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RNA processing includes post-transcriptional mechanisms controlling RNA quality and quantity to ensure cellular homeostasis.
Noncoding (nc) RNAs that are regulated by these dynamic processes may themselves fulfill effector and/or regulatory functions,
and recent studies demonstrated the critical role of RNAs in organizing both chromatin and genome architectures. Furthermore,
RNAs can threaten genome integrity when accumulating as DNA:RNA hybrids, but could also facilitate DNA repair depending on
the molecular context. Therefore, by qualitatively and quantitatively fine-tuning RNAs, RNA processing contributes directly or
indirectly to chromatin states, genome organization, and genome stability. B lymphocytes represent a unique model to study these
interconnected mechanisms as they express ncRNAs transcribed from key specific sequences before undergoing physiological
genetic remodeling processes, including V(D)J recombination, somatic hypermutation, and class switch recombination. RNA
processing actors ensure the regulation and degradation of these ncRNAs for efficient DNA repair and immunoglobulin gene
remodeling while failure leads to B cell development alterations, aberrant DNA repair, and pathological translocations. This review
highlights how RNA processing mechanisms contribute to genome architecture and stability, with emphasis on their critical roles
during B cell development, enabling physiological DNA remodeling while preventing lymphomagenesis.
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INTRODUCTION
Pervasive transcription of genomes, leading to the production of a
large variety of noncoding RNAs (ncRNAs), has revolutionized our
understanding of RNA synthesis and subsequent RNA processing.
RNA processing, as a generic term, refers to the mechanisms that
tightly regulate RNA quantity and quality in space and time, by
processing and ultimately degrading RNA molecules, ensuring
cellular homeostasis. These mechanisms include actors that
process RNA molecules through various activities such as
unwinding RNA secondary structures, catalyzing RNA modifica-
tions, or degrading them from 5′ to 3′ (e.g. XRN1/2 proteins), from
3′ to 5′ (e.g. RNA exosome or DIS3L2), or by cutting directly inside
RNA molecules as in the case of endoribonucleases (e.g. RNase H),
amongst others [1]. RNA processing is crucial for the quality
control and natural turnover of messenger RNAs (mRNAs), but also
for the maturation and titration of different ncRNAs including
ribosomal RNAs and transfer RNAs. The more recently identified
long ncRNAs (lncRNAs), enhancer-associated RNAs (eRNAs), and
promoter-associated antisense RNAs (also known as PROMPT-
RNAs) can fulfill regulatory functions and are strong RNA
processing substrates.
The RNA exosome complex is one of the major RNA processing

and degradation factors and plays essential roles in various
processes. This complex is ubiquitously expressed, evolutionary
conserved in eukaryotes, and is formed by a nine-subunit barrel-
shaped core associated with two catalytic subunits, EXOSC10 and
DIS3 (in the nucleus) or EXOSC10 and DIS3L (in the cytoplasm).

The nuclear RNA exosome ensures the degradation of diverse RNA
substrates, including lncRNAs, eRNAs, PROMPT-RNAs, or defective
mRNAs. This ribonuclease can associate with cofactors, such as
RNA helicases, conferring substrate specificity and ensuring
dedicated functions [2–4]. The transcription process, either coding
or noncoding, can generate DNA-associated RNAs, also known as
R-loops, that are processed by various mechanisms, including RNA
exosome-mediated decay. These DNA:RNA hybrids can directly
alter chromatin organization, DNA methylation, and chromatin
marks [5]. NcRNAs, especially lncRNAs, can also influence
chromatin states, usually by acting as scaffolds or bridges for
DNA-binding or DNA-modifying proteins [6]. RNA-binding proteins
are estimated to represent ~10% of the mammalian proteome
and contribute to the regulation of RNA processing and turnover
[7]. Recent findings illuminate how RNA processing pathways
monitor, regulate, and degrade nuclear RNAs to ensure optimal
chromatin organization and associated functions [8]. RNA
processing-related mechanisms are frequently deregulated in
various pathologies, including cancers, but are also implicated in
specific physiological processes, as exemplified with B cells.
B lymphocytes represent a unique model as they express site-

specific ncRNAs during their development and orchestrate
physiological DNA recombination, but can also undergo patholo-
gical DNA alterations that lead to lymphoproliferation. The role of
the RNA exosome during early B cell development and later
during B cell activation has been well established [9–14]. In
multiple myeloma (MM), recurrent mutations of the DIS3 gene
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[15], which encodes the major nuclear catalytic subunit of this
complex [16], illustrate the importance of these pathways during
the ultimate step of B cell differentiation into plasma cells (PCs).
Considering the growing evidence that demonstrates the role

of RNAs in maintaining chromatin homeostasis at different levels,
we aim to provide here an overview of the mechanisms associated
with RNA processing itself that are important for regulating
chromatin states and genome organization while preventing
genome instability, especially in B lymphocytes.

