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Glucocorticoid treatment influences prostate cancer cell growth
and the tumor microenvironment via altered glucocorticoid
receptor signaling in prostate fibroblasts
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Despite significant therapeutic advances in recent years, treatment of metastatic prostate cancer (PCa) remains palliative, owing to
the inevitable occurrence of drug resistance. There is increasing evidence that epithelial glucocorticoid receptor (GR) signaling and
changes in the tumor-microenvironment (TME) play important roles in this process. Since glucocorticoids (GCs) are used as
concomitant medications in the course of PCa treatment, it is essential to investigate the impact of GCs on stromal GR signaling in
the TME. Therefore, general GR mRNA and protein expression was assessed in radical prostatectomy specimens and metastatic
lesions. Elevated stromal GR signaling after GC treatment resulted in altered GR-target gene, soluble protein expression, and in a
morphology change of immortalized and primary isolated cancer-associated fibroblasts (CAFs). Subsequently, these changes
affected proliferation, colony formation, and 3D-spheroid growth of multiple epithelial PCa cell models. Altered expression of extra-
cellular matrix (ECM) and adhesion-related proteins led to an ECM remodeling. Notably, androgen receptor pathway inhibitor
treatments did not affect CAF viability. Our findings demonstrate that GC-mediated elevated GR signaling has a major impact on
the CAF secretome and the ECM architecture. GC-treated fibroblasts significantly influence epithelial tumor cell growth and must be
considered in future therapeutic strategies.
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INTRODUCTION
Drug resistance is associated with accelerated tumor progression
and remains a significant challenge in the treatment of
metastatic prostate cancer (PCa). Despite the recent introduction
of novel hormone therapies (NHT), taxane-based chemotherapy,
PARP inhibitors, or radio-ligand therapies, metastatic PCa
treatment remains palliative, claiming the urgent need to
identify the underlying molecular mechanisms for therapy
insensitivities. Although the androgen receptor (AR) is the
primary therapeutic target for PCa, and changes in AR activity
are associated with the emergence of therapy resistance, the
underlying biological mechanisms remain elusive [1, 2]. In
addition to AR, we and others have identified increased epithelial
glucocorticoid receptor (GR) expression, glucocorticoid (GC)
medication, and consequently increased GR signaling with NHT
and chemotherapy resistance during the last years [3–5]. Based
on these findings, altered epithelial GR signaling and the
mutually activated AR-GR transcriptome network have been
identified as crucial survival mechanisms for epithelial PCa cells,
bypassing NHT [6–8].

Although these findings shed new light on this topic, past and
current research has mainly focused on the effects of systemic GC
application in PCa patients, epithelial GR signaling, and its impact
on tumor progression. However, little is known about the direct
GC-mediated effects on GR activity in the tumor-
microenvironment (TME), especially in cancer-associated fibro-
blasts (CAFs), which are known to be even involved in tumor
progression [9–11]. Possible functional consequences on the
stromal compartment and paracrine effects on the prostate
epithelium may influence tumor growth. GCs may be an
additional yet unknown reason for the development of therapy
resistance. In this context, we recently identified monoamine
oxidase A (MAO-A) as a mutually directly upregulated druggable
epithelial and stromal GR target [7]. Additionally, MAO-A is a major
driver of PCa cell growth and resistance to therapy [7]. Since GCs
are routinely administered systemically as concomitant medica-
tions in the course of abiraterone, docetaxel, and cabazitaxel
treatment [12–14], we hypothesized that GCs may also influence
the stromal GR axis in the TME. Therefore, the present study
specifically addressed the impact of GC treatment and elevated
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GR activity in immortalized and primary isolated fibroblasts. In
summary, we report a significantly altered fibroblast secretome, as
well as an adhesion and extracellular matrix (ECM) expression
profile after GC treatment, with direct consequences for acceler-
ated PCa cell growth.

RESULTS
Single-cell mapping and IHC identify a prominent stromal GR
signature in benign and PCa tissue
To investigate the heterogeneity of GR (NR3C1) mRNA expression
across the various cell types found in the prostate, we re-analyzed
our GSE193337 scRNA-seq data [15] as well as publicly available
scRNA-seq datasets representing benign and BPH prostates [16].
Dimension reduction, clustering, and annotation of the dataset
containing 24.625 cells from four PCa patients revealed a clear
separation of the cell types (Fig. 1A). GR expression varied strongly,
with very low mRNA expression in epithelial cells, in contrast to
intermediate or strong expression in the TME represented by
fibroblasts, endothelial cells, and immune cells (T cells, monocytes,
B cells, mast cells, and macrophages) (Fig. 1A). Compared to the PCa
dataset, public scRNA-seq data from normal and benign prostate

