literature and this current work. B Non-human TCGA read count totals after successive host depletion with hg19,
hg38, T2T-CHM13, HPRC, and for RNA-Seq data additionally against GENCODE across the three major sample types: primary tumor (PT), solid
tissue normal (STN), and blood derived normal (BDN). C Strategy for mapping hg38-, T2T-, and HPRC-transcript-depleted data with KrakenUniq
against MicrobialDB, as used by Gihawi et al. [13], to compare microbial read counts. D Percent of hg38-, T2T-, and HPRC-transcript-depleted
reads mapped by KrakenUniq to MicrobialDB as microbial. Y-axis is log10-transformed; zero-valued samples excluded. E Per-sample, per-
cancer type mean fold changes (MFCs) in KrakenUniq-MicrobialDB counts between hg38- and T2T-depleted data. Per-cancer average MFCs
inset below bars. Sample counts inset in blue above bars. Overlaid error bars denote standard errors. Zero-valued samples excluded to avoid
ratios of infinity. F Per-sample, per-experimental strategy MFCs in KrakenUniq-MicrobialDB counts between hg38- and T2T-depleted data. Per-
experimental strategy average MFCs inset to right of bars. Sample counts inset in blue to left of bars. Overlaid error bars denote standard
errors. Zero-valued samples excluded to avoid ratios of infinity. G Scatter plots of non-human reads versus KrakenUniq-MicrobialDB counts for
hg38-depleted (left), T2T-depleted (middle), and HPRC-GENCODE-depleted (right) data. Axes are log10-transformed; zero-valued samples
excluded. Spearman correlation values inset with concomitant p-values. H Strategy for cleaning RefSeq version 210 (RS210) of human reads
using Conterminator and Exhaustive with hg38, T2T, and HPRC reference genomes. Main steps of Exhaustive are visually described on bottom:
all 150 bp k-mers with steps of 75 bp are aligned against RS210, and contiguously mapped regions are masked. I Number of RS210 genomes
found to have at least one region of human sequence overlap detected by Conterminator and/or Exhaustive. J Unpaired, cumulative length of
human sequence contamination in RS210 genomes found to have at least one region of human sequence overlap via Conterminator or
Exhaustive. Wilcoxon test inset. K Paired cumulative length of human sequence contamination in 453 RS210 genomes found to have at least
one region of human sequence overlap via Conterminator and Exhaustive. Wilcoxon rank-sum test inset. L Strategy for deriving filtered
microbial abundances in TCGA using KrakenUniq against MicrobialDB or direct genome alignments against RS210-clean. Note that both
MicrobialDB and RS210-clean occasionally include more than one genome per species. M Aggregate microbial genome coverages in TCGA
among non-viral, human-associated species found in UNITN, UHGG, WIS, or pathogenic bacteria references. Each bar denotes a unique
species, and the bar color denotes which TCGA sample type (primary tumor, blood, adjacent normal) had the highest amount of aggregate
genome coverage by itself. Inset upper right: radial bar plots of aggregate genome coverage for Fusobacterium nucleatum in primary tumors
(blue, 99.7%), blood (96.5%), and adjacent normal tissues (orange, 97.5%).
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had significantly fewer total reads (Wilcoxon: p < 2.2 × 10−16;
Fig. 6C). Filtered microbial reads significantly varied across cancer
types within every TCGA sequencing center (all Kruskal-Wallis
tests: p < 6.8 × 10−16; Supplementary Fig. 21A–G) but revealed low
read counts among RNA-Seq samples from the University of North

Carolina (UNC; Supplementary Fig. 21E), which were dropped from
further analysis.
Calculating alpha diversity within each sequencing center

subset for primary tumors and blood revealed significant richness
variation among cancer types in every analysis (all Kruskal-Wallis
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tests: p < 3.1 × 10−3; Supplementary Fig. 22A, K). ML analysis using
the raw data within every sequencing center similarly found that
all primary tumor and blood-based comparisons of cancer types
were significantly above their expected null performances
(Fig. 6D, E; Supplementary Fig. 22M, N, P–S, U–W). Repeating this
process for tumor versus normal ML demonstrated significantly
better-than-null performances for multiple kidney cancers (KIRC,
KICH; Supplementary Fig. 22L), liver cancer (LIHC; Supplementary
Fig. 22L), and stomach cancer (Supplementary Fig. 22O, X), but not
for lung cancers (LUAD, LUSC; Supplementary Fig. 22O, T). Beta
diversity analyses with robust Aitchison distances of the raw
abundances among primary tumor tissues and blood samples
from every sequencing center revealed significant per-cancer
variation (all PERMANOVAs [999 iterations]: p= 0.001; Fig. 6F, G;
Supplementary Fig. 23). We then computed one-cancer-type-
versus-all-other differential abundances with ANCOM-BC [46] on
the raw abundances within every sequencing center, finding that
all primary tumor and blood sample comparisons had significantly
differentially abundant microbes (Fig. 6H, I; Supplementary
Fig. 24).
To combine all WGS samples, we corrected sequencing center

bias with ConQuR (Supplementary Fig. 25A) (Methods). ConQuR
batch correction used sample type (e.g., primary tumor [PT], blood
derived normal [BDN], adjacent solid tissue normal [STN]), and not
cancer type, for supervised correction, but the cancer type signal
nonetheless slightly increased with batch correction (19.4 to
21.6% variance) while WGS sequencing center bias decreased by
1.9-fold (9.3 to 4.9%) (Supplementary Fig. 25B). We then applied
multiclass ML to discriminate among all WGS primary tumors
simultaneously, finding an average pairwise AUROC of 96.52% and
mean balanced accuracy of 82.53% that was significantly greater
than the no information rate (NIR) of 8.30% (p < 2.2 × 10−308; Fig.
6J). Repeating multiclass ML among all blood samples, which were
only WGS, provided an average pairwise AUROC of 94.27% and
mean balanced accuracy of 77.59% that was significantly greater
than the NIR of 8.96% (p < 2.2 × 10−308; Fig. 6K). For completeness,
we also calculated multiclass ML using the CMS RNA-Seq raw data,
finding an average pairwise AUROC of 97.22% and mean balanced
accuracy of 91.95% that was significantly greater than the NIR of
50.52% (p= 2.0 × 10−264; Supplementary Fig. 22Y). Subsequent
head-to-head analyses between ConQuR and raw data did not
reveal artifactual enhancements of per-center data among tumor
and blood comparisons (Supplementary Fig. 25; Supplementary
Text 1.11).