THE ROLE OF RNA PROCESSING IN GENOME ORGANIZATION
AND STABILITY
RNA processing participates in epigenetic regulations
NcRNAs can act as scaffolds for the establishment of protein
complexes that include DNA methyltransferases and epigenetic
writers, readers, and erasers, and for their recruitment to target
DNA regions, thus contributing to the regulation of chromatin
states and transcription programs [6]. Accordingly, RNA processing
mechanisms and RNA epitranscriptomic modifications can also
contribute to epigenetic regulations and subsequent functions
[17–21] (Fig. 1A).

RNA processing safeguards genome integrity
Our genomes are constantly subjected to stressors that threaten their
integrity at different levels, thus requiring efficient repair systems.
RNAs are now proposed to play their part in DNA maintenance, but
the intricate relationship between RNAs and genome stability is
complex and ambivalent, with examples describing RNAs as actors of
DNA repair, while others depict them as threats to genome stability,
emphasizing the need for balancing RNA quantity by RNA processing
[22]. The first aspect of genome instability occurs at the whole
chromosome-scale, where improper RNA processing can lead to
aneuploidies and translocations. The contribution of ncRNAs and
RNA processing to chromosome integrity is notably related with the
regulation of centromeric and telomeric transcripts [23–28]. At the
chromatin level, RNA accumulation in R-loop structures can be
detrimental, inducing mutations and DNA double-strand breaks
(DSBs) [5, 29]. Multiple actors are implicated in the resolution of these
structures, of which RNA helicases and ribonucleases, including the
RNA exosome [8, 30]. Genetic instability can also be generated
through the accidental incorporation of ribonucleotides into DNA,
particularly during DNA replication [31]. Accordingly, eukaryotic cells
have evolved enzymatic machinery to remove intrusive ribonucleo-
tides, and invalidating mutations in one of their components are
pathological, as exemplified by the Aicardi-Goutières syndrome,
where RNase H2-deficient cells accumulate DNA-incorporated
ribonucleotides and DNA damage [32, 33] (Fig. 1B).

RNA processing contributes to DNA repair
Oppositely, increasing numbers of studies propose that ncRNAs
positively contribute to DNA repair. Noncoding transcription was
proposed to be induced locally at DNA breakage sites, and the
resulting DNA damage response RNAs (ddRNAs) are suspected to act
as recruitment platforms for homologous recombination (HR) and
non-homologous end joining (NHEJ) machineries [34]. Diffusible RNA
molecules can also be recruited at breakage sites to contribute to
damage repair [35]. Of note, the model of RNA-templated HR was
proposed in the yeast Saccharomyces cerevisiae and could take place
in human cells as well [36, 37]. Loss of function of EXOSC10 leads to a
local accumulation of DNA:RNA hybrids containing ddRNAs that
impair the recruitment of replication protein A on single-stranded
DNA and consequently decreases resection during HR [38], suggest-
ing that these ddRNAs are transient actors that ultimately need to be
degraded for efficient DNA repair. Similarly, BRCA2 was proposed to
recruit RNase H2 at DSB sites to suppress DNA:RNA hybrids that could
impair the HR process [39]. In contrast, a study showed an
accumulation of RNAs at breakage sites and identified a positive role

for RNA methylation by the m6A writer METTL3 in the recruitment of
DNA repair factors [40]. RNAs creating R-loops generated at damage
sites can also undergo m6A methylation and contribute to HR-
mediated DNA repair [41]. The contribution of RNAs to the DNA
damage response is seemingly a question of balance, and functional
RNA processing appears crucial for efficient repair (Fig. 1C).