hyperplasia (BPH) prostate glands identified more prominent GR
mRNA levels in epithelial cells, fibroblasts, smooth muscle,
endothelial, and immune cells. Conversely, basal epithelial, hillock,
club, and neuroendocrine cells showed weaker expression (Fig.
S1A). Further experiments successfully translated the mRNA
observations to the protein level. Briefly, IHC and quantitative
analysis of 280 treatment-naïve PCa patients showed an inter-
mediate or strong and constant GR staining in the stromal
compartment in both benign and malignant tissue sections, in
contrast to a significantly reduced epithelial GR staining in primary
PCa compared to benign prostate glands (Fig. 1B, C). Furthermore,
IHC screening of different PCa metastatic lesions (lymph node,
bone, and lung) revealed unchanged strong GR staining in the TME,
concluding that stromal GR expression is consistently prominent in
the benign prostate and does not significantly alter during PCa
progression compared to epithelial GR expression (Fig. 1D).

GR is not essential for prostate fibroblast survival but is
functionally active
Based on our observations in PCa tissues, we performed an in vitro
screen for GR/AR mRNA and protein expression to evaluate the
potential therapeutic effects of stromal GR targeting. Immortalized
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Fig. 1 GR mRNA and protein expression in benign and malign prostate tissue. A Single-cell RNA-seq from 4 PCa patients and t-SNE analysis
of 24.625 cells freshly isolated PCa cells, as well as a violin blot for NR3C1 expression levels in identified and selected cell subpopulations.
B Quantification of stromal and epithelial GR immune-reactivity scores (IRS) in benign and malign tissue specimens, including 280 PCa
patients after IHC staining for GR (one-way ANOVA and correction for multiple testing using Dunn’s comparison test; ***P < 0.001; Box Whisker
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stromal and epithelial GR expression. Magnification: ×20 (scale bar = 50 µm) and ×63 (scale bar = 20 µm).
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smooth muscle and fibroblast cell lines (PM151T, PF179T-NAF,
PF179T-CAF), as well as primary isolated normal and cancer-
associated fibroblasts (NAFs, CAFs), showed strong GR and weak
AR expression patterns (Fig. 2A, B). Notably, single GR knockdown
using the generated PF179T-CAF-shGR-1 and PF179T-CAF-shGR-2
cell sub-lines, as well as pharmacological GR inhibition with
RU486, did not result in a constant reliably reduced cell
proliferation, growth, viability, or elevated apoptosis in both
models, compared to DU145-shGR-1 cells, representing the
epithelial compartment (Fig. 2C, D, Fig. S1B, C). The authors want
to point out that RU486 is not a specific GR inhibitor. RU486 can
also inhibit the progesterone receptor (PR). However, it was
already shown in a previous publication that the PR is neither
expressed at mRNA nor at protein level in used fibroblast cultures
[4]. Only a combination of GR knockdown and pharmacological
inhibition resulted in reduced cell proliferation, as measured by

3[H]-thymidine incorporation, but not in altered cell viability nor
apoptosis, as confirmed by the unchanged cPARP expression in
either fibroblast cell line (Fig. 2E, Fig. S1 D). The number of cells in
S-phase (3[H]-thymidine incorporation) was reduced by nearly
50% upon shGR-1 induction by Dox treatment in presence and
absence of RU486 in PF179T-CAF and DU145 cells. However, GR
knockdown alone failed to reach our significance threshold, and
knockdown with a second shRNA (shGR-2) yielded much weaker
results. In addition, RU486 mono-treatment showed weaker effects
in PF179T-CAF than in DU145. Measurement of metabolic
potential (WST uptake) and apoptosis (sub-G1) revealed that
DU145 cells were significantly affected by GR knockdown and
biochemical inhibition, whereas PF179T-CAF cells did not show
any effect. Next, we aimed to clarify whether GR is active in these
cells. Short-term GC treatment (1 h) resulted in GR activation and
translocation to the nucleus in both immortalized and primary
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comparison test; **P < 0.01; ***P < 0.001).
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CAFs (Fig. 2F, Fig. S2A). Furthermore, treatment with increasing
concentrations of dexamethasone (Dex) and prednisolone (Pred)
significantly altered GILZ and IGFBP1 mRNA expression, which are
known as positively and negatively regulated GR-target genes.
Therefore, we conclude that GR is highly expressed and
functionally active in the investigated fibroblasts (Fig. 2G).