KrakenUniq-MicrobialDB-derived cancer microbiome
discrimination and signatures are stable over three levels of
host depletion
Since we already calculated KrakenUniq-MicrobialDB-derived
microbial reads individually on hg38-, T2T-, and HPRC-depleted

data (Fig. 5C; hg38 filtered genera abundances in Table S10; T2T
filtered genera abundances in Table S11; HPRC filtered genera
abundances in Table S12), and introduced methods to compare
ML performance and signature similarities (cf. Fig. 1A), we next
evaluated whether serial host depletion impacted the ability to
identify consistent cancer microbiome signals. Specifically, we
calculated within-center ML classification accuracy using raw data
across primary tumors, blood samples, and tumor-versus-normal
comparisons with the same 294 human-associated, T2T-filter-
passing genera across all overlapping WGS and RNA-Seq samples
(Fig. 7A). Aggregated per-batch AUROCs and AUPRs were
equivalent for all ML comparisons (Fig. 7B–D), and perhaps more
importantly, the ML signatures were significantly similar for every
pairwise data type comparison among primary tumors (Fig. 7E–G),
blood samples (Fig. 7H–J), and tumor versus normals (Fig. 7K–M).
These data demonstrate remarkable stability of cancer type-
specific findings across multiple levels of host depletion, despite
concomitant microbial read decreases comprising hundreds of
millions of reads (cf. Figure 5E; Supplementary Fig. 19A). These
data further argue against the critiquing authors’ implication that
fewer total reads discredits cancer type-specific conclusions.

Well-covered, human-associated microbial species in TCGA
verify the existence of cancer type-specific microbiomes
Having comprehensively demonstrated cancer type-specific conclu-
sions with the T2T-KrakenUniq-MicrobialDB pipeline, we repeated all
analyses using direct genome alignments of hg38-T2T-HPRC-
GENCODE-depleted data against RS210-clean (genome level abun-
dances Table S13 and metadata in Table S14; Figs. 5L, 8A). To our
knowledge, this is the most host depleted version of TCGA in
existence, and yet 90.77% (14,080 of 15,512) of samples still had
microbial hits against RS210-clean with 1.2 billion total microbial
reads. Nonetheless, for conservative analyses, we restricted all
downstream analyses to 689 unique species with ≥50% genome
coverage and enforced known human associations for all non-viral
species (Fig. 8A). Nearly all WGS samples had one or more of these
filtered species whereas their prevalence among RNA-Seq samples
was lower (Fig. 8B), and samples without filtered species had
significantly fewer total reads (Fig. 8C). Within every TCGA
sequencing center, filtered microbial read counts significantly varied
across cancer types (all Kruskal-Wallis tests: p < 2.2 × 10−8; Supple-
mentary Fig. 26A–G), but again revealed low read counts among
RNA-Seq samples from the University of North Carolina (UNC;
Supplementary Fig. 26E), which were dropped from further analysis.
Analogous to the T2T-KrakenUniq-MicrobialDB analyses, we also
focused on Illumina HiSeq-processed samples for downstream
analyses to remove a large batch effect (Methods).
Alpha diversities significantly varied among cancer types for

primary tumors and blood samples within every sequencing
center (all Kruskal-Wallis tests: p < 2.8 × 10-4; Supplementary

Fig. 6 Application of the KrakenUniq-MicrobialDB pipeline on T2T-depleted TCGA data demonstrates cancer type-specificity in tissues
and blood. A Steps taken to derive 294 filtered genera based on running KrakenUniq mapping against MicrobialDB on T2T-depleted TCGA
data. Genera abundances were input into alpha diversity, beta diversity, differential abundance, and ML analyses to evaluate cancer type-
specificity. B Prevalence of filtered genera among TCGAWGS and RNA-Seq samples. C Original TCGA read depths of samples containing (blue)
or lacking (red) filtered genera. D Exemplary one-cancer-type-versus-all-others ML among primary tumors (PT) at Baylor College of Medicine
(BCM) using the filtered genera. Error bars denote averages (dots) and 95% confidence intervals (brackets) of 10-fold cross-validation. Null
AUROC and AUPR shown as dotted horizontal lines. E Exemplary one-cancer-type-versus-all-others ML among blood derived normals (BDN) at
BCM using the filtered genera. Error bars denote averages (dots) and 95% confidence intervals (brackets) of 10-fold cross-validation. Null
AUROC and AUPR shown as dotted horizontal lines. F Aitchison distance beta diversity among BCM PTs colored by cancer type. PERMANOVA
values inset, based on cancer type separation. G Aitchison distance beta diversity among BCM BDNs colored by cancer type. PERMANOVA
values inset, based on cancer type separation. H Filtered genera differential abundance among BCM cancer types using PTs in a one-cancer-
type-versus-all-others manner. Red dots denote microbes with q ≤ 0.05. Positive log-fold changes denote microbes associated with that
particular cancer type. I Filtered genera differential abundance among BCM cancer types using BDNs in a one-cancer-type-versus-all-others
manner. Red dots denote microbes with q ≤ 0.05. Positive log-fold changes denote microbes associated with that particular cancer type.
J Multiclass ML confusion matrix among cancer types using WGS PTs after ConQuR batch correction. K Multiclass ML confusion matrix among
cancer types using WGS BDNs after ConQuR batch correction. D–E, H–K TCGA cancer type abbreviations shown in Supplementary Fig. 1C.
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Fig. 27A–K). One-cancer-type-versus-all-others ML with the raw
data showed that every sequencing center had significantly
higher predictive performance than null for primary tumors and
blood (Fig. 8D, E; Supplementary Fig. 27M, N, P–S, U–W). Tumor-
versus-normal ML demonstrated significantly better-than-null

performances for kidney chromophobe cancer (KICH; Supplemen-
tary Fig. 27O), liver cancer (LIHC; Supplementary Fig. 27O),
stomach cancer (Supplementary Fig. 27L, X), and lung squamous
cell carcinoma (LUSC; Supplementary Fig. 27T), but not for lung
adenocarcinoma (LUAD; Supplementary Fig. 27L) or kidney clear
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cell carcinoma (KIRC; Supplementary Fig. 27O). All robust Aitchison
distance beta diversity analyses using the raw abundances in
primary tumors or blood showed significant cancer type variation
(all PERMANOVAs [999 iterations]: p= 0.001; Fig. 8F, G; Supple-
mentary Fig. 28). Similarly, all primary tumor and blood
comparisons showed significantly differentially abundant
microbes within every sequencing center subset (Fig. 8H, I;
Supplementary Fig. 29).
After combining all WGS samples across sequencing centers