RNA processing is involved in genome organization
Genome architecture relies on multiple levels of organization,
starting with DNA packaged around nucleosomes and interacting
with DNA-binding proteins to form chromatin. Architectural proteins,
including CTCF and the cohesin complex, amongst others, organize
chromatin into loops and topologically associating domains (TADs)
inside which DNA interactions are more frequent. A/B compartments
then delineate active from inactive chromatin while chromosome
territories organize the nuclear compartment [42]. At least two non-
mutually exclusive mechanisms participate in genome organization:
loop extrusion and phase separation. RNA molecules contribute to
the nuclear structure at different levels, from global nuclear
compartments to local chromatin loops. LncRNAs, like Xist, were
shown to contribute to the formation and localization of nuclear
compartments [43], possibly through mechanisms that imply phase
separation [44]. NcRNAs have also been identified as determinant
factors for the formation of chromosome territories [45].
During loop extrusion, CTCF proteins directly bind DNA on

oriented CTCF-binding elements (CBEs), while the cohesin
complex forms a ring that is loaded on chromatin, extrudes
DNA, and stabilizes at two CTCF-bound convergent CBEs, creating
stable DNA loops and TADs. Finally, the cohesin complex is
unloaded by WAPL proteins [46]. CTCF proteins contain an RNA-
binding domain that influences their ability to bind DNA [47],
while cohesin binds RNA and DNA-associated RNA via its STAG1/
2 subunits [48]. There is growing evidence that some ncRNAs, in
particular when part of R-loop structures, are involved in the
shaping of TADs by loop extrusion [49, 50], and several studies
highlighted the importance of R-loop resolution by the RNA
processing machinery for efficient loop extrusion. CTCF proteins
interact with the RNA helicase DDX55, and together they locally
contribute to the regulation of the 3D chromatin structure [51]. A
functional interaction implicating CTCF, the helicase DDX5 and its
associated ncRNA also contributes to loop stabilization by the
cohesin complex [52]. CTCF-associated RNAs have been described
in B cells [53], and RNA exosome inactivation induces an
accumulation of CBE-overlapping RNAs and a concomitant
decrease in CTCF chromatin binding. Furthermore, R-loops
accumulate and cohesin localization at CBEs is altered, suggesting
that DNA:RNA hybrids slow down cohesin scanning and stabiliza-
tion at these sites, ultimately leading to genome disorganization
[13]. Another study suggests cohesin and TAD boundary loss in
the absence of RNA processing by the RNA exosome [54], while
R-loops were recently shown to directly slow down cohesin
progression, leading to decreased DNA compaction [55]. The
kinetics of R-loop formation and resolution by RNA processing
therefore appear critical for loop extrusion (Fig. 1D).
Overall, RNAs and RNA processing both contribute to organizing

and safeguarding chromatin and genome structure through diverse
mechanisms, some of which are particularly important for B cells.

RNA PROCESSING DRIVES B CELL DEVELOPMENT
Genetic remodeling during B cell development
B lymphocytes are specialized in the production of membrane-
bound B cell receptors (BCRs) that are ultimately secreted by PCs in
the form of immunoglobulins (Ig), also known as antibodies,
providing humoral immunity. Their development is closely related
to ncRNA expression and associated DNA remodeling events [56],
including recombination and mutation of their Ig genes, as these
loci have a complex germline organization and must be first
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rearranged to create functional V(D)J exons that correspond to the
antigen (Ag) binding site. The V(D)J recombination process relies on
the recombination activating gene (RAG-1/2) recombinases that
bind and cut DNA before DNA repair joins the V(D)J segments
together. A pre-BCR is created after Ig heavy chain (Igh)

recombination in pro-B cells, while Ig light chain (Igl, either κ or λ)
rearrangements in pre-B cells allow the expression and the
association of the Ig heavy and light chains to form a functional
IgM BCR that is expressed at the cell surface. BCR expression is
mandatory for B cell maturation and allows their exit from the bone