Identification of the stromal GR signature
Since GR was functionally active in the investigated fibroblasts, we
next assessed the altered stromal GR signature after GC treatment.
Re-analysis of microarray data from PF179T-CAF-shGR-1 cells [7],
as well as including primary CAFs from four PCa patients after GR
activation and combined activation/pharmacological inhibition,
revealed 132 specifically regulated (92 upregulated and 40
downregulated; Dex versus Ctrl) and 168 specifically regulated
(63 upregulated and 105 downregulated; Dex versus Dex +
RU486) GR-target genes after 24 h of GC treatment (Fig. 3A, B). In
line with these findings, all datasets upon Dex treatment displayed
enrichment of the known GR signature (Fig. 3C). Interestingly, GR-
target gene identification, followed by subsequent pathway
analysis revealed significantly elevated chemokine signaling

[kyoto encyclopedia of genes and genomes (KEGG) pathway
analysis] after Dex treatment (Fig. 3D). The GR-dependent elevated
chemokine signaling signature after GC treatment was confirmed
by assessing altered IL-8 (CXCL8) mRNA expression after induction
with Dex or Pred alone, after combined induction and pharma-
cological inhibition, and combined induction and GR knockdown
using PF179T-CAF-shGR-1 cells (Fig. 3E). In this context, screening
of primary isolated CAFs after induction with Dex or Pred alone or
in combination with pharmacological GR inhibition showed similar
results (Fig. S2B).

Altered chemokine signaling results in accelerated cancer
cell growth
To test the potential functional effect of altered stromal
chemokine signaling on the epithelial compartment after GC
treatment, we collected the supernatant of PF179T-CAF cells after
3 d incubation with Dex. Moreover, we cultured several PCa cell
models representing different disease stages in this medium for
4 d (Fig. S2C). WST uptake revealed significantly elevated cell
proliferation/viability in LNCaP, androgen-ablated LNCaPabl,
abiraterone- and enzalutamide-resistant LNCaPabl-Abi/Enza,
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CWR22Rv1, PC3, DU145, docetaxel-resistant PC3-DR, and DU145-
DR cells (Fig. 4A). A possible non-specific influence of Dex residues
in the medium could be excluded in a control proliferation
experiment, showing that treatment of LNCaP cells with increasing
Dex concentrations had no significant impact on LNCaP cell
proliferation (Fig. S2D). Notably, prolonged treatment with Dex-
conditioned CAF medium resulted in significantly enlarged DU145
colonies (Fig. 4B) as well as DU145, CWR22Rv1, and LNCaP 3D
spheroids (Fig. 4C). Furthermore, screening of Dex-conditioned
CAF medium-treated LNCaP spheroids revealed elevated AR, KLK3,
and c-Myc and reduced p21 mRNA expression, confirming a faster
growing and more aggressive cell phenotype after GC treatment

(Fig. 4D). We used commercially available pre-selected cytokine
and chemokine protein arrays to identify soluble factors in the GC-
conditioned CAF medium that might be responsible for the
observed accelerated proliferation and to translate the already
obtained mRNA data to the protein level. Treatment of primary
isolated CAFs from four PCa patients with Dex for 3 d resulted in
significantly altered cytokine and chemokine signatures (Fig. 4E,
Fig. S2E). In addition to the general patient-specific heterogeneity
in protein expression, CCL8, IL-8, and CXCL6 protein levels were
significantly elevated and stable in all patient-derived primary
CAFs after GC treatment. Additionally, to further validate the
obtained results, we confirmed elevated and reduced IL-8 protein
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levels after treatment with either Dex or Pred alone or in
combination with RU486 in PF179T-CAF, as well as in primary
isolated NAFs and CAFs (Fig. 4F, Fig. S2F) using specific IL-8-
coupled magnetic Luminex® beads.

IL-8 is a directly upregulated GR-target gene and is expressed
predominantly in the TME after GC treatment
Since GCs and active GR signaling strongly influence IL-8 mRNA
and protein expression, we tested whether IL-8 is a directly
regulated GR-target. Screening publicly available ChIP-Seq datasets
for putative GR-binding sites near or within the IL-8 gene revealed
two predicted DNA-binding regions (R1 and R2) in several cell lines
of different origins (Fig. 4G). Additionally, a time-course experiment

demonstrated early IL-8 induction even after 2 h of Dex treatment
(Fig. S2G). To verify the ChIP-Seq data predictions, GR-ChIP was
performed using PF179T-CAF cells (Fig. 4H). Dex treatment resulted
in a significantly elevated binding of activated GR to region R1,
which RU486 blocked. Taken together, these results demonstrate
that IL-8 is a direct GR-target gene. Surprisingly, screening for basal
IL-8 expression in our scRNA-seq PCa datasets revealed only a
strong detectable expression in immune cells (monocytes and
macrophages), but not in the stromal or epithelial fraction (Fig. 5A),
suggesting that IL-8 is specifically produced by the immune cell
population in the prostate TME. Using immortalized PF179T-NAF,
PM151T, PF179T-CAF, DU145, and CWR22Rv1 cells, detectable but
very low basal IL-8 expression was confirmed in all screened
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prostate cell lines. Notably, increased IL-8 mRNA levels were
observed only in stromal cell lines after Dex treatment, but not in
epithelial cell lines, in contrast to the significantly induced
epithelial SGK1 expression (Fig. 5B). Furthermore, prominent IL-8
mRNA expression was confirmed in PF179T-CAF cells by in situ
hybridization in vitro and in the stroma of cultured benign and
malignant prostate tissue pieces after 3 d of Dex treatment ex vivo
(Fig. 5C, Fig. S3A).