with ConQuR (Supplementary Fig. 30A, B), multiclass ML provided
primary tumor-based discrimination among 24 cancer types
simultaneously with an average pairwise AUROC of 95.03% and
mean balanced accuracy of 78.82% that was significantly greater
than the NIR of 8.48% (p < 2.2 × 10−308; Fig. 8J). Multiclass ML
among blood samples from 24 cancer types similarly showed an
average pairwise AUROC of 92.09% and mean balanced accuracy
of 74.60% that was significantly greater than the NIR of 8.94%
(p < 2.2 × 10−308; Fig. 8K). Calculating multiclass ML with raw data
from CMS-sequenced RNA-Seq samples revealed similar results
(Supplementary Fig. 27Y). We also verified that ConQuR did not
artifactually bias cancer-type specific conclusions among per-
batch subsets (Supplementary Fig. 30C–H). Therefore, using the
most stringently depleted version of TCGA to date alongside a
thoroughly human-cleaned database while restricting analyses to
well-covered, human-associated taxa, we continue to reproduce
the cancer type-specific conclusions from our original paper,
published years before these methods and resources became
available. Because many researchers are interested in the technical
details of the strengths/weaknesses of different choices for steps
in the computational workflow, we have summarized our
recommendations in Supplementary Fig. 31.

Taxon feature lists and similarities between original and state-
of-the-art pipeline
Taxon feature lists and variable importance for the multiclass
classifiers can be found in Tables S15–S18, and per-taxon lists of
cancer-associated taxa with statistical significance per ANCOM-BC
[46] after ConQuR correction are in Tables S19, S20 (see
Supplementary Text 1.12 for further details). Although the
currently recommended pipeline (Supplementary Fig. 31) sub-
stantively differs from our original work [1]—distinct and
improved mapping algorithms, databases (a custom Kraken db
vs. RefSeq), and resolution of the features (genera vs. per-genome
abundances)—we sought to compare their taxon similarities for
distinguishing cancer tissue of origin (TOO), which represents a
common diagnostic goal, especially in liquid biopsies [47]. We
thus computed multiclass ML on VSNM- and ConQuR-corrected,
full-feature original data (Supplementary Fig. 32, 33), followed by
comparing their feature lists (Tables S21, S22) to RS210-clean,
ConQuR-corrected multiclass features (Table S18; cf. Fig. 8J–K,
Supplementary Fig. 27Y) using Fisher’s exact tests and Kendall tau
correlations (Methods). We find that using ConQuR-corrected old
and new data, the feature lists are highly correlated (p < 0.01 on all

measures and sample types), and that in most situations, even the
original VSNM features and ConQuR-corrected RS210-clean
features are highly correlated despite the difference in normal-
ization methods (Table S23).

DISCUSSION
Though in its infancy, the cancer microbiome field has made
major strides over the last 5 years in microbial characterization,
and actively continues to improve the available repertoire of tools
for sensitively detecting low-biomass microbes while excluding
contaminants [48, 49]. We have been encouraged by the
subsequent rapid release of manuscripts from independent labs
that validated the cancer type-specific conclusions we had found
in TCGA, including efforts that used up to 811 experimental
contamination controls and/or applied orthogonal methods (e.g.,
imaging, cultivation, cell-free RNA-Seq) [2, 3, 9].
Our updated analyses, using modern techniques and resources,

have demonstrated thorough support of the original findings
relative to each concern raised by Gihawi et al. [13]. When
examining our original databases for human sequences, we find
detectable but rare (≤1.1% of genomes used) examples that were
noncontributory to the original conclusions that cancer type-
specific microbiomes exist (Fig. 4, Supplementary Fig. 17A–G).
Simulations also suggested that immaterial amounts of human
content was mapped to microbes in our prior SHOGUN validation
analyses (Fig. 4H–J), which replicated all Kraken-based conclusions
in our original manuscript [1]. We then found that the degree of
host depletion directly confounded the critiquing authors’
argument that fewer microbial reads must imply database
contamination (Fig. 5A–G), with their own pipeline differing by
631 million microbial reads between hg38- and T2T-depleted data.
Because many microbiome tools have moved beyond databases
of complete genomes [50, 51], alongside the development of
human-associated metagenome assemblies [42, 43], we devel-
oped a generalizable method for cleaning microbial databases
from human sequences called Exhaustive that is empirically twice
as sensitive as Conterminator (Fig. 5H–K; Supplementary Fig.
18B–D). After creating RS210-clean, direct genome alignments
demonstrated that hundreds of human-associated species had
substantial aggregate genome coverages in TCGA (Fig. 5M;
Supplementary Fig. 19C). We then showed that cancer type-
specific microbiomes were clearly evident using both the
critiquing authors’ KrakenUniq-MicrobialDB pipeline (Fig. 6),
including with stable microbial signals across multiple levels of
host depletion (Fig. 7), or with our direct alignment pipeline
against RS210-clean (Fig. 8).
Using re-analyses of the originally published data, we find no

systematic bias caused by VSNM that enabled cancer type
identification, and that comparisons of the normalized data to
raw data within every individual batch provide equivalent ML
performance and significantly similar model features (Fig. 1,
Supplementary Figs. 2–5). We re-confirmed the lack of any

Fig. 7 Cancer microbiome signals are consistent across three levels of host depletion. A Data splitting strategy for comparing per-batch ML
performances and signatures between raw KrakenUniq-MicrobialDB abundances derived from hg38-, T2T-, and HPRC-transcript-depleted
data. Note: Only Illumina HiSeq samples were used for comparison. B Aggregated per-batch AUROCs for tumor-versus-normal ML
comparisons. C Aggregated per-bach AUROCs for cancer type comparisons using primary tumors. D Aggregated per-bach AUROCs for cancer
type comparisons using blood samples. ML feature similarities for cancer type comparisons when using primary tumors between (E) hg38-
versus T2T-depleted, (F) hg38- versus HPRC-transcript-depleted, and (G) T2T- versus HPRC-transcript-depleted microbial data. ML feature
similarities for cancer type comparisons when using blood samples between (H) hg38- versus T2T-depleted, (I) hg38- versus HPRC-transcript-
depleted, and (J) T2T- versus HPRC-transcript-depleted microbial data. ML feature similarities for tumor versus normal comparisons between
(K) hg38- versus T2T-depleted, (L) hg38- versus HPRC-transcript-depleted, and (M) T2T- versus HPRC-transcript-depleted microbial data.
B–D Error bars denote 95% confidence intervals. E–M Kendall tau correlations are shown in red. Fisher exact tests are shown in blue. P-values
combined across multiple batches using Fisher’s method on the raw per-batch p-values, followed by Benjamini-Hochberg correction across
cancer types. Number of combined batches per cancer type inset in white text. Logarithms are base 10. See Supplementary Fig. 1C for list of
TCGA cancer type abbreviations.
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systematic bias of VSNM using WIS-overlapping features, and its
ML performance equivalence with raw data subsets and later-
published, microbiome-specific batch correction tools, ConQuR
and MMUPHin (Fig. 2, Supplementary Figs. 6–9). This additionally
prompted us to evaluate whether ConQuR-corrected data