Fig. 1 RNA processing mechanisms contributing to genome organization and stability. Eukaryotic genome and chromatin organization are
influenced by ncRNAs and RNA processing actors, including 5’ exoribonucleases, endoribonucleases, 3’ exoribonucleases, RNA helicases, RNA-
modifying enzymes, and RNA-binding proteins, amongst others. RNA helicases and ribonucleases are particularly important to unwind RNAs
and DNA-associated RNAs and ultimately to degrade them. A NcRNAs influence chromatin epigenetic states by facilitating the recruitment of
histone- and DNA-modifying enzymes such as Polycomb repressive complex or DNA methyltransferases, respectively. RNA processing
mechanisms regulate these ncRNAs and thus influence chromatin states. In parallel, RNA-modifying enzymes can catalyse (writer) RNA
chemical modifications, such as m6A, remove them (eraser) and bind to them (reader). These RNA modifications modulate the half-life and
associated biological activities of different types of RNA transcripts. B Transcription can create DNA-associated RNAs, forming R-loops, that are
processed by various mechanisms to prevent their deleterious effects on genome stability, such as DNA mutations and double-strand breaks.
Ribonucleotides incorporated into DNA also threaten genome integrity and are processed, notably by RNase H. C DNA-damage response
RNAs (ddRNAs) can be produced after DNA breaks, either facilitating or inhibiting DNA repair by HR or NHEJ. RNA processing pathways
contribute to ddRNA regulation and successful DNA repair. D Left. The mechanism of loop extrusion relies on the architectural proteins CTCF
and cohesin. CTCF proteins directly bind to the DNA while the cohesin complex extrudes DNA to create DNA loops and TADs. Right. The
binding of CTCF to the chromatin is dependent on its RNA-binding domain, ncRNAs are produced at CTCF-binding elements and are
processed by RNA helicases and the RNA exosome, while cohesin scanning is slowed down by DNA:RNA hybrid accumulation.
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marrow towards the periphery and secondary lymphoid organs. Ag
encounter together with costimulatory signals triggers a second
wave of gene rearrangements mediated by the activation-induced
cytidine deaminase (AID) enzyme during the germinal center (GC)
reaction. During this step, B cells divide intensively in the dark zone
of GCs to amplify the selected clones and then migrate to the light
zone where the best clones are selected for their Ag affinity.
Increasing Ag affinity relies on somatic mutations that are
introduced by the action of the AID enzyme on V(D)J genes, in a
process called somatic hypermutation (SHM). AID also initiates
cytidine deamination at switch (S) regions, followed by a series of
events leading to DSBs and class switch recombination (CSR), that
will change the constant part of Igs from µ to γ, α, or ε, switching the
production from IgM to IgG, IgA, or IgE, for recruiting other functions
of the immune system. Finally, B cells exit the GC and either
differentiate into memory B cells or PCs secreting high-affinity
antibodies, ensuring long-term immunity [57] (Fig. 2).

The early life of B cells
When committed to the lymphoid lineage, B cell precursors
initiate V(D)J recombination to create functional Ag binding sites.

During this process, Ig genes undergo major epigenetic modifica-
tions to become “accessible” for recombination, including nuclear
relocation and chromatin modifications. A reorganization of the
3D structure of these loci is also required, as V(D)J segments span
over several megabases and must be brought closer together for
efficient recombination. 3D reorganization of Ig loci is thus critical
for V(D)J recombination and early B cell development, and the role
of the transcription factors YY1, PAX5, E2A, and Ikaros has been
well documented [58], as Ig loci contain several regulatory
elements and enhancers that contribute to their transcriptional
regulation, 3D organization, recombination, and SHM [59–61].
Additionally, the architectural elements CTCF, cohesin, WAPL,
CBEs, and the associated mechanism of loop extrusion largely
contribute to Igh locus organization during V(D)J recombination
[62, 63]. In contrast, Igκ recombination is less sensitive to loop
extrusion perturbation but relies on alternative mechanisms of
chromosomal folding [64].
According to the current model, before recombination in pro-B

cells, Igh chromatin becomes accessible, transcription factors and
DNA-binding proteins are recruited, inducing noncoding tran-
scription at numerous sites of the locus, including at VH genes.