Standard androgen receptor pathway inhibitors (ARPIs)
therapies have no impact on CAF survival
Next, we aimed to elucidate the functional impact of standard
anti-androgen and abiraterone (Abi) treatments for the therapeu-
tic targeting of CAFs. Interestingly, 6 d treatment with 2.5 µM
(Fig. 5D) or 5 µM (Fig. S3B) bicalutamide (Bic), enzalutamide (Enza),
apalutamide (Apa), or darolutamide (Daro) had no significant
influence on cell proliferation/viability of treated PF179T-CAF.
Furthermore, Abi alone or in combination with Dex or Pred led to
similar results. No reduction in cell proliferation/viability, or
elevated apoptosis was observed (Fig. 5E). As GCs are adminis-
tered in combination with Abi, we further wanted to elucidate the
possible impact of Abi on the general gene expression signature
of PF179T-CAF by performing RNA-seq. Multivariate statistical
analysis of RNA-seq data revealed no upregulated or down-
regulated genes after 6 d of Abi treatment, compared to 804 up-
and 2545 downregulated genes upon Dex treatment under the
selected cut-offs. Heat map visualization confirmed that Abi
treatment alone or in combination with Dex did not affect the top
50 differentially expressed genes in PF179T-CAF cells (Fig. 5F). This
result is unsurprising, as immortalized and primary isolated NAFs
and CAFs have no detectable CYP17A1 mRNA or protein
expression, the prime target of Abi, and a very low AR mRNA
and protein expression (Fig. S4A). Accordingly, screening of IL-8
mRNA expression as an example gene of interest (GOI) resulted in
no altered expression after a single Abi treatment compared to
the significantly elevated expression after Dex or combined Dex
+Abi treatment in PF179T-CAF cells (Fig. S4B). To ascertain that
this observation was not a result of short-term treatment, we
generated PF179T-CAF single Abi, Enza, Dex, and combined Enza
+Dex and Abi+Dex long-term cultured and NHT-resistant cell sub-
lines (Fig. S4C). No constricted cell growth was observed, but
altered cell morphology was detected after long-term Dex, Abi
+Dex, and Enza+Dex treatment (Fig. S4D). Notably, IL-8 mRNA
and protein levels in the generated cell sub-lines were even higher
after long-term Dex, Dex+Abi, and Dex+Enza treatments than
after short-term treatment (Fig. 5G). Further screening of the
selected upregulated chemokines (CXCL6 and CXCL1) and
adhesion-related genes (ITGA10, FN1, CLDN7, and IRS2) (Fig.
S4E) resulted in similar observations. Based on these results, we
conclude that CAFs are not targetable by the standard anti-
androgen or Abi therapy. Furthermore, these drugs seem to have
no significant inhibitory effect on elevated GR-target gene
expression after GC treatment.

GC treatment results in a CAF cell morphology change
Based on the above-described effects on the cell morphology of
Dex-treated PF179T-CAF cell sub-lines, we wanted to exclude cell
line-specific artifacts due to long-term cultivation. Therefore, we
treated PF179T-CAF and primary isolated CAFs with either Dex or
Pred for 6 d and observed similar changes in cell morphology
(Fig. 6A, B). Independent measurements of the CAF cell area and
diameter confirmed significantly enlarged cells after GC treatment
(Fig. 6C, D). Furthermore, we did not observe a significant change
in cell proliferation/viability, apoptosis, cell cycle distribution, or
long-term (up to 10 d) cell growth (Fig. 6E–G). Interestingly, by
screening selected specific GOIs, which are known to be
upregulated in activated or senescent fibroblasts (Fig. 6H), as well
as by screening ß-galactosidase activity after GC treatment (Fig. 6I)

we excluded the observed changes in cell morphology as a direct
effect of differentiation in classically activated or senescent
fibroblasts.