provided pan-cancer discrimination in blood and tumor samples,
which indeed found average AUROCs of ~90% and higher among
dozens of cancer types (Fig. 3). Evaluating ConQuR alongside
VSNM also provided insight into how a microbiome-specific tool
better preserves the degree of per-batch feature variation
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(cp. Figure 2E, F, H and Supplementary Fig. 6F–H), but this must be
counterbalanced against practical dataset considerations such as
the number of batch factors. Although results were similar, we
generally recommend ConQuR because it is more compatible with
downstream workflows than VSNM, more effective than MMU-
PHin, and because it does not require log-transform of the data
and conversion back to per-sample counts. However, we did find
that ConQuR can, in some circumstances, introduce technical
artifacts that VSNM does not (Supplementary Fig. 25B, 30B),
possibly because of the user choices that the supervised aspects
of the method require. Collectively, these re-analysis efforts
thoroughly support the reliability and integrity of the originally
published data and findings, including using WIS taxonomic
subsets previously cited by the critiquing authors to justify their
own work [30, 31].
Related to concerns of data distribution changes between raw

and VSNM-corrected data in the original study [13], we note that
all microbiome batch correction methods modify the underlying
distribution (abundance, presence/absence) to reduce variance
attributed to technical factors. For example, ConQuR adjusts
taxonomic counts and prevalence based on a reference batch, and
thus “biases” all non-reference samples to look more like the
reference batch [14]. This batch correction bias can only be
avoided with proper experimental design and otherwise com-
prises a necessary cost for using the full dataset. Importantly, one
must consider direct and indirect ways in which biological
information can leak into this batch correction process, including
technical variables themselves (e.g., sequencing centers) when
biological phenotypes (e.g., cancer types) are not equally
distributed. Our original application of VSNM explicitly avoided
using cancer type information (Supplementary Text 1.3), but, due
to how TCGA was collected, two technical variables (sequencing
center, hospital of origin) did not have equal distribution of cancer
types. Although it is theoretically possible that correcting for these
two technical factors could have indirectly introduced cancer type
information, the practical importance of this factor is minimal,
because both uncorrected and VSNM-corrected data had equiva-
lent per-batch ML performances and significantly similar features
(Fig. 1, Supplementary Figs. 2, 3). Because the degree to which
direct and indirect information in batch correction influences
downstream analyses is rarely known a priori, we strongly
recommend retrospective per-batch comparisons between uncor-
rected and corrected data that verify the robustness of those
conclusions, as shown here, as well as negative control analyses
(e.g., Fig. 1, Supplementary Figs. 2–8).
Having demonstrated the above, we find it important to

explicitly state that computational methods to analyze cancer
microbiome data continue to rapidly improve, and the field’s
awareness of which areas are most critical to address is also

evolving, thereby implying that methods even a few months old
can become outdated. For example, today we would implement
stronger host depletion measures and taxonomic filtering (e.g., by
coverage, pathogenicity) than reflected in our original manuscript,
and indeed we applied such methods in our later work [28]. Doing
so may decrease the number of microbial reads, but our data
suggest that the conclusions regarding cancer type-specific
microbiomes remain intact. We anticipate that better, and more
diverse, human pangenome references, decontamination algo-
rithms, batch correction methods, and taxonomic annotations are
likely to be published in the next few years; similarly, efforts such
as CAMI [52] highlight that no currently available taxonomic
assignment tool is perfect, and implausible taxon assignments are
likely to remain a challenge for the whole microbiome field for
some time. These considerations do not automatically invalidate
conclusions and analyses from our 2020 paper. We thus expect
and advocate for newer methods to keep pushing the sensitivity
and specificity of cancer microbe detection, and that, until “gold-
standard” pipelines can be agreed upon, continuing to find tumor-
specific microbial signatures using diverse computational and
experimental workflows by independent labs provides reassuring
evidence of their presence and utility.
To conclude, being able to thoroughly and confidently profile

the cancer microbiome holds great promise to improve all aspects
of patient care and, ultimately, patient outcomes [53]. Progress in
this space has led to rapidly evolving analytic tools that will help
us better elucidate the contribution of the microbiome in
oncogenesis.

MATERIALS AND METHODS
Data accession
Processed TCGA files. The originally published, quality-controlled Kraken
raw and Voom-SNM-normalized abundances tables (n= 17,625), the raw
SHOGUN/WoLr1 abundance table (n= 13,517), and TCGA metadata
(n= 17,625) were accessed from Poore and Kopylova et al. [1] and used
for downstream processing. Details on how those tables were created are
described in the associated manuscript. WIS taxa were derived from a “hit”
list of microbes shared by the first author of Narunsky-Haziza et al. [28],
which contained bacterial and fungal genera across all tissue samples
(tumors, NATs, or true normals [breast only]) from that study and the study
by Nejman et al. [2]. Specifically, these “hits” represented microbes with
genus-level evidence that passed decontamination based on 811
experimental contamination controls for bacteria [2], and 295 controls
for fungi [28]. Since fungi were not considered or profiled in our original
manuscript, only the bacterial genera were intersected with the Kraken
and SHOGUN/WoLr1 data, and used for consideration here. Overall, 84.4%
of WIS genera (184 total) were found in the original Kraken data.

Raw host depleted TCGA files. Per-sample sequence data were obtained
from Qiita [54] studies 13722 and 13767 (WGS and RNA-Seq respectively).