Fig. 2 RNA processing contributes to B cell development. B cell development is tightly related with DNA remodeling events, all preceded by
noncoding germline transcription at recombination sequences. Left. In pro-B cells, sense and antisense germline transcripts are expressed at V
(variable), D (diversity) and J (junction) genes of the Igh locus. These ncRNAs are processed by RNA helicases and the RNA exosome for
efficient VDJ recombination, mandating pre-BCR expression and pro- to pre-B cell transition. In the absence of RNA processing, these ncRNAs
accumulate and strongly affect the quality and quantity of VDJ junctions, abrogating B cell development. Right. In activated B cells, sense
germline transcription occurs at donor (Sµ) and acceptor (Sx, x being either γ, α, or ε) switch sequences, generating long R-loops. RNA
helicases and the RNA exosome process these DNA-associated RNAs, allowing the generation of single-stranded DNA on both DNA strands,
which are bona fide substrates for the AID enzyme. Deamination is then initiated on both DNA single strands, ultimately resulting in DSBs
followed by DNA repair for efficient class switching. In the absence of RNA processing, R-loops accumulate, qualitatively and quantitatively
altering CSR junctions. A similar phenomenon occurs during somatic hypermutation at VDJ exons, where RNA exosome activity is necessary to
degrade sense RNAs for the distribution of AID-mediated mutations on both DNA strands. R-loop accumulation also disorganizes the Igh TAD,
decreasing the interaction between the critical enhancers Eµ and 3’RR, contributing to reduced CSR but increased aberrant translocations.
Figures created with BioRender.com.
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This germline transcription (i.e. transcription from the germline
configuration of Ig loci, before recombination) was described a
long time ago [65–67], but the fate of these germline ncRNAs had,
until recently, remained a mystery. In fact, at this developmental
stage, RNA helicases and the RNA exosome are necessary for the
processing and degradation of these RNAs, otherwise, the VDJ
recombination step is severely compromised and B cell develop-
ment fails. Mouse pro-B cells lacking the catalytic subunit
DIS3 show massive accumulation of sense and antisense ncRNAs
at the Igh locus. Importantly, these ncRNAs overlap recombination
signal sequences (RSS). The introduction of a prearranged VDJ
allele at the Igh locus rescues the pro-B to pre-B developmental
defect, arguing for a direct role of RNA processing in the Igh
recombination process itself [14]. In humans, mutations of the
RNA helicase SKIV2L gene perturb RNA processing and lead to
trichohepatoenteric syndrome, characterized notably by B lym-
phopenia. This phenotype is recapitulated in a B cell conditional
knock-out mouse model targeting Skiv2l, that displays a similar B
developmental blockade with V(D)J recombination defects [68],
thus directly demonstrating the importance of this RNA helicase
during early B cell development. Alterations of RNA processing
pathways and their impact on V(D)J recombination underline the
necessity to process germline ncRNAs for accurate physiological
recombination (Fig. 2). The exact implicated mechanisms remain
to be dissected; still, one could hypothesize that ncRNAs
accumulate as R-loops at V(D)J genes and RSS sequences, directly
impeding RAG binding and cleavage, as these regions could
potentially form R-loops and associated G-quadruplexes (G4s)
[69, 70]. Chromatin marks could be altered by ncRNA accumula-
tion, especially the important H3K4me3 that facilitates the
recruitment of the RAG2 recombinase to RSS targets [71]. An
imbalance in RNA quantity and/or quality could also impact RAG1
localization from the RNA-rich nucleolus [72]. Importantly, the loop
extrusion mechanism, which is critical for V(D)J recombination
[62, 73], could be affected as well. Inactivation of the m6A writers
METTL3 or METTL14 also causes an accumulation of pro-B cells
[74, 75], underlining the importance of epitranscriptomics during
early B cell development.
The V(D)J recombination process is error-prone, implying

random usage of the V, (D), and J genes coupled with nucleotides
insertion by the terminal deoxynucleotidyl transferase (TdT), and
thus generates out-of-frame junctions in two-thirds of the cases.
These unproductive junctions induce a frameshift in the open
reading frame of the V(D)J exons and the appearance of
premature termination codons. When this phenomenon occurs,
the second allele undergoes V(D)J recombination, and when
successful these cells develop with both productive and
unproductive alleles. As the transcription of Ig genes is biallelic,
these nonproductive transcripts must be processed by RNA
surveillance mechanisms. Splicing inhibition, nonsense-mediated
decay, and nonsense-associated altered splicing cooperate to
ensure efficient inhibition of these RNAs both at the Igh and Igl
loci during early B cell development and later during PC
differentiation [76–79]. It has also been reported that, during
DNA repair at V(D)J junctions, ribonucleotides are incorporated
into DNA by the DNA polymerase µ and the TdT. The
ribonucleotide excision repair machinery, especially RNase H2a,
removes these ribonucleotides that are then replaced by
deoxynucleotides. Transient ribonucleotide incorporation allows
subsequent DNA ligation and successful recombination [80]. This
mechanism could be affected by ribonucleotide pool imbalance
[81], in particular in cells where RNA processing is compromised.
Accordingly, we observed an alteration in CDR3 lengths (corre-
sponding to the VH-D-JH junctions) in the absence of RNA
processing [14], possibly related to this phenomenon or other
DNA repair alterations. Again, a fine equilibrium between RNA
metabolism and RNA processing is needed for accurate V(D)J
recombination.