Prolonged GC treatment is responsible for an altered
fibroblast adhesion/ECM expression profile
To further investigate the observed novel CAF cell phenotype, we
used our RNA-seq datasets representing PF179T-CAF and primary
isolated CAFs after 6 d Dex treatment (Fig. 7A). The dataset
comparisons resulted in 106 commonly up- and 137 down-
regulated genes between immortalized and primary isolated CAFs
(Fig. 7B). Of note, follow-up gene ontology biological process
(GOBP) pathway analyses revealed and confirmed not only a
significantly regulated chemotaxis pathway, but also pathways
associated with tissue remodeling, integrin-mediated cell adhe-
sion, ECM- and ECM structure organization, and integrin-mediated
signaling (Fig. 7C). Furthermore, we independently confirmed and
extended the RNA-seq results with commercially available PCR
gene arrays specifically selected for ECM and adhesion-related
genes using PF179T-CAF (Fig. S5A). In the second step, we
performed independent qRT-PCR analysis for selected GOIs, which
were significantly upregulated or downregulated in immortalized
as well as in primary isolated NAFs and CAFs after GC treatment
(Fig. 7D, Fig. S5B). Moreover, elevated protein expression of the
upregulated example GOIs, ITGA10, and FN1 after GC treatment
was confirmed by IF staining (Fig. 7E). In the next step, a
comparison analysis using the cancer genome atlas (TCGA) PCa
datasets confirmed elevated CLDN7, COL8A1, and ITGA10 mRNA
expression in PCa tissue samples. In contrast, MMP1, ITG7, and
ITG8 mRNA expression levels were significantly reduced in primary
PCa (Fig. 7F). Of note, using Kaplan-Meier analysis, elevated
ITGA10 mRNA expression could be correlated with significantly
earlier biochemical relapse and poor prognosis (Fig. 7G).

Functional consequences of an altered adhesion/ECM
expression profile for fibroblasts and epithelial cells
GC treatment appears to significantly affect adhesion/ECM related
genes and proteins. To evaluate possible functional consequences,
we performed adhesion assays using PF179T-CAF cells. GC
treatment for 3 d or 6 d resulted in re-enforced adhesion of Dex
or Pred treated cells compared to DMSO treated control cells
(Fig. 8A, Fig. S6A). Similar results were also observed after 6 d of
GC treatment of PF179T-NAF cells (Fig. S6B). This phenomenon
was also observed after long-term GC treatment (Fig. 8B).
Moreover, ECM remodeling resulted in a faster re-attachment of
GC-treated PF179T-CAF cells (Fig. 8C). Of note, also epithelial
CWR22Rv1 cells re-attached faster to GC-treated CAFs compared
to control cells (Fig. 8D), concluding that GC treatment not only
has a significant impact on soluble factor expression in the TME
but also results in a significant re-architecture of the ECM (Fig. 8E).

DISCUSSION
It is well recognized that elevated epithelial GR expression and
activity have a major impact on the epithelial compartment,
leading to accelerated tumor growth, therapy resistance, and
decreased overall survival [3–5, 17, 18]. However, little is known
about stromal GR expression and the direct GC-mediated effects
on GR signaling in the prostate TME. Mohler et al. first observed
heterogeneous epithelial and stromal GR expression in BPH and
PCa tissue sections, demonstrating that GR expression was
prominent in both epithelial BPH and stromal PCa cells but not
in PCa epithelial cells [19]. Notably, in the present study, we
confirmed and extended these findings at both the mRNA and
protein levels. Re-analysis of our and publicly available scRNA-seq
datasets comprising benign, BPH, and PCa tissues revealed a
prominent cell type-specific GR mRNA expression profile in
multiple identified stromal cell populations. Screening of primary
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PCa tissue samples and metastatic lesions confirmed intermediate
or intense GR expression in the benign and tumor stroma,
independent of the tumor stage. Moreover, a similar GR
expression pattern was observed in immortalized fibroblasts,
smooth muscle cells, and multiple primary isolated NAFs, and
CAFs. Surprisingly, neither GR knockdown nor pharmacological GR
inhibition as a single or combination treatment significantly
affected CAF viability and apoptosis. Notably, NHT and abiraterone
treatment did not affect CAF cell viability or CAF gene expression,
indicating that CAFs cannot be directly targeted by ARPIs.
Importantly, this finding is in contrast to previously published
results for epithelial PCa cells [3–5]. However, control experiments