Fig. 8 Application of the SHOGUN/Woltka-RS210-clean pipeline on HPRC and transcript-depleted TCGA data demonstrates cancer type-
specificity in tissues and blood. A Steps taken to derive 689 unique, filtered species with ≥50% aggregate genome coverage based on running
SHOGUN/Woltka mapping against RS210-clean on HPRC and transcript-depleted TCGA data. Species abundances were input into alpha
diversity, beta diversity, differential abundance, and ML analyses to evaluate cancer type specificity. B Prevalence of filtered species among
TCGAWGS and RNA-Seq samples. C Original TCGA read depths of samples containing (blue) or lacking (red) filtered species. D Exemplary one-
cancer-type-versus-all-others ML among primary tumors (PT) at Harvard Medical School (HMS) using the filtered species. Error bars denote
averages (dots) and 95% confidence intervals (brackets) of 10-fold cross-validation. Null AUROC and AUPR shown as dotted horizontal lines.
E Exemplary one-cancer-type-versus-all-others ML among blood derived normals (BDN) at HMS using the filtered species. Error bars denote
averages (dots) and 95% confidence intervals (brackets) of 10-fold cross-validation. Null AUROC and AUPR shown as dotted horizontal lines.
F Aitchison distance beta diversities calculated by RPCA [77] among HMS PTs colored by cancer type. PERMANOVA values inset, based on
cancer type separation. G Aitchison distance beta diversities calculated by RPCA [77] among HMS BDNs colored by cancer type. PERMANOVA
values inset, based on cancer type separation. H Filtered species differential abundance among HMS cancer types using PTs in a one-cancer-
type-versus-all-others manner. Red dots denote microbes with q ≤ 0.05. Positive log-fold changes denote microbes associated with that
particular cancer type. I Filtered species differential abundance among HMS cancer types using BDNs in a one-cancer-type-versus-all-others
manner. Red dots denote microbes with q ≤ 0.05. Positive log-fold changes denote microbes associated with that particular cancer type.
J Multiclass ML confusion matrix among cancer types using WGS PTs after ConQuR batch correction. K Multiclass ML confusion matrix among
cancer types using WGS BDNs after ConQuR batch correction. D–E, H–K TCGA cancer type abbreviations shown in Supplementary Fig. 1C.
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These data were already human filtered against GRCh38 as described in
Narunsky-Haziza et al. [28]. The per-sample data were filtered with fastp as
described below, and human depleted either with T2T-CHM13v2.0 or with
T2T-CHM13v2.0 in addition to the human pangenome and GENCODE v44.

Data installations
Unless otherwise noted, software was installed from Bioconda [55].

Host depletion pipeline
The sequence data were filtered for all adapters known to fastp [56]
(version 0.23.4) in paired end mode by explicitly specifying a known
adapters file composed of the adapters used by fastp at compile time. This
was done to avoid its autodetection which is limited to the first
100,000 sequences, to allow for removal of a large number of possible
adapters, and ensure application of adapter removal in paired end mode
as it is implicitly disabled otherwise. Sequences shorter than 45 nucleotides
were removed with “-l 45”. Each sample was then filtered against each
genome in the human pangenome [38], as well as both T2T-CHM13v2.0
(ref. [40]) and GRCh38 (ref. [36]), using minimap2 (refs. [57, 58], version
2.26-r1175) with “-ax sr” for short read mode. The data were first run in
paired end mode, and then run in single end mode, per human genome.
Each successive run was converted from SAM to FASTQ using samtools
[59] (version 1.17) with arguments “-f 12 -F 256 -N” for paired end data and
“-f 4 -F 256” for single end. Single end data were repaired using fastq_pair
[60] (version 1.0) specifying a table size of 50 M with “-t”. Compute support
was provided with GNU Parallel [61] (version 20160222). Single-end FASTQ
output from samtools was split into R1 and R2 with a custom Rust
program, with rust-bio for parsing [62] (version 1.4.0). Data were
multiplexed with GNU sed version 4.2.2 such that a unique sample
identifier was added to each sequence record, and demultiplexed using a
custom Python script.
RNA-Seq data, in addition to the aforementioned human filtering steps,

were additionally filtered against the Gencode v44 database [63].
Specifically, a spliced minimap2 database was created from the Gencode
v44 transcripts (https://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_44/gencode.v44.transcripts.fa.gz), and the RNA-
Seq data were mapped in paired end mode using the same parameters as
upstream filtering.

Simulating false positive human reads passing host depletion
For the SHOGUN-based simulation (Fig. 4H–J), the T2T-CHM13v2.0 human
reference was used for generating human reads. Specifically, 10 random
samples of one million pairs of reads each were generated (see parameters
below) from T2T-CHM13v2.0, followed by BWA (v. 0.7.17) alignment
against hg19 (GRCh37.p13) and extraction of unmapped reads. The BWA
command was “bwa mem db fwd.fq rev.fq | samtools fastq -f 12 -F 256 -1
fwd.clean.fq -2 rev.clean.fq”. For the RS210-clean simulation (Supplemen-
tary Fig. 18E, F), ten HPRC genomes [38] were selected for human read
generation: {HG002, HG00438, HG005, HG00621, HG00673, HG00733,
HG00735, HG00741, HG01071, HG01106}. We simulated 1x coverage from
each HPRC genome using ART [64] 3x times; maternal and paternal
genomes were treated separately. For both simulations, the parameters
provided to art_illumina were “-na -l 150 -m 270 -s 27 -f 1 -1 ART_MBARC-
26_HiSeq_R1.txt -2 ART_MBARC-26_HiSeq_R2.txt”, where the read quality
profiles (-1 and -2) used came from CAMI [65] (https://github.com/CAMI-
challenge/CAMISIM/tree/master/tools/art_illumina-2.3.6/profiles). A ran-
dom seed was provided with “-rs”, starting at 42 and incremented 1 per
sample. One million paired end reads were then randomly sampled from
each sample using the “sample” command from seqtk version 1.4-r122
(https://github.com/lh3/seqtk/). A random seed was provided with “-s”
starting 42 and incrementing 1 per sample. For the SHOGUN-based
simulation, unmapped reads after BWA-hg19 filtering were aligned against
the originally published WoLr1 database [34]. For the RS210-clean
simulations, the resulting sequences were filtered by GRCh38,
GRCh38+ T2T-CHM13v2.0, or GRCh38+ T2T-CHM13v2.0+ pangenome;
during filtering, the pangenomes used to generate simulated data were
withheld.

Database cleaning
Two complementary approaches were used to identify human reads in
microbial databases: Exhaustive (this paper) and Conterminator [15].
Human sequences identified by either were masked in the respective
microbial database genomes, as described below.

Exhaustive-based human sequence removal. Using a sliding window, all
150 bp sequences in steps of 75 bp were obtained from GRCh38, T2T-
CHM13v2.0, and the human pangenome contigs. Any sequence with
≥100 N’s, or which was shorter than 75 bp (e.g., 3’ terminal positions), were
omitted from subsequent use. Each sequence was then mapped against a
given target database using the SHOGUN [66] bowtie2 (version 2.5.1) [67]
parameter set. SAM [68] were subset using GNU awk version 4.0.2 to
generate start and stop coordinates relative to the reference, specifically
“awk -F’\t’ -v OFS= ‘\t’ ‘{sum = $4 + length($10); print $3, $4, sum, $1,
$10}’”. This application is imperfect and can generate stop positions
beyond the end of a contig; end positions exceeding the length of a contig
were cut to the max length of the contig using a custom Python script. The
SAM output were then sorted using GNU sort version 8.22 (“--parallel 8
--buffer-size= 100 g -k1,1 -k2,2n”) followed by line-based deduplication
from a stream with a custom Python script. The deduplicated, sorted,
mapping results were then merged into contiguous intervals using the
merge action of bedtools [69] v2.31.0 using “-c 5 -o count”. A final fasta file
of the contigs and regions were produced with bedtools getfasta action.