Mature B cell activation
After successful creation of the V(D)J exons and expression of a
functional BCR, B cells migrate towards secondary lymphoid
organs in search of antigens. During B cell activation, other
ncRNAs are produced that, again, must be processed for efficient
CSR and SHM.

Class switch recombination
CSR occurs inside the Igh locus between two long repetitive G-rich
S regions that are transcribed and produce ncRNAs, known here as
switch germline transcripts (GLTs). Furthermore, these ncRNAs
create long R-loops at S regions that facilitate the CSR process as
they open the DNA double helix, thus exposing the non-template
DNA strand to the action of the AID enzyme that initiates
recombination [82]. RNA processing actors, including RNA
helicases and ribonucleases, are necessary to “resolve” these
R-loops by degrading the DNA-associated RNAs. After RNA decay,
the two DNA strands of the S regions are left single-stranded, and
thus constitute bona fide substrates for AID-mediated deamina-
tion, initiating DNA breaks and recombination (Fig. 2). Therefore,
defects in RNA processing pathways induce an accumulation of
ncRNAs and R-loops that decrease CSR efficiency. MTR4 is a
particularly important RNA helicase for unwinding DNA-associated
RNAs [83], especially during CSR, thus allowing the RNA exosome
to initiate their degradation and warranting successful recombina-
tion [12], while other helicases are also involved.
The role of the RNA exosome is critical during CSR, firstly

because this complex is necessary to resolve R-loops and to expose
the template DNA strand to AID for deamination. The initial
demonstration of this mechanism was performed in vitro using
DNA:RNA hybrids incubated with the RNA exosome and by
monitoring the AID-mediated deamination footprint, which was
altered in the absence of RNA decay. Furthermore, inhibition of a
core RNA exosome subunit (Exosc3, totally disrupting RNA
exosome assembly) decreased CSR in the CH12 murine B cell
lymphoma, demonstrating the necessity of RNA exosome-
mediated RNA degradation for efficient CSR in a cellular system
[9]. Overexpression of RNase H1 in mouse activated B cells also
increased the accessibility of AID to the template strand but
without increasing CSR efficiency [84]. An alternative, non-mutually
exclusive model proposes that S GLTs are processed post-
transcriptionally to generate G4-rich “guide RNAs” that facilitate
AID recruitment and targeting to S regions [85]. Another study
proposes that the RNA helicase DDX1 is necessary to unwind the
G4-RNA structures of GLTs, leading to R-loop formation at S regions
in trans, and ultimately to CSR [86]. Finally, GLT splicing was shown
to be necessary for CSR [87]. The implication of all these post-
transcriptional mechanisms demonstrates the critical role of RNA
processing and decay during this recombination step.
To dissect the role of the RNA exosome subunits during B cell

activation, dedicated mouse models have been developed. Exosc3
targeting confirms the role of the RNA exosome in degrading
DNA-associated RNAs at S regions and AID off-target transcribed
loci, including oncogenes, and its impact on CSR [10]. Another
mouse model targeting Exosc10 revealed the importance of the
degradation of eRNAs by the RNA exosome for optimal 3′
regulatory region (3′RR) function [11], which is critical for CSR [88].
3′RR activity was proposed to be dependent on another
regulatory element, the “lncRNA-CSR” [11], which is particularly
important for CSR to IgA [89]. NcRNA expression and decay are
therefore critical for orchestrating 3′RR interactions and functions
in the Igh locus and, as a consequence, for CSR. Finally, a model
targeting the catalytic subunit DIS3 demonstrated the critical role
of this enzyme for the resolution of R-loops at S regions, and more
globally genome-wide. In normal conditions, cohesin is loaded at
the Igh locus and drives interaction between the Eµ and 3’RR
enhancers by loop extrusion, then allowing alignment of the S
regions and the creation of an Igh TAD prone to CSR for efficient
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recombination [90–93]. In DIS3-deficient B cells, the accumulation
of R-loops inside S regions and the 3’RR perturbs cohesin
localization, Eµ/3’RR interaction, and Igh TAD formation, con-
tributing to inefficient CSR. The degradation of S GLTs and the
resolution of the associated R-loops is thus critical for efficient AID
targeting on both DNA strands as well as optimal Igh TAD
formation during CSR. Translocation sequencing experiments
quantifying physiological Igh intra-TAD recombination (i.e. CSR)
versus pathological inter-TAD recombination (i.e. translocations)
also demonstrated a two-fold increase in aberrant translocations
in the absence of DIS3 [13]. It is thus possible that altered TAD
conformation favors the diffusion and ligation of DSBs between
Igh and translocation partners, ultimately leading to increased
translocations.
Similarly, some RNA helicases are essential to protect B cells