confirmed a functional GR in used CAFs and short-term GC
treatment resulted in an altered stromal GR-target gene signature.
Our findings are supported by Hidalgo et al., who reported that
PCa stroma exhibits altered GR-mediated transcriptional activity as
well as an altered recruitment pattern of specific coactivators,
thereby suggesting a role for the GC-modified TME in promoting
hormone resistance in PCa [20]. After GC treatment, we identified
a significantly altered stroma-specific chemokine expression
profile at both mRNA and protein levels, which also had a
significant functional impact on the epithelial compartment.
Cultivation of multiple epithelial PCa cell models representing
different disease and therapy stages, with medium from
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GC-treated CAFs resulted in accelerated cell proliferation in 2D
cultures, elevated colony size, and 3D-spheroid growth. Our study
highlights the up-regulation of CXCL6, IL-8, and CCL8 in response
to GC treatment. These chemokines play significant roles in
various stages of cancer development by facilitating angiogenesis,
inflammation, and immune modulation [21]. CXCL6 is known to
promote cell proliferation, angiogenesis, tumor growth, and
metastasis in different malignancies, including PCa [22–25].
Recently, Wu et al. demonstrated that CXCL6 is involved in
intercellular communication between prostate epithelial or cancer
cells and fibroblasts [26]. IL-8 also enhances tumor cell prolifera-
tion, migration, invasion, angiogenesis, and metastasis in different
malignancies, including PCa [27–33]. Elevated IL-8 levels have
been associated with chemotherapy resistance in gastric and
urothelial cancers and poor prognosis in PCa [34–36]. IL-8
signaling has also been shown to strongly influence epithelial to
mesenchymal transition (EMT) in human carcinoma cells [37]. In
PCa, IL-8 influences stromal cells and is a molecular determinant of

androgen independence and progression [38, 39]. Furthermore, IL-
8 is a master regulator of immune cells as it specifically recruits
neutrophils to the TME [40]. High neutrophil count in the TME is
also associated with PCa progression and patient survival [41, 42].
Additionally, CCL8 contributes to the immunosuppressive TME
[43, 44]. Moreover, elevated CCL8 levels are associated with
invasion and metastasis in various malignancies [45–47]. In
summary, we found that an altered TME chemokine expression
profile significantly affects the prostate epithelial compartment
and promotes PCa cell growth. However, the authors would like to
point out that the observed effects on elevated PCa cell
proliferation cannot be attributed to an altered expression of a
specific single soluble factor, but rather to a generally altered CAF
secretome after GC treatment. We acknowledge several limitations
of this study, including exclusion of the immune cell population.
We speculate that GC-mediated elevated soluble factors may also
have a significant impact on immune cells, specifically on the
activity of tissue-associated macrophages (TAMs) and tissue-
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associated neutrophils (TANs) within the TME. However, studying
these interactions was beyond the scope of this study, and
remains to be done in the future.
In addition to the observed changes in the chemokine profile, GC

treatment significantly influenced CAF cell morphology. Our findings
were consistent with those reported by Ribeiro et al. [48]. They
reported that Dex treatment of Wistar rats for 5 d resulted in
morphological changes in the stromal cell population, suggesting
fibroblast activation and smooth muscle cell atrophy. In our hands,
the observed GC-mediated morphological changes did not interfere
with normal cell growth and could not be attributed to differentia-
tion into classical active or senescent fibroblasts. However, RNA-seq
of GC-treated CAFs and subsequent pathway analysis revealed
dramatic changes in the expression profiles of genes directly related
to cellular adhesion and ECM organization. Remodeling of ECM is a
key feature of cancer progression. In the context of GC-induced

effects, our study highlights an increase in the expression of FN1 and
ITGA10. FN1 plays a crucial role in PCa progression by promoting
cancer cell adhesion, migration, invasion, and formation of the
metastatic niche [49, 50]. The observed elevated FN1 expression was
in concordance with the findings of Albrecht et al. After Dex
treatment, they also observed induced FN1 expression, which
directly affected cell proliferation [51]. ITGA10, on the other hand, is
known to affect cell-ECM adhesion. It has been reported that ITGA10
can promote tumor growth and be successfully targeted by anti-
ITGA10 antibodies in glioblastoma [52, 53]. Furthermore, ITGA10 can
drive tumorigenesis in myxofibrosarcoma by promoting tumor cell
survival through the activation of TRIO-RAC-RICTOR-mTOR signaling
[54]. ITGTA10 is also associated with chemotherapy resistance in
osteosarcoma patients by mediating activation of the PI3K/AKT
pathway [55]. In line with these published results, we could also
associate induced ITGA10 mRNA expression with significantly
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Fig. 8 Functional consequences of ECM remodeling for stromal and epithelial cells. A Quantification of the adhesion capacity and
representative microscopy images of PF179T-CAF cells after short-term culture with 100 nM Dex for 3 d and 6 d and pre-treatment with
trypsin for 2min before measurement. Data represent mean+ SEM from 3 independent experiments (one-way ANOVA and correction for
multiple testing using Bonferroni’s comparison test; *P < 0.05; ***P < 0.001). B Quantification of the adhesion capacity and representative
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using Bonferroni’s comparison test; *P < 0.05; **, P < 0.01). C Quantification of the re-attachment capacity and representative microscopy
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soluble factor expression and ECM remodeling under the influence of GCs on tumor cell growth and disease progression based on the
presented findings. The illustration was created in PowerPoint with the help of the MOTIFOLIO illustration tool kit.