Conterminator human sequence removal for RS210, WoLr1, and custom
Kraken database. Fasta files for microbial genomes used to construct the
RefSeq version 210 database (29,648 genomes), WoLr1 database (10,575
genomes), or the original custom Kraken database (59,963 genomes) were
processed with Conterminator [15] to identify all genomic regions shared
with GRCh38 (ref. [36]), T2T-CHM13v2.0 (ref. [37]) or human pangenome
[38] references. We clarify that the original Kraken database was first stated
to have 59,974 genomes [1] but during this work was determined to have
59,963 genomes, related to a download error in 2016 that processed
genome metadata but not the corresponding genome file. For Con-
terminator, the --kingdom parameter was set to “(2||2157||4751||
10239),9606” to identify any human sequences shared by “bacteria OR
archaea OR fungi OR viruses.” Conterminator outputs were processed to
create fasta files containing the microbial genome ID, region, and
sequence shared with any of the human references. For purposes of
filtering the Kraken and Shogun data, the per-genome NCBI taxonomy was
extracted and summarized at the genus-level, followed by intersecting all
unique Conterminator-identified genera against the original abundance
tables. This meant that genera were removed even if they contained a
single contig in which a region was shared with a human sequence.
On examining the original Kraken database for human sequences, we

did not observe any viruses detected by Conterminator despite running
Conterminator as recommended specifying virus in the kingdom
specification. In contrast, we observe a small number of viral genomes,
including at least one known retrovirus, flagged as having overlapping
regions with the human genome using Exhaustive. Differentiating
contamination from integration is not in the scope of Exhaustive. However,
as a practical matter these regions represent an ambiguity in differentiat-
ing a genomic source from a short read match. Additionally, for
transparency, we attempted to run Conterminator as recommended on
the original Kraken database’s viral subset alone, or with the viral data
combined with other kingdoms. With viruses alone, we encountered a
segmentation fault, where the output resembled failures that a
Conterminator author suggested indicates a lack of contamination (see
https://github.com/steineggerlab/conterminator/issues/12#issuecomment-
771534666). When run in combination with other kingdoms, we did not
observe any virus flagged as contamination, and the run completed
without a segmentation fault. This inability to detect viruses was
unexpected; nonetheless, we note that, per the Conterminator manuscript
[15], the authors state they intentionally did not consider viruses in
their work.

Base masking. For a given fasta representing a sequence database (e.g.,
RS210), subsequences between start and stop coordinates determined by
Conterminator and the Exhaustive method were replaced with Ns. A
Bowtie2 index was then constructed from the masked fasta.

KrakenUniq pipeline
KrakenUniq version 1.0.4 (ref. [70]) was run on human filtered paired end
samples with arguments “--report ${report} --db ${database} --threads
${threads} --paired --output off ${r1} ${r2}”, where the environment
variables were substituted as needed at runtime. To improve resource
utilization, groups of samples were processed serially such that the first
sample in a group additionally specified the “--preload” argument. The
database used was “KrakenUniq-MicrobialDB” downloaded on August 18,
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2023 from https://benlangmead.github.io/aws-indexes/k2 and setup in
accordance with the instructions.

RefSeq210-clean pipeline
All human filtered short reads were mapped to the masked RS210
database with bowtie2 (v. 2.5.1) [67] using the SHOGUN [66] parameter set,
specifically “-p ${threads} -x ${db} -q - --seed 42 --very-sensitive -k 16 --np 1
--mp “1,1” --rdg “0,1” --rfg “0,1” --score-min “L,0,-0.05” --no-head --no-unal”
with environment variables set accordingly. To minimize overhead
associated with the database load, samples were multiplexed such that
each sequence ID was tagged with a unique sample identifier using GNU
sed version 4.2.2, and demultiplexed with a custom Python program. The
resulting SAM output was then processed with Woltka (version 0.1.5) [71]
with the “classify” action and “-i ${sam} -o ${output} --no-demux --rank
none” with environment variables set accordingly. Processing support was
provided with GNU parallel version 20160222. The SAM output was
additionally compressed for long term storage with xz 5.2.6. Individual
Woltka tables were merged with “woltka_merge” from qp-woltka (https://
github.com/qiita-spots/qp-woltka/blob/main/scripts/woltka_merge) which
combines many feature tables using BIOM version 2.1.15’s Table.concat
method [72].

Calculating aggregate microbial coverages
The calculate_coverages.py script from Zebra [73] Filter (unversioned) was
modified to emit per-sample coverage information in Python pickle files.
Zebra Filter’s cover.py module was then modified to include an
“add_ranges” method, such that pre-computed coverages could be added
in. These modifications allowed for calculating genome coverage samples
in parallel, and for aggregating coverage information across different sets
of samples.

Taxonomic filtering
TCGA lacked experimental contamination controls, precluding usage of
blanks to infer true presence and biological likelihood of taxa in samples.
Although decontam [74] was applied in our original work to filter, we later
showed that its performance can be unideal in tumor or blood samples
[49]. Thus, we developed a conservative, two step approach in this work: (i)
enforce biological plausibility by restricting to human-associated taxa as
much as possible, followed by (ii) removing false positives by microbial
coverage metrics, either directly or by proxy. We realize that enforcing step
(i) prevents observation of novel cancer-microbe associations and may be
too restrictive for future studies, but nonetheless found it important for the
context of this work.
For (i), we identified all species-level hits present in two large human

body-site metagenome assemblies [42, 43], in an independent cancer
cohort of decontaminated samples from the WIS of bacteria [2] and fungi
[28], and among a comprehensive list of known pathogenic bacteria that
infect humans dating to the 1800s [45]. We caveat that these species lists
are biased towards bacteria, reliant on taxonomic naming that can vary
over time, and do not include viruses or phages. The resultant table was
filtered to unique species, which were extracted along with their unique
genera, for the next stage of filtering. Since viruses and phages were
excluded from these lists, and since we could not find a suitable equivalent
describing which ones were human-associated, we more heavily relied on
filtering them using step (ii), described below.

Additional KrakenUniq-specific filtering. The KrakenUniq paper states: “For
the discovery of pathogens in human patients […] a read count threshold
of 10 and unique k-mer count threshold of 1000 eliminated many
background identifications while preserving all true positives, which were
discovered from as few as 15 reads” [70]. We thus intersected the list of
unique genera passing step (i) with those that had a read count ≥10 and a
unique k-mer ≥1000 among TCGA samples to derive filtered non-viral
genera. We then added human-associated (manually verified) viral genera
that passed the same thresholds among TCGA samples. The combination
of these steps provided the final list of 294 filtered KrakenUniq-
MicrobialDB genera for downstream processing (Table S5).