from translocations, especially the senataxin which safeguards
cells from genetic instability [94], acting redundantly with RNase
H2 [95]. Inactivation of MTR4 and senataxin also induces R-loop
accumulation and generates asymmetric DNA mutations at Sµ
region and at AID off-target genes, including oncogenes [12],
arguing for the necessity of clearing RNAs from DNA:RNA hybrids
to avoid asymmetric mutagenesis that could be implicated in
cancer initiation or development. Furthermore, GLT ncRNAs are
methylated by METTL3, and this m6A mark recruits the YTFH2
reader, the MPP6 adaptor, and the RNA exosome for efficient RNA
degradation. In the absence of RNA methylation, CSR is decreased
but translocations are increased [74].
DNA junction analyses revealed longer microhomologies in cells

deficient for RNA processing [13, 74]. This could be due to a shift
from classical NHEJ to alternative NHEJ, testifying an alteration in
DNA repair, possibly related with R-loop persistence. A recent
study highlighted the critical role of the RNA-binding protein
HNRNPU for binding both R-loop complexes and classical NHEJ
proteins, in an RNA-dependent manner, to facilitate R-loop
clearance and DNA repair during class switching. In the absence
of HNRNPU, R-loops accumulate and DNA repair is ensured by the
alternative NHEJ. The mechanisms involved could implicate liquid-
liquid phase separation, as CSR is decreased in the presence of
phase separation inhibitors [96]. Globally, R-loop creation and
resolution are involved in CSR, and various RNA processing
pathways contribute to their regulation.

Somatic hypermutation
In parallel, SHM occurs at variable V(D)J genes of the Igh and Igl loci
and introduces mutations that are selected to increase Ag affinity.
During this process, sense transcription is initiated upstream of the
V(D)J exons on the template DNA strand. A first study investigated
Exosc3-deficient B cells in which the RNA exosome complex
assembly is disrupted, which likely inhibits its association with
AID [9], and potentially decreases AID recruitment to the V(D)J
exons. In this model, a global decrease in SHM efficiency is
observed in the JH4 intron [10]. By contrast, specific deletion of the
catalytic subunit DIS3 maintains a similar level of SHM on a
prearranged VDJ exon (B1-8 allele) at the Igh locus. In the latter
model, the RNA exosome complex could still be formed, associate
with AID, and be recruited to this VDJ exon to induce SHM. By
analyzing strand-specific DNA mutations, we detected fewer
mutations on the template strand, where sense transcription
actively occurs and where RNA, as a result of RNA polymerase II
stalling [97, 98], can potentially form DNA:RNA hybrids, thus
inhibiting AID-mediated deamination and subsequent mutagenesis.
Oppositely, over-exposition of the single-stranded non-template
DNA resulted in increased mutations in the absence of DIS3 [13].
These data reveal the need for processing sense RNAs at VDJ genes
for efficient SHM, in a mechanism that possibly implies R-loops but
still remains to be deciphered. R-loops and associated G4s are likely
present at VH genes according to predictions by bioinformatic
analyses and G4-sequencing [69] or detection by bisulfite

sequencing [70], but the demonstration of the existence of such
structures during V(D)J recombination and/or SHM and their impact
on these phenomena has not been directly established yet.
A model of RNA-templated DNA repair has been proposed for

SHM [99] and supposes the existence of RNA intermediates, DNA
polymerases that can function with RNA templates and ADAR-
mediated RNA editing. Another RNA-templated mechanism could
be implicated in DNA insertions observed at the IGH locus in
humans, especially the LAIR1 insertions that have been found in
the VDJ exons and confer these antibodies functional binding to
Plasmodium falciparum antigens, while the original genes were
not lost, suggesting a gene amplification mechanism, possibly
with an RNA intermediate [100]. Other DNA insertions originating
from many sites of the genome have then been specifically
identified at the IGH locus, in multiple donors [101], but the
precise mechanism remains to be discovered. How RNA proces-
sing could contribute to these mechanisms is unknown. Despite
extensive research, the exact mechanism of SHM remains only
partially understood and RNA processing pathways contributing
to this process have not been exhaustively identified yet;
nonetheless, future investigations could solve this conundrum.