A. Eigentler et al.

244

Oncogene (2024) 43:235 – 247



reduced progression-free survival of PCa patients. Furthermore,
functional assays confirmed the induced cell adhesion capability of
GC-treated NAFs and CAFs, with direct consequences on the
attachment ability of epithelial PCa cells. In summary, preclinical
data indicate that GC medication significantly affects fibroblasts in
the TME with direct effects on altered soluble factor and adhesion/
ECM protein expression, which results in accelerated PCa cell
growth.
Generally, GCs are routinely administered as side medications

owing to their anti-inflammatory and antiemetic effects in patients
treated with taxane-based chemotherapy or abiraterone. Both
therapy regimens are standard options for metastatic PCa, with an
increasing impact due to the recent introduction of triplet therapy,
but also because of the approval of PARP inhibitors in combina-
tion with abiraterone. However, the independent effect of GCs on
survival is unclear, and GC administration has been associated
with accelerated PCa progression and chemotherapy resistance
in vitro and in vivo [56]. Zhang et al. demonstrated that GCs
induce drug insensitivity in 89% of 157 examined established cell
lines and patient-derived xenograft models. Notably, the recent
findings by Zhao et al. are consistent with these observations. A
post hoc analysis of the Phase III AFFIRM trial evaluating
enzalutamide in CRPC provides clinical evidence that baseline
GC use is associated with significantly reduced radiographic
progression-free survival, time to PSA progression, and overall
survival [57]. It was concluded that physicians should carefully
consider whether the potential benefits of GC use outweigh the
potential risks of treatment-related adverse events and impaired
survival. Gained data on GC-mediated effects on the prostate TME
and epithelial compartment within this preclinical study may
explain the observed inferior clinical outcomes. Overall, accumu-
lating preclinical and clinical data suggest that GC medication and
elevated epithelial and stromal GR signaling can promote cancer
progression and resistance to therapy. Thus, we propose clinical
studies to assess the possibility of reducing or omitting the use of
GCs during chemotherapy and abiraterone treatment, considering
the resulting side effects of antineoplastic treatments. Further-
more, functional studies including the GR-AR network, GC-
modified TME, and interaction with the immune system are
necessary to uncover new therapeutic opportunities to overcome
or prevent resistance and optimize PCa therapy in the future.

MATERIAL AND METHODS
Cell culture and chemicals
PC3, DU145, LNCaP, and CWR22Rv1 cells were obtained from the American
Type Culture Collection (ATCC, Rockville, MD, USA). LNCaPabl cells were
generated after long-term cultivation of LNCaP cells in steroid-free medium
[58]. LNCaPabl-Abi and LNCaPabl-Enza cells were generated after long-term
abiraterone and enzalutamide treatments [59]. PC3-DR and DU145-DR cells
were generated after long-term treatment with docetaxel [60]. PF179T-NAF,
PF179T-CAF, PM151T, PC3, DU145, CWR22Rv1, PC3-DR, DU145-DR, LNCaP,
LNCaPabl, LNCaPabl-Abi, and LNCaPabl-Enza cells were cultured as
previously described [4, 7]. All cell lines were mycoplasma tested on a
routine basis before cryo-conservation. The authenticity of all cell lines was
validated by short tandem repeat (STR) profiling at the start of the project.
Human primary prostatic normal (primary NAF) and cancer-associated
fibroblasts (primary CAF) were established using an outgrowth method from
prostate organoids from histologically verified benign and cancerous
prostate regions from men undergoing radical prostatectomy (RPE).
Fibroblasts were maintained in DMEM (Cat# BE12-707F; Lonza, Cologne,
Germany) containing 10% fetal bovine serum (FBS; Supreme, Cat# P30-3031;
THP Medical Products, Vienna, Austria), 1% penicillin/streptomycin (Cat# 17-
602E, Lonza), and 2% GlutaMAX™ (Cat# 35050-038; GIBCO, Fisher Scientific,
Vienna, Austria) and used until passage 15 or lower.

Chemicals
The following chemicals were used at concentrations indicated in the
results and figure legends: dimethylsulfoxide (DMSO; Cat# D2650, Sigma
Aldrich, Vienna, Austria), doxycycline (Dox; Cat# D9891, Sigma Aldrich),

mifepristone (RU486; Cat# S2606), dexamethasone (Dex; Cat# S1322),
prednisolone (Pred; Cat# S2570), apalutamide (Apa; Cat# S2840) (Selleck
Chemicals, Munich, Germany), enzalutamide (Enza; Cat# HY-70002),
abiraterone (Abi; Cat# HY-75054) (Hycultech, Beutelsbach, Germany),
darolutamide (Daro; Cat# HY-16985), bicalutamide (Bic; Cat# HY-14249)
(MedChemExpress, Stockholm, Sweden), docetaxel (Doc; Cat# MCE-HY-
B0011), and cabazitaxel (Cab; Cat# MCE-HY-15459) (THP Medical Products).