Additional RS210-clean-specific filtering. Aggregated per-genome micro-
bial coverages were calculated across TCGA using Zebra [73]. Genomes
associated with unique non-viral species passing step (i) were filtered for
having ≥50% aggregate genome coverage, followed by filtering viral
genomes with the same threshold, leaving 689 unique species.

Cutibacterium acnes and Escherichia virus phiX174 were manually excluded
from downstream analyses, and are not counted among these 689 species.
Additional thresholds of ≥75% and ≥90% aggregate genome coverages
were evaluated, finding 381 and 249 unique species, respectively. The set
of 689 species with ≥50% aggregate genome coverages were used for
downstream analyses (Table S7).

TCGA data splitting strategy
The principal variance component analysis by Poore and Kopylova et al. [1]
revealed three main batch effect sources in the raw Kraken microbial data
in TCGA: sequencing center (34.2% of total variance), sequencing platform
(25.5% of total variance), and experimental strategy (36.2% of total
variance). Fortunately, 16,087 of 17,625 quality-controlled TCGA samples
were sequenced on a single instrument (Illumina HiSeq), and many
sequencing centers focused on a single experimental strategy, including
Harvard (WGS), Baylor (WGS), MD Anderson (WGS), Washington University
(WGS), University of North Carolina (RNA-Seq), and Canada’s Michael Smith
Genome Sciences Centre (RNA-Seq). Additionally, although the Broad
Institute processed both WGS and RNA-Seq samples, among quality-
controlled samples, only glioblastoma (GBM) samples were RNA-Seq,
preventing across cancer ML comparisons; thus, only WGS data were used
from the Broad Institute for downstream analyses. Other centers with
fewer than 20 total samples were also excluded. This collectively provided
7 data batches in which raw data and normalized data subsets could be
directly compared with minimal impact of batch effects.

TCGA batch correction
Original batch corrected data. Voom-SNM-normalized data from the
original manuscript was not re-computed, and details of how it was
calculated are described therein [1].

ConQuR batch correction on originally published data. To compare Voom-
SNM, which was not developed specifically for microbiome data, with a
microbiome-specific supervised batch correction tool, we chose ConQuR,
which performs non-parametric modeling to generate batch-removed
zero-inflated read counts [14]. Importantly, ConQuR can only correct for
one batch variable at a time, although it can accommodate multiple
biological covariates. This limitation implied that it would not be possible
to directly apply ConQuR to the entire TCGA dataset, which contained
three large batch sources, and our empirical attempts to run ConQuR
serially did not work well (data not shown). Thus, we decided to apply
ConQuR to correct for sequencing center effects within WGS and RNA-Seq
groups after subsetting to a single sequencing platform (Illumina HiSeq).
ConQuR was run using default parameters, wherein the batch ID denoted
the sequencing center and a single covariate comprised the TCGA sample
type (e.g., primary tumor, blood); for the WGS group, the reference batch
was “Harvard Medical School”, and for the RNA-Seq group, the “University
of North Carolina” comprised the reference batch. We note that ConQuR
can optionally tune over all available reference batches to find the ideal
reference that most mitigates batch effects. After computing the ConQuR-
normalized data on the WGS and RNA-Seq sample groups, we recomputed
Voom-SNM-normalized data in an identical manner on each group.
Specifically, Voom was run with quantile normalization followed by SNM
with TCGA sample type (e.g., primary tumor, blood) as the biological
variable and sequencing center as the technical factor for correction. PVCA
was then performed on WGS and RNA-Seq groups separately using a
percentage threshold parameter of 70% based on the NIEHS recommen-
dation of 60–90% (https://www.niehs.nih.gov/research/resources/software/
biostatistics/pvca/index.cfm). To make consistent comparisons, raw and
ConQuR-corrected discrete count matrices were log-transformed with a
pseudocount of 0.5 added since Voom-SNM outputs are already log-
transformed.

ConQuR batch correction on KrakenUniq and RS210-clean data. For
KrakenUniq and RS210-clean data (i.e., filtered taxa abundances), only
Illumina HiSeq WGS samples were considered for ConQuR batch correction
due to poor quality microbial read counts among the University of North
Carolina samples (cf. Supplementary Fig. 21E, Supplementary Fig. 26E),
leaving a single RNA-Seq center (Canada’s Michael Smith Genome Sciences
Centre). ConQuR batch correction for KrakenUniq and RS210-clean data
was calculated using default parameters while parallelizing across 32 cores
and using “Baylor College of Medicine” as the WGS reference batch due to
improvements in subsequent PVCA batch effect sizes (data not shown).
Since only the discrete raw counts were being compared to the
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ConQuR-corrected counts, raw data were input into PVCA to evaluate the
reduction in batch effect with a threshold parameter of 80%.

Machine learning and feature comparisons
Two-class machine learning strategy. Machine learning was performed as
detailed by Narunsky-Haziza et al. [28]. No hyperparameter optimization was
used; all parameters were set prior to analysis, as follows: number of trees: 150,
interaction depth: 3, shrinkage (learning rate): 0.1, number of minimally
observed nodes: 1. Gradient boosting machine learning was applied with 10-
fold cross validation, with AUROCs and precision recall (AUPRs) curves
calculated on each holdout fold. Up/oversampling the minority class was used
to correct for class imbalance, as recommended elsewhere [29]. Cancer types
were compared in a one-type-versus-all-others manner for evaluating primary
tumor samples and blood samples; alternatively, primary tumor versus
adjacent normal comparisons were made with the concomitant samples. We
required at least 20 samples per class in one-cancer-type-versus-all-other
comparisons. Per-fold, per-cancer-type AUROCs and AUPRs were used to
estimate confidence intervals. Model feature importances were saved based
on the final cross-validated model.