Terminal plasma cell differentiation
The terminal differentiation of B cells into PCs is accompanied by
dramatic alterations of their transcriptome, licensing them for high
Ig secretion rates. These major transcriptome changes most likely
require ad hoc programmed RNA processing. PC differentiation is
initiated inside the GCs, or in the frame of extrafollicular reactions,
and generates short-lived or long-lived PCs. Long-lived PCs migrate
to their niches, including the bone marrow, where they can
sustainably secrete antibodies for years or even decades in humans.
Before the initiation of the PC differentiation program, B cells
undergo activation during which AID activity and other mechanisms
can threaten genome stability. As a result, a fraction of activated B
cells may undergo mutations and translocations, potentially
initiating lymphoproliferation and PC neoplasms, including mono-
clonal gammopathy of unknown significance (MGUS), smoldering
multiple myeloma (SMM), MM, and PC leukemia, while other genetic
and epigenetic alterations arise later and contribute to the
pathogenesis of MM [102]. MM is characterized by an accumulation,
at multiple sites of the bone marrow, of aberrant PCs with high
heterogeneity and genomic instability [103]. In this type of cancer,
the DIS3 gene undergoes frequent somatic mutations (~10 to 15%
of the patients, depending on the cohorts) leading to loss of
function. More strikingly, almost half of the patients have lost one
copy of the DIS3 allele (located on the q13 arm), and globally, DIS3
mutations and bi-allelic alterations are associated with poor
prognosis [15, 104–109]. DIS3 somatic mutations have been shown
to disturb RNA metabolism of myeloma cells, inducing ncRNA
accumulation [110]. DIS3 has also been recently identified as an
important factor for the cell cycle progression of MM cells and for
preventing centrosome amplification, a mechanism potentially
related to genetic instability [111]. Reminiscent of mouse models
[13], DIS3-deficient MM patients have more frequent translocations
[107], and a recent study also demonstrated that DIS3 inactivation
induces genome instability by increasing the frequency of R-loops in
MM cell lines [112]. Interestingly, DIS3 variants were also detected as
germline alterations that decrease DIS3 catalytic activity and
predispose patients to develop familial MM [113]. While it is still
unclear at which stages DIS3 alterations happen and how they
impact MM initiation and/or development, they are frequently
found in MGUS, SMM, MM, and PC leukemia [107, 114–116],
suggesting a major contribution to these pathologies that
specifically impact terminally differentiating B cells.
Other RNA processing pathways are also affected in MM,

including the RNA-binding protein AATF/Che-1, which is another
factor contributing to R-loop resolution. By interacting with the
lncRNA NEAT1/2 and with paraspeckles, AATF/Che-1 contributes to
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R-loop clearance, thus preventing their diffusion to the cytoplasm
of MM cells and the activation of the interferon response [117, 118].
The non-canonical RNA poly(A) polymerase TENT5C, which can be
mutated in MM, was shown to stabilize mRNAs and gene
expression in myeloma cell lines, increasing cell viability [119].
The spliceosome component SF3B1 is altered in some patients and
perturbs alternative splicing [120]. DIS3 and TENT5C bi-allelic
alterations have been identified to increase alternative splicing,
and interestingly some transcripts of the NHEJ pathway are
alternatively spliced in MM [121]. The ADAR1 gene is frequently
amplified in this pathology [122], inducing RNA hyper-editing
(adenosine-to-inosine) and contributing to poor patient survival,
notably by increasing cell proliferation [123]. Finally, RNA modifica-
tions are also likely implicated in MM, and the m6A mark was
already shown to impact MM cell proliferation and invasion [124].
Overall, B cell development is tightly linked with ncRNA

production, processing, and degradation. These RNAs are produced
at different regions of the genome but importantly at recombination
sites, they are then unwounded and degraded by RNA processing
actors to allow the completion of physiological recombination
processes. Alterations of some of these mechanisms are found in
MM cells, likely contributing to the pathogenesis of the disease.

CONCLUSION
RNAs are now considered major players in chromatin remodeling,
genome organization, and stability. By regulating a wide variety of
RNAs, RNA processing mechanisms directly or indirectly con-
tribute to the fine-tuning of chromatin conformation, higher levels
of 3D genome organization, and protection against genome
instability. Recent evidence highlights these processes, and their
biological relevance is exemplified during B cell development and
associated pathologies. Future studies will more precisely and
definitively determine the critical contribution of RNA processing
in nuclear architecture and genome stability in B cells.
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