Patient material
Patients were selected from the Innsbruck Uro-Biobank. The use of
archived materials was approved by the Ethics Committee of the Medical
University of Innsbruck (EV 1072/2018). Written consent was obtained from
all patients and documented in the database of the University Hospital
Innsbruck in agreement with statutory provisions. Tissue microarrays
(TMAs) containing benign and primary cancer tissue cores from PCa
patients who underwent open retropubic or robot-assisted RPE and
metastatic lesions were used to evaluate GR expression. Matched benign
samples were excised from histologically confirmed nonmalignant regions
of the RPE specimens. For ex vivo tissue cultures as well as for primary
NAF/CAF isolation and culturing, the use of primary material was approved
by the Ethics Committee of the Medical University of Innsbruck (EV 4837).
Written consent was obtained from all patients and documented in the
database of the University Hospital Innsbruck in agreement with statutory
provisions. As previously described, benign and cancerous tissue samples
were obtained from explanted prostates and further processed after
positive quality control [7].

Immunohistochemistry (IHC)
GR IHC was performed on a Ventana BenchMark device (Roche, Vienna,
Austria) using an anti-GR rabbit mAb (D6H2L; Cat# 12041) antibody (1:200;
Cell Signaling, Danvers, MA, USA). The IHC specificity of the GR antibody
has been confirmed previously [4]. Images were taken with a TissueFAXS
imaging system using a Zeiss Imager Z2 microscope equipped with a
Pixelink PL‐D674CU-CYL-07451 camera and processed using the Tissue-
FAXS software version 7.137 (Tissue Gnostics, Vienna, Austria). TMA images
were evaluated using the modified “quick-score” protocol: staining
intensity was scored 0–4 (0 = absent, 1 = weak, 2 = intermediate, and
3 = strong). The percentage of positively stained cells was scored 0-4 (0 =
absent, 1 ≤ 10%, 2 ≤ 50%, 3 ≤ 75%, 4 ≥ 75%). Both scores were multiplied to
obtain an immune-reactivity score (IRS) ranging from 0 to 12.

In situ hybridization (ISH)
Tissue samples were cultured in the presence of 100 nM Dex for 3 d. For
probe specificity testing, PF179T-CAF cells were cultured in the presence of
DMSO, 100 nM Dex, or 100 nM Dex + 6 µM RU486 for 3 d. Cells were
harvested and resuspended in a buffer containing 450 µl citrate plasma
and 11.3 µl 1 M calcium chloride in a 15ml vial. 45 µl thrombin 120 NIH-U/
ml (Cat# T4648-1KU; Sigma Aldrich) was added until the cell suspension
coagulated. The cell coagulates and harvested tissue pieces were
transferred to prepared biopsy histosettes, formalin-fixed, paraffin-
embedded, and processed for in situ hybridization. IL-8 (CXCL8) ISH was
performed using a specific RNAscope Hs-IL-8 probe (Cat# 310381;
Advanced Cell Diagnostics, Milan, Italy) and the RNAscope 2.5 HD Red
kit (Cat# 322350; Advanced Cell Diagnostics) according to the manufac-
turer’s instructions. Images were taken with a TissueFAXS imaging system
using a Zeiss Imager Z2 microscope equipped with a Pixelink PL‐D674CU-
CYL-07451 camera and processed using the TissueFAXS software version
7.137 (Tissue Gnostics). ISH pictures were quantified using the Fiji open-
source platform for biological-image analysis [61].

Statistical analysis
GraphPad Prism 9.4.1 (RRID:SCR_002798) (Dotmatics, Boston, USA) was
used for statistical analyses. The Gaussian distribution was determined for
all experiments using Kolmogorov-Smirnov and D’Agostino & Pearson
omnibus normality tests. Differences between treatment groups were
analyzed using unpaired or paired Student’s t-test or Mann–Whitney U test,
depending on Gaussian distribution. Multiple treatment groups were
compared using one-way ANOVA and corrected for multiple testing using
Bonferroni or Dunn’s multiple comparison test method. P values < 0.05
were considered significant. All differences highlighted by asterisks are
statistically significant, as encoded in the figure legends (*P < 0.05,
**P < 0.01, ***P < 0.001). Data are presented as the mean + Standard Error
of Mean (SEM) unless otherwise specified.
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