Feature comparisons among machine learning models. All feature compar-
isons were consistently done within the same feature space (e.g., the 184 WIS-
overlapping genera in the originally published data for Fig. 2E, F, H). When
comparing features from the original paper [1] to RS210-clean, it was necessary
to first intersect the features between each database to create a single, shared
feature space. Specifically, all RS210-clean genomes with known human
associations (i.e., species in UNITN, UHGG, WIS, or known pathogens; cf. Figure
5L) were intersected with the original Kraken database [1] at the genus-level
(i.e., the taxonomic level previously examined [1]), identifying 428 unique
overlapping genera. Once a single feature space was identified or established,
additional testing could be done to compare downstream ML feature lists.
Binary feature overlap was performed by first constructing 2×2 contingency
tables based on intersecting twomodels’ feature importances to identify which
features they both used and did not use (i.e., the diagonal values), and to
identify which features were used by only one model in either direction (i.e.,
the off-diagonal values); features assigned an importance score of “0” were
defined as not used by the model, and features with non-zero feature
importances were defined as used by the model. Empirically, per-batch ML
models typically used 50–150 features with non-zero feature importances;
however, no explicit model regularization was implemented, and the models
could theoretically use up to all available genera. Fisher exact tests were then
calculated on the 2 × 2 contingency tables to identify the significance, or lack
thereof, of the enrichment between the two feature lists. Kendall tau rank-
based correlations were performed on the feature importances of each ML
model, wherein features with zero-valued importance were assigned a rank of
k+ 1 where k denotes the number of features with non-zero importances, and
features with non-zero importances were ranked according to their score.
When Fisher exact tests and Kendall tau correlations were computed on a per-
cancer-type basis within each batch, their output p-values were corrected
across cancer types using Benjamini-Hochberg multiple hypothesis correction.
When aggregating p-values across batches, the raw p-values from each batch
were combined on a per-cancer-type basis using Fisher’s method, followed by
Benjamini-Hochberg correction across the total number of aggregated cancer
types. If a cancer type was represented in a single batch, then the raw p-value
within that batch was included in the aggregated data, followed by Benjamini-
Hochberg correction across the total number of aggregated cancer types.
Since Fisher’s method effectively multiplies the p-values to combine them, and
since the per-batch data consistently had significant results, the combined
p-values are often very small. For plotting adjusted p-values, the negative
logarithm base 10 was used; however, if a combined p-value was less than
double xmin (2.2 × 10−308; see Statistical analyses section below), it was plotted
as double xmin since the logarithm of 0 is infinity and could not be
represented on the graph.

Multiclass machine learning. Gradient boosting machines were employed
for multiclass machine learning with 10-fold cross validation and
performed using xgboost [75]. No hyperparameter optimization was used;
all parameters were set prior to analyses, as follows: nrounds= 10,
max_depth= 4, eta= 0.1, gamma= 0, colsample_bytree= 0.7, min_-
child_weight= 1, subsample= 0.8. Up/oversampling the minority class
was used to correct for class imbalance, as recommended elsewhere [29].
Concatenated predictions on holdout folds were used to calculate
multiclass performance metrics, including mean balanced accuracy and
average pairwise AUROCs. Multiclass confusion matrices can be colored in

several ways. Since single gradient coloring is prone to give the false
appearance that classes (e.g., cancer types) with few samples always have
poor performance because they do not have strong shading along the
diagonal, we separately shaded the diagonals to prevent such confusion in
Fig. 3B–D, Fig. 6J, K, and Fig. 8J, K. Nonetheless, since some readers may
prefer single gradient shading, we have also created concomitant versions
of these confusion matrices in Supplementary Figs. 34, 35.

Alpha and beta diversity analyses
Alpha and beta diversity were calculated on raw abundances from Illumina
HiSeq samples.

Alpha diversity. Alpha diversity was calculated on rarefied per-batch,
TCGA, KrakenUniq or RS210-clean filtered data using phyloseq [76]. Since
RS210-clean data was at the genome level, and multiple genomes could
exist for one species, counts were first aggregated to the species-level prior
to alpha diversity calculations. Per-batch count data were rarefied to
approximately the first quartile of the sample read distribution, or an
absolute minimum of 25 reads, whichever was larger. Per-sample, per-
cancer-type observed richness was determined and compared among
cancer types within batches using non-parametric Kruskal-Wallis tests.

Beta diversity. Aitchison beta diversity analyses were calculated using RPCA
[77] in QIIME 2 (ref. [78]) using default parameters except --p-min-sample-count
was lowered to 100 for HMS, BCM, WashU, Broad, and CMS sequencing
centers, and to 25 for MDA sequencing center. Subsequent PERMANOVAs
were calculated with Qiime 2 (“qiime diversity adonis”) using 999 permutations
and TCGA “investigation” (i.e., cancer type) as the target variable.

Differential abundance analyses
Differential abundance was calculated on raw per-batch, TCGA, KrakenU-
niq or RS210-clean filtered data using ANCOM-BC [46] using each cancer
type of interest versus all other cancer types in that respective batch.
ANCOM-BC default parameters were used except for the following
modifications: zero_cut= 0.999, p_adj_method= “BH”. We also required
a minimum of 10 samples in each class (i.e., cancer type of interest, others).
Output beta values, p-values, and BH-adjusted q-values were used to
create volcano plots (e.g., Fig. 8H), such that positive log-fold changes
denote microbes associated with the respective cancer type of interest.

Statistical analyses
When ≥3 tests were performed, Benjamini-Hochberg multiple testing
correction was performed to obtain adjusted p-values. Analyses and plots
were generated with R version 4.1.1. Common R packages used include
doMC (1.3.7), dplyr (v. 1.0.7), reshape2 (v. 1.4.4), ggpubr (0.4.0), ggsci (v. 2.9),
rstatix (v. 0.7.0), tibble (v. 3.1.6), caret (v. 6.0-90), gbm (v. 2.1.8), xgboost (v.
1.5.0.1), MLmetrics (v. 1.1.1), PRROC (v. 1.3.1), pROC (v. 1.18.0), e1071 (v.
1.7–9), gmodels (v. 2.18.1), limma (v. 3.50.0), edgeR (v. 3.36.0), snm (v. 1.42.0),
and sva (3.35.2). Fisher’s method for combining p-values was implemented
using the survcomp (1.44.1) package’s combine.test function. The rstatix
package corrected for multiple hypothesis testing where applicable. Sample
sizes were not estimated in advance and power calculations were not
performed. The gbm package was used for two-class ML; the xgboost
package was used for multiclass gradient boosting ML. AUROC and AUPR
were calculated using the PRROC package. We note that the R programming
language has two numerical limits when it comes to calculating small
numbers, including p-values: (1) double eps, or smallest positive floating-
point number x such that 1+ x!= 1, which is 2.220446 × 10−16; (ii) double
xmin, or the smallest non-zero normalized floating-point number, which is
2.225074 × 10−308 (although this limit may be even lower depending on the
computing environment). Some R packages, notably ggpubr, do not report
p-values less than double eps, so they are denoted in our data as
p < 2.2 ×10−16; conversely, other R packages, notably rstatix, report p-values
as low as double xmin, and any p-values less than double xmin in our data
would be reported as p < 2.2 × 10−308. They are not a range of p-values.